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ARTEFACTS REMOVAL FROM ECG SIGNAL: DRAGONFLY OPTIMIZATION-BASED

LEARNING ALGORITHM FOR NEURAL NETWORK-ENHANCED ADAPTIVE

FILTERING
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Abstract. Electrocardiogram (ECG) artefact removal is the major research topic as the pure ECG signals are an essential
part of diagnosing heart-related problems. ECG signals are highly prominent to the interaction with the other signals like the
Electromyography (EMG), Electroencephalography (EEG), and Electrooculography (EOG) signals and the interference mainly
occurs at the time of recording. The removal of the artefacts from the ECG signal is a hectic challenge, for which, a novel
algorithm is proposed in this work. The proposed method utilizes the adaptive filter termed as the (Dragonfly optimization +
Levenberg Marqueret learning algorithm) DLM-based Nonlinear Autoregressive with eXogenous input (NARX) neural network for
the removal of the artefacts from the ECG signals. Once the artefact signal is identified using the adaptive filter, the identified
signal is subtracted from the primary signal that is composed of the ECG signal and the artefacts through an adaptive subtraction
procedure. The clean signal thus obtained is used for effective diagnosis purposes, and the experimentation performed to prove
the effectiveness of the proposed method proves that the proposed method obtained a maximum Signal-to-noise ratio (SNR) of
52.8789 dB, a minimum error of 0.1832, and minimum error of 0.428.
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1. Introduction. With a lot of technical advances, the people of the world are afflicted with chronic
diseases, among which the cardiovascular diseases are most commonly available diseases all over the world. The
process of treatment and diagnosis of cardiovascular disease needs continuous monitoring with extensive care,
but due to the increase in the number of patients, it is a tough task to undergo continuous monitoring of the
patients that imposes the need for remote health monitoring. The remote health monitoring gains remarkable
importance that involves the process of monitoring the ECG signals of the patient from a remote area by placing
a mobile device in the patient’s body during the normal day to day activity of the patient [17]. ECG is the
graph that represents the electrical conducting system of the heart that lies in the value range of ±2 mV and
bandwidth range of 0.05 Hz to 125 Hz [1]. Thus, ECG consists of three waves, namely P wave, T wave, and U
wave along with a QRS complex, and these are used for diagnosing the cardiac diseases [19]. The ECG has a
lot of advantages not only in diagnosing the cardiac diseases but also in treating the obstructive sleep apnea or
wearable physiological monitor and in checking the efficiency of the therapeutic drugs [19] [20]. The major issue
is that the ECG signals are affected by the presence of noise, such as power line interference, motion artifacts,
electromyogram effects, and baseline drift with respiration [3].

The ECG signal is affected by various kinds of artefacts at the time of the acquisition in the clinical
atmosphere. The artefacts that affect the ECG in the clinical atmosphere include the baseline wander (BW),
power-line interference (PLI), muscle artifacts (MA), and motion artifacts [4]. These artefacts are added in
the ECG during the time of the recording [1] and the various noises present in the ECG affects the diagnosis
procedures, which poses the necessity for a separation of the ECG signals from the midst of the artefact for the
purpose of simple interpretation [18]. The artefacts have a lot of impact on the ST segment, decrease the quality
of the ECG signal, and degrade the frequency resolution and, in turn, generate signals of large amplitude in
ECG that appears like the PQRST waveforms. Moreover, the artefacts hide the tiny features that are essential
for diagnosis and clinical monitoring. The main objective is regarding the removal of these artifacts that enable
an artefact-free ECG for proper diagnosis. The main problem is regarding the separation of the high-resolution
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ECG signals from the recorded ECG that is affected by the background noise [4]. The normal ECG signal has
a predictable direction, duration, and amplitude of the characteristic waves, and an ECG signal is said to be
normal or abnormal by assessing the ECG [1]. The ECG with the artefacts can be used for diagnosis by an
experienced cardiologist, but the ECG analyzer can yield better accuracy. However, removal of the artefacts
from the ECG signal enables accurate and simple interpretation [2].

The removal of noise from the ECG signal is performed using a number of the traditional algorithms that
use any of the techniques, namely spatial or temporal averaging techniques. Initially, the noise is considered as
random and stationary, and the noise reduction using the temporal averaging is the mean value of the frames
or beats [9], and this method needs a number of the time frames for the reduction of the noise. At the same
time, the spatial averaging method suffers from the problem of placing a number of electrodes in the same
physical position. Along with the linear noise filtering method, the adaptive filtering methods have been used
for separating and identifying the component waves of the ECG from the noisy ECG. The parameter of the filter
is synchronized with the period of the signal for generating the quasi-periodic pattern of the cardiac signal. The
other methods for ECG artefact removal are the subspace rotations, neural networks, and bi-spectral analysis
[6]. Ensemble Averaging (EA) is the other familiar method that extracts the required components from the
noisy ECG signal that averages the beats but loses the significant variations of the inter-beat in the cardiac
cycle due to the averaging procedure [10] [14]. The optimization techniques [33-36] have applications in ECG
artefact removal.

This paper proposes a novel algorithm for training the NARX neural network that is based on the proposed
DLM optimization-based algorithm. The main intention of the paper is to remove the artefact present in the
ECG signal for the effective diagnosis of cardiac diseases and other related problems. The paper presents the
artefact cancelation strategy that is based on the adaptive subtraction procedure in which the artefact signal
is filtered using the adaptive filter and subtracted from the artefact ECG signal. The adaptive filter uses
the NARX neural network that uses the DLM optimization algorithm for tuning the weights of the network,
and the effective tuning is brought about using the proposed algorithm. The proposed algorithm trains the
network effectively based on the weights that correspond to the minimum value of the error. Thus, the proposed
method of artefact removal stands as an effective procedure in eliminating the noise signals, such as ECG, EMG,
and EOG.

The main contribution of the paper is the DLM optimization Algorithm, which determines the optimal
weight for tuning the NARX neural network that serves as an adaptive filter in removing the artefacts from
the ECG signal. DLM is the integration of the LM and Dragonfly optimization algorithm.

The organization of the paper is: Section 1 introduces the paper, and section 2 describes the literature
works with the challenges. The proposed method is introduced and described clearly in section 3, section 4
presents the results and discussion of the paper, and section 5 concludes the paper.

2. Literature Review.

2.1. NARX Neural Network. Payam Amani et al. [29] introduced a multi-step ahead response time
predictor for database queries depends on a nonlinear autoregressive neural network model with exogenous
inputs. The experimentation was performed to analyze the performance of the predictor on a lab setup with
a MySQL-server. Zina Boussaada et al. [30] developed a race sailboat using exclusively renewable sources. It
predicted the direct solar radiation on a horizontal surface using a NARX neural network. The experimental
results have shown that the prediction performance was best when the training phase of the neural network is
performed at regular intervals.

Eugen Diaconescu [31] tested the performance of the prediction for diverse time series using a NARX
dynamic recurrent neural network (RNN). The author utilized conventional statistical techniques to occur
indications to make efficient the process of prediction chaotic time series with RNN. Hong He et al. [32]
introduced an ECG measuring experiment at seven acupoints of the Pericardium Meridian of Hand-Jueyin to
attain the meridian information transmission data. Here, a NARX network was used to model the meridian
information transmission system.

2.2. Artefact removal in ECG signal. Here, eight research works in artefact removal in ECG signal
are discussed. Syed Anas Imtiaz et al. The paper [1] proposed a method for the automatic artefact removal
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using the Automatic artefact identification algorithm that is based on three parameters, namely the quality,
interpretation quality, and computational complexity to find the absolute best use of the data and help the
medical professionals in diagnosis. The method provides reliable data, but the presence of the low SNR artefacts
that occur as a result of breathing interrupts the incoming waveform leading to the incapability of the filter
to rectify the signal. Amit Kumar and Mandeep Singh [2] proposed a method Short Time Fourier Transform
(STFT) for the decomposition of the artefacts from the ECG signal through the optimal selection of the wavelets
thus, sustaining the diagnostic information. The method is highly robust and capable of removing the artefacts
from the noisy physiological and non-stationary ECG Signals, but the method yielded Poor Percentage Root
Mean Square Difference (PRD). Shing-Hong Liu et al. [3] proposed a method for the removal of the artefacts
that initially computes the acceleration signal of the vibration using an accelerometer that is taken as a reference
in the adaptive filter. Finally, the Least Mean Square (LMS) algorithm is employed for determining the optimal
weight of the filter. The method possesses a stable convergence irrespective of the level of the noise, but the
performance is found to degrade if the redundant signals and the reference signals are similar.

Muhammad Zia Ur Rahman et al. [4] used an efficient sign based normalized adaptive filter named Compu-
tationally efficient adaptive filtering technique, and it possesses weight update loops for removing the artefacts
from the ECG. The method efficiently removes the non-stationary noise but used only for wireless biotelemetry
ECG systems. Jinseok Lee et al. The paper [5] presented a real-time method for identifying and removing the
artefacts from the ECG using the Empirical mode decomposition (EMD). There are two approaches, among
which the first one uses first-order intrinsic mode function (F-IMF) of EMD, and the second approach uses
the three statistical measures on the F-IMF time series for measuring the characteristics of randomness and
variability. The method offers proper robustness, but it suffers from Segment disconnectivity if the detected cor-
rupted segment is not utilized for the Atrial Fibrillation (AF) detection, which, in turn, results in performance
degradation.

Taigang He et al. [6] use the Independent component analysis (ICA) for detecting and removing the
artefacts from the ECG’s, and the advantages of the method is that the method offers simplicity, efficiency,
and hence potential for processing the ECG online using the ICA is better, but the ECG still contains the
artefacts that provide the artefactual data. The method failed to remove the artefacts properly. Mbachu C.B
et al. [7] proposed a method for filtering the artefacts from ECG using a method named as the Rectangular
Window-Based Digital Filters. Initially, the digital finite impulse response (FIR) low pass, high pass, and notch
filters are designed based on the rectangular window. The advantage is that the filters are able to remove the
unwanted signals and thus, minimizes the power line interference, but distortions are present due to cascade
filtering output signal that generates ripples due to the usage of rectangular windows. Guang Zhang et al. [8]
designed an enhanced Least mean-square (LMS) method for degrading Cardiopulmonary resuscitation (CPR)
artefacts causing reliable discovery of the VF rhythm during the uninterrupted chest compression (CC). This
method reduces the CPR artefacts effectively from the corrupted ECG signal, but the performance of the
enhanced LMS method is poor, and a large amount of real corrupted ECG records are required for enhancing
the performance.

2.3. Challenges.

1. During the overlapping of the spectral content with the ECG, the SNR is enhanced using digital
filtering, but this digital filtering injects little distortion in the ST-segment regions. In almost all the
situations, the shape of the component wave that is present in the noise signal is well-known but the
requirement is understand the time of occurrence and the exact shape of the signal [9].

2. The filters used for removal of the artefacts from the ECG signal cause a reduction in the amplitudes
of the component waves [6], and they are not successful. Moreover, some of the noise and artefacts
possess a wide range of the frequency, and they are random in nature; thus, filters are not successful
in eliminating the interference while it lies in the same frequency range of the cardiac signal.

3. The major and significant feature regarding the ECG waveform is the QRS complex that lies in a
particular frequency band. The relative power of the wave requires a specific examination that ensures
the reliability of the ECG waveform. The value of the pSQI defines the presence, or the absence of
the data of interest, which in other words, can be briefed as the presence of the higher value of pSQI
indicates the required data is present or else the required data is missing. The strict monitoring should
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be enabled as the artefacts caused as a result of breathing, muscle contractions, and general body
motion possess a frequency of 5 Hz [1].

4. The LMS adaptive filtering is used in [4-8] for the dismissal of the artefacts from the ECG signal,
and this method is the old algorithm that uses the predefined reference signal to remove the artefacts
efficiently.

5. The monitoring tools namely, EOG, EMG, and EEG are involved in the process of continuous moni-
toring along with the ECG that causes the rhythmic artefacts to be included in the mechanical activity
of the ECG. The continuous monitoring process causes the interference of the EOG, EMG, and EEG
signals in the ECG such that the removal of artefacts remains the better way for proper diagnosis [8].

3. The proposed method for the ECG artefact removal. The reason to remove the artefacts from
the ECG signals is performed using the newly proposed DLM optimization-based NARX neural network. The
paper gives a brief discussion of the proposed method of artefact removal from the ECG signals that gains a lot
of advantages like an effective diagnosis of cardiac diseases and helps the physician to take effective measures.

3.1. Removal of artefacts from the ECG signals. ECG is the record of the electrical activity of the
heart, and during the recording process, the artefacts are included with the ECG signals due to the interference
effects of the other signals, such as EEG, EOG, and EMG that may create adverse effects on the diagnosis of the
cardiac-related diseases. In order to overcome the problems caused by the artefacts, it is essential to perform the
adaptive noise cancelation strategy [24] for the removal of the artefacts, such as EEG, EOG, and EMG signals.
Thus, to get rid of the artefacts using the adaptive noise cancelation, the cancelation framework requires two
inputs. Among two of the inputs, one input comes from the ECG signal source, whereas the second input is
from the artefacts. Thus, the primary input signal is the combination of the signal from the ECG source, which
is the clean signal and the interference signal that is obtained by passing the artefact through the unidentified
non-linear dynamics. Thus, the primary signal is represented as

B(i) = C(i) + I(i)(3.1)

where B(i) is the primary input signal, C(i) refers to the clean ECG signal, and I(i) stands for the interference
that is generated using the unknown nonlinear dynamics or otherwise the signal obtained using the noise source.
The noise signal is subjective to adaptive filtering to produce the filtered output, which is similar to that of the
interference signal created as a result of the nonlinear dynamics. Thus, the noise cancelation is performed that
extracts the clean signal through the subtraction of the filtered output from the primary input signal. Thus,
the clean signal extracted using the noise cancelation strategy is given as

C∗(i) = B(i)−A(i)(3.2)

where C∗(i) indicates the clean signal obtained as a result of the adaptive noise cancelation, B(i) stands for
the primary input signal, and A(i) refers to the adaptive filtered output. Figure 3.1 shows the proposed noise
cancelation strategy.

3.2. NARX neural network for the enhanced adaptive filtering of the artefacts from the ECG

signal. The proposed method of the artefact removal from the ECG signals using the NARX neural network
is presented in this section. The main aim of the NARX neural network is to predict the artefact present in the
ECG signal to generate the clean ECG signal sufficient for perfect diagnosis. The input to the neural network
is the artefact and the signal is predicted for which the delays are used.

3.2.1. Solution Encoding. Figure 3.2 shows the solution of the proposed learning algorithm that yields
an optimized solution using three weights, namely the weights of the exogenous input vector, weights of the
regressed output vector, and the weights of the exogenous output vector. These three weights are combined to
generate an optimized weight such that the optimized output trains the NARX neural network in canceling the
artefacts and the size of the solution vector depends on the number of hidden neurons present in the network.
Let us consider the weights of the exogenous input vector as L1, L2, Ld1, the weights of the regressed output is
represented as R1, R2, Rd2, and the exogenous output vector as, O1, O2, Od1. Then, the solution generated using
the LM algorithm, and the Dragonfly optimization algorithm is represented asX l1, X l2, X lf and Xd1, Xd2, Xdf

respectively. Thus, the proposed DLM generated the optimal weights that is given as Xz1, Xz2, Xzf .



Artefacts Removal from ECG Signal: Dragonfly Optimization-based Learning Algorithm 251

Fig. 3.1. ECG artefact removal

Fig. 3.2. Solution encoding of the DLM optimization-based NARX neural network

3.2.2. Architecture of the NARX neural network. NARX neural network [22] is a recurrent neural
network that is used for the analysis and modelling of the nonlinear time series and holds a lot of merits when
compared with the other classical prediction models. The NARX network possesses an effective learning rate,
and in the proposed method of noise cancelation, the learning algorithm used is the dragonfly optimization
and the LM algorithm. The NARX neural network is the collection of the multilayer fed forward network,
recurrent loop, and the time delay. Figure 3.3 shows the architecture of the NARX neural network. The three
layers include the input layer, the hidden layer, and the output layer. The network is subjected to the tapped
delays both in the input layer and the output layer and the feedback flows in a single direction. The feedback
follows the input layer, hidden layer, and provides the output in the output layer. There are three information
vectors in the input layer namely, the exogenous input vector, delayed regressed output vector, and the delayed
exogenous input vector. The output of the NARX neural network is given by

N(l + 1) = F [N(l), N(l − 1), N(l − 2)..., N(l − d1);S(l), S(l − 1), S(l − 2).., S(l − d2)](3.3)

where N(l) is the exogenous input vector, N(l−1), N(l−2)., N(l−d1) are the delayed regressed output vector,
and S(l), S(l− 1), S(l− 2)., S(l− d2) are the delayed exogenous input vectors. At the beginning of the NARX
network function, the weights are assigned between the input layer and the hidden layer and the regressed
output vector and the hidden layer.
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Fig. 3.3. The architecture of the NARX neural network used for adaptive filtering of the artefacts

3.2.3. A novel learning algorithm for the NARX neural network: - Proposed DLM-Dragonfly

Levenberg Marqueret optimization-based Learning algorithm. The paper proposes a new learning
algorithm using dragonfly optimization [21] and the LM algorithm [23]. The dragonfly optimization is the
meta-heuristic optimization algorithm that holds better among most of the evolutionary algorithms because
of the following reasons. The main advantage is regarding the search space as all the information regarding
the search space is restored, and there are only very few control parameters in the search space leading to the
increase in the flexibility of the algorithm. The proposed algorithm is robust, and the problem of converging
to the local minimum using the LM algorithm is solved using the Dragonfly that increases the convergence and
converges to the global minimum. The proposed algorithm is advantageous as they utilize the advantages of
both the LM and Dragonfly. The learning algorithms update the weights individually, and the error values are
computed for both the algorithms. The learning algorithm with the minimum value of the error is used for
updating the weights of the NARX neural network, and the following are the algorithmic steps of the proposed
DLM optimization-based learning algorithm.

Step 1: Population Initialization. The initial step is the initialization that initializes the total swarm pop-
ulation that aims at the possibility of survival. The population initialization using the dragonfly optimization
is represented as

Dd; (1 ≤ d ≤ n)(3.4)

where Dd denotes the position of the dth dragonfly and n is the total population of the dragonflies.
Step 2: Parameters influencing the position update. The dragon population aims at the possible location

to live as they move in search of food, and they are distracted from the enemies that remain the two basic
behaviours of the swarm population. The position update follows the initialization step, and the position
of the dragonflies is updated based on five major factors, separation, alignment, cohesion, attraction, and
distraction, and they are based on the swarm behaviours of survival. The swarm behaviour explains the factors
as the separation is the factor that avoids collision among the individual dragonflies whereas, an alignment
that corresponds to the velocity matching among the dragonflies. The parameter termed as collision aligns the
dragonfly towards the center of mass. The five factors are modelled as

Sd = −

N
∑

j=1

D −Dj(3.5)

where D is the current position of the individual dragonfly, Dj is the position of the jth neighbor, and N be
number of neighboring dragonflies with respect to the reference dragonfly. Sd denote the separation factor of
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the individual dragonflies.

Gd =

∑N

j=1
Vj

N
(3.6)

where Gd refers to the alignment of the dth dragonfly and Vj is the velocity of the jth neighbor.

Cd =

∑N

j=1
Dj

N
−D(3.7)

where D is the current position of the individual dragonfly and Cd refers to the cohesion of the dth dragonfly.
Step 3: Define the step vectors. The position of the dragonfly is updated based on the step vector, and

the main role of the step vector is to show the direction of the dragonfly, and it is employed for the larger
dimensions.

∆Dl+1 = (a1Sd + a2Gd + a3Cd + a4Md + a5εd) + w∆Dl(3.8)

where a1, a2, a3, a4, and a5, are the weights of separation, alignment, cohesion, food factor, and enemy factor
respectively. The values of the weights play a major role in the transition of the exploration phase and the
exploitation phase of the dragonfly thus, the weights are tuned such that it ensures proper switch off between
the two phases. W denotes the initial weight, represents the iteration number. sd, Gd, Cd,Md, and εd denotes
the separation, alignment, cohesion, attraction, and distraction of the dth dragonfly. The exploration phase of
the dragonflies describes the hunting mechanism of the dragonfly for which it takes a back and forth movement.
The exploration phase describes the grouping and the movement of the dragonflies in the same direction for a
long distance.

Step 4: Compute the objective function of the Fireflies. The objective function is calculated to determine
the optimal weight that is based on the minimum value of the error calculated using the LM algorithm and the
Dragonfly optimization algorithm. The weight corresponding to the minimum error is selected as the weight
vector to train the network.

Step 5: Update and determine the position of the food source and the enemy. The above discussion highlights
the behaviour of the dragonflies and hence, it is essential to update the position of the enemy and the position
of the food. The computation of the position of the food and the position of the enemy is performed as

Md = D∗ −D(3.9)

where Mdrepresents the attraction of the dragonfly towards the food, D∗ is the position of the food

Dd
l = D− +D(3.10)

Y − is the position of the enemy, and Dd
l is the distraction of the dragonfly away from the enemy.

Step 6: Determine the position of the dragonfly. The position update of the dragonfly using the step vector
is formulated as

Dd
l+1 = Dd

l +∆Dl+1

d(3.11)

Moreover, the random walk is the search mechanism that is utilized to perform the search process in the
absence of the neighbouring dragonfly. The position update of the dragonfly is computed as the below equation.

Dd
l+1 = Dd

l + levy(H) ∗Dd
l(3.12)

Levy(x) = 0.01 ∗
r1 ∗ σ

|r2|
1

α

(3.13)

σ =

(

Γ(1 + α)× Sin(πα
2
)

Γ( 1+α
2

)× α× 2××(α−1

2
)

)
1

α

(3.14)

where Γ(x) = (x−1)1. T represents the current iteration, H is the dimension of the position vectors. r1 and r2
are the random vectors, α is the constant, and the value is 1.5. The optimal position of the dragonfly enables
the optimal selection of the weights for training the NARX neural network.
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Step 7: Weight update based on the dragonfly algorithm. The above steps are repeated for the maximum
number of iterations, and upon the application of the firefly algorithm, the input vector and the updated weights
are combined as represented below

Xd = (W,Bnew)(3.15)

where W refers to the input vector and Bnew stands for the weight updated using the dragonfly optimization
algorithm.

Step 8: Calculation of the Mean Square Error. The MSE is computed between the target value and the
current value computed using the dragonfly optimization.

ed =
1

l

l
∑

j=1

(Xd
i −X

g
i )

2(3.16)

where Xg
i represents the truth table of the original data and Xd

i denotes the output from the dragonfly algorithm.

Step 9: Update the weights using the LM algorithm. The weights of the NARX neural network are initialized
that depends on the number of the hidden layers and the weights are denoted as below

X = Xc1, Xc2..., Xcf(3.17)

where f is the total number of weights initialized using the LM algorithm.

Step 10: The computation of the mean square error. It follows the following equation,

E(X) = eT e(3.18)

where E(X) = denotes the performance index, eT e indicates the target output, and e represents the expected
output.

Step 11: Weight Update based on LM algorithm. The weight of the NARX neural network is updated using
the LM algorithm as

∆X = [JTJ + γk]−1 ∗ JT e(3.19)

where J is the Jacobian matrix, JT is the Jacobian transform matrix and γ is the learning rate. The update
in the learning rate parameter depends on the decay functionλ. For the greater values of E(X), the learning
rate is multiplied using the rate of the decay function . Once the learning rate is determined, then the value
of E(X) is recomputed using the weighted function X = X +∆X as the trail weight. Similarly, the learning
rate is divided by the decay rate, whenever the function E(X) decreases. Then, the incremented values of the
weights is found by the formula

X = X +∆X(3.20)

Step 12: Formulation of the learning rate. Whenever the performance index E(X) exceeds the trail weighted
function, the learning rate is updated as

γ = γ ∗ λ(3.21)

The learning rate is multiplied with the decay value to obtain the new learning rate, and the weight update
is performed based on the new learning rate that follows the steps from step 8.

Whenever the performance index E(X) is less than the trail weighted function, the learning rate is updated
by dividing the current learning rate by the decay function. Thus, the learning rate is represented as,

γ =
γ

λ
(3.22)
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Step 13: Random generation of the weights using the LM algorithm. The weight is updated using the
following equation

XLM
l+1 = Xt − [H + µ ∗ T ]−1 ∗ q(3.23)

where H denotes the Hessian matrix of the algorithm, and it is determined by multiplying the Jacobian matrix
and the transverse of the Jacobian matrix.

Step 14: Computing the gradient matrix. The Jacobian matrix is employed for determining the gradient
matrix that is denoted as

q = JT e(3.24)

where J represents the Jacobian matrix and e denotes the error value.
Step 15: Generated output based on the newly updated weights. The LM algorithm computes the output

based on the original value of the input vector and the newly updated weights. The output is represented as

XLM
j = (W,Bnew)(3.25)

Step 16: Re-compute the error. The error is recomputed between the output based on the newly updated
weight, and the ground value, and the following formula is used.

eLM =
1

l

l
∑

j=1

(XLM
j −X

g
i )(3.26)

where l corresponds to the total number of the iterations, Xg
j denotes the truth value of the input vector, Xj

LM

represents the output vector generated using the LM algorithm.
Step 17: Generation of the weight vector using the proposed DLM-training algorithm. The weight vectors

are obtained using the proposed DLM algorithm for training the NARX neural network. The optimal generation
of the weights are brought about through the proposed DLM algorithm. For the optimal selection of the weight
vectors, the errors of the outputs using both the training algorithm are determined individually and the errors
of the algorithms are compared. The weight vector corresponding to the low value of the error is considered
for training the NARX network. When the error of the LM algorithm exceeds the error of the dragonfly
optimization algorithm, then the weight vector obtained using the dragonfly optimization is selected as the
optimal weights. When the error of the LM algorithm is lower than the error obtained using the dragonfly
optimization, then the weight vector corresponding to the LM algorithm is used. Moreover, the error value
has an impact on the damping factor, and the value of the damping factor reduces when the error of the
current iteration is less than the error value of the previous iteration. Similarly, the value of the damping factor
increases when the error of the present iteration is greater than the previous iteration. Thus, the error values
of the dragonfly algorithm and the LM algorithm is employed for the optimal selection of the weights vectors
in the DLM optimization algorithm.

Wl+1 =

{

WLM
l + 1 when (eLM < ed)

Dd
l+1

when (ed < eLM )
(3.27)

The above equation represents the condition for the optimal selection of the weight vector.

3.2.4. Proposed method of the artefact removal using the DLM optimization-based NARX

neural network. The main aim of the paper is depicted in Algorithm 11 that shows the steps involved in the
elimination of the artefacts from the ECG signal. The ECG artefact signal comprises of the ECH signal and
the artefacts, such as the EEG, EMG, and EOG signals. These artefacts are added with the ECG signal at
the time of recording and monitoring and hence, removal of the artefacts is essential for the effective diagnosis.
Thus, the adaptive filter is proposed that aims at the removal of the artefacts from the ECG signal, and the
adaptive filter is made of NARX neural network that is trained using the DLM optimization algorithm. The
proposed DLM algorithm determines the optimal weight for training the NARX neural network to perform the
process of adaptive filtering. The proposed filter filters the artefact signal, and the filtered output is fed to the
adaptive subtraction that causes the subtraction of the artefact from the ECG artefact signal such that a clean
ECG signal is generated.
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Fig. 3.4. Flowchart for the Proposed DLM optimization algorithm

Algorithm 1: The proposed method of artefact removal using the adaptive filter

1 # Proposed ECG artefact removal using the adaptive filter- DLM optimization-based NARX neural
network Data: ECG Artefact signal

Result: Clean ECG signal
2 Read
3 Compute the primary signal, B(i) = C(i)+I(i)
4 # Perform adaptive filtering using the DLM-based NARX neural network
5 {
6 Read the artefact signal
7 Update weights of NARX neural network using DLM

8 if (elm < ed) then

9 Wl+1 = WLM
l+1

10 else

11 Wl+1 = WLM
l=1

12 Estimate the filtered output A(i)
13 }
14 Calculate the clean signal, C∗(i) = B(i)−A(i)

4. Results and Discussion. In this section, the result of the proposed method is discussed in detail to
elaborate the superior performance of the proposed method. The experimentation of the proposed technique
of artefact removal from the ECG signals is done in a system with 2 GB RAM, Intel core processor, Windows
10 Operating System. The technique is implemented using the software tool MATLAB.
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Fig. 4.1. Experimental results of the proposed method of artefact removal using various artefact removal methods

4.1. Database Description. Physionet database was created and contributed by Tatiana Lugovaya. The
database has 310 ECG recordings, obtained from 90 persons. Each recording contains, ECG lead I, recorded
for 20 seconds, digitized at 500 Hz with 12-bit resolution over a nominal ±10 mV range, 10 annotated beats,
information containing age, gender, and recording date. The raw ECG signals are rather noisy and contain
both high and low frequency noise components. Each record includes both raw and filtered signals: Signal 0:
ECG I (raw signal), Signal 1: ECG I filtered (filtered signal).

4.2. Experimental results. Figure 4.1 shows the experimental results of the proposed method of artefact
removal using various artefact removal methods. The artefacts, such as EEG, EMG, and EOG are added with
the pure ECG signal during the time of recording such that the presence of artefact affects the effective decision-
making of the doctor. Thus, the various artefact removal methods concentrate on the removal of the artefacts
as is depicted in figures 4.1 a, b, and c respectively.

4.3. Competing methods. The competing methods used are ICA [6], WICA [27], FICA, and NN [28] for
comparing the results of the artefact removal with the proposed DLM to prove the superiority of the proposed
method.

ICA: ICA is a source separation method, and its application to biomedical signals is rapidly expanding.
ICA offers simplicity, efficiency, and hence the potential for processing the ECG online, but the ECG still
contains the artefacts that provide the artefactual data. The method failed to remove the artefacts properly.

WICA [27]: The Wavelet-Independent Component Analysis (WICA) approach allows extending the removal
of the artefacts in the clinical applications. WICA is the integration of DWT and ICA, which takes the
advantages of both techniques.

FICA: Fixed point or FastICA algorithm of ICA is a technique for the removal of eye blink artifact from
EEG and ECG signals. FastICA algorithm has been applied to synthetic signals prepared by adding random
noise to the ECG signal. It divides the signal into two independent components, namely ECG pure and artifact
signal. Similarly, it is applied to remove the artifacts from the EEG signal.
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NN: In [28], an adaptive filtering approach based on a discrete wavelet transform and artificial neural
network is developed for ECG signal noise reduction. This method integrates the multi-resolution property of
wavelet decomposition and the adaptive learning ability of artificial neural networks, and fits well with ECG
signal processing applications.

4.4. Comparative analysis. Figures 4.2-4.4 show the analysis of the proposed method of artefact removal
in terms of the SNR, MSE, and RMSE in the presence of the EEG, EMG, and EOG signals. Figure 4.2.a)
shows the analysis in terms of SNR in the presence of an EEG signal. For the first signal, the SNR values
of the methods like the ICA, WICA, FICA, NN, and DLM are 48.4474 dB, 50.9866 dB, 44.4993 dB, 47.5152
dB, and 50.7498 dB respectively. The value of SNR is 44 dB for ICA, 44.10 dB for WICA, 44 for FICA,
50.7035 for NN, and 52.8753 for DLM respectively for the second signal. It is clear that for the proposed DLM
algorithm, the value of SNR is greater when compared with the existing artefact removal methods. Similarly,
the analysis using the third and the fourth signal indicate that the SNR value of the proposed DLM is greater
when compared with the other methods. Finally, for the fifth signal, the SNR dB’s are 43.76, 44.3, 43.76, 49.83,
and 51.92 for the artefact removal methods like the ICA, WICA, FICA, NN, and DLM respectively that prove
the proposed method is superior over the existing methods.

Figure 4.2.b) shows the analysis in terms of MSE in the presence of an EEG signal. The effective method
responds with the minimum value of the MSE error. For the first signal, the MSE values of the methods like the
ICA, WICA, FICA, NN, and DLM are 20, 20, 17.5515, 0.3088, and 0.2099 respectively. The value of MSE is
15.6646 for ICA, 15.5487 for WICA, 14.3068 for FICA, 8.6930 for NN, and 4.5218 for DLM respectively for the
second signal. It is clear that for the proposed DLM algorithm, the value of MSE is minimum when compared
with the existing artefact removal methods. Similarly, the analysis using the third and the fourth signal indicate
that the MSE value of the proposed DLM is less when compared with the other methods. Finally, for the fifth
signal, the MSE values are 20, 15.4641, 15.2445, 0.8452, and 0.38 for the artefact removal methods like the
ICA, WICA, FICA, NN, and DLM respectively that prove the proposed method is superior over the existing
methods.

Figure 4.2.c) shows the analysis in terms of RMSE in the presence of an EEG signal. The effective method
responds with the minimum value of the RMSE error. For the first signal, the RMSE values of the methods
like the ICA, WICA, FICA, NN, and DLM are 4.4721, 4.4721, 4.1894, 0.5557, and 0.4582, respectively. The
value of RMSE is 3.9578 for ICA, 3.9431 for WICA, 3.7824 for FICA, 2.9483 for NN, and 2.1264 for DLM,
respectively for the second signal. It is clear that for the proposed DLM algorithm, the value of RMSE is
minimum when compared with the existing artefact removal methods. Similarly, the analysis using the third
and the fourth signal indicate that the RMSE value of the proposed DLM is less when compared with the other
methods of artefact removal. Finally, for the fifth signal, the RMSE values are 4.4721, 3.9324, 3.9044, 0.9193,
and 0.6165 for the artefact removal methods like the ICA, WICA, FICA, NN, and DLM respectively that prove
the proposed method is superior over the existing methods.

Figure 4.3.a) shows the analysis in terms of SNR in the presence of the EMG signal. For the first signal,
the SNR values of the methods like the ICA, WICA, FICA, NN, and DLM are 44.29 dB, 46.3359 dB, 44.2964
dB, 47.1836 dB, and 50.9222 dB respectively. The value of SNR is 37.9067 dB for ICA, 38.1276 dB for WICA,
37.9062 for FICA, 50.6968 for NN, and 52.5789 for DLM respectively for the second signal. It is clear that for
the proposed DLM algorithm, the value of SNR is greater when compared with the existing artefact removal
methods. Similarly, the analysis using the third and the fourth signal indicate that the SNR value of the
proposed DLM is greater when compared with the other methods. Finally, for the fifth signal, the SNR dB’s
are 43.0636, 44.8689, 43.0636, 49.5461, and 51.939 for the artefact removal methods like the ICA, WICA, FICA,
NN, and DLM respectively that prove the proposed method is superior over the existing methods.

Figure 4.3.b) shows the analysis in terms of MSE in the presence of the EMG signal. The effective method
responds with the minimum value of the MSE error. For the first signal, the MSE values of the methods like
the ICA, WICA, FICA, NN, and DLM are 20, 20, 20, 84.98, and 0.192 respectively. The value of MSE is 20 for
ICA, 20 for WICA, 20 for FICA, 100.8027 for NN, and 4.5206 for DLM respectively, for the second signal. It
is clear that for the proposed DLM algorithm, the value of MSE is minimum when compared with the existing
artefact removal methods. Similarly, the analysis using the third and the fourth signal indicate that the MSE
value of the proposed DLM is less when compared with the other methods. Finally, for the fifth signal, the
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Fig. 4.2. Analysis of the artefact removal in the presence of the EEG signal

MSE values are 20, 20, 12.66, 12.2077, and 0.3839 for the artefact removal methods like the ICA, WICA, FICA,
NN, and DLM respectively that prove the proposed method is superior over the existing methods.

Figure 4.3.c) shows the analysis in terms of RMSE in the presence of the EMG signal. The effective method
responds with the minimum value of the RMSE error. For the first signal, the RMSE values of the methods like
the ICA, WICA, FICA, NN, and DLM are 4.4721, 4.4721, 4.4721, 9.2184, and 0.4381 respectively. The value of
RMSE is 4.4721 for ICA, 4.4721 for WICA, 4.4721 for FICA, 10.04 for NN, and 2.1264 for DLM, respectively
for the second signal. It is clear that for the proposed DLM algorithm, the value of RMSE is minimum when
compared with the existing artefact removal methods. Similarly, the analysis using the third and the fourth
signal indicate that the RMSE value of the proposed DLM is less when compared with the other methods of
artefact removal. Finally, for the fifth signal, the RMSE values are 4.4721, 4.4721, 3.559, 3.4939, and 0.6196 for
the artefact removal methods like the ICA, WICA, FICA, NN, and DLM respectively that prove the proposed
method is superior over the existing methods.

Figure 4.4.a) shows the analysis in terms of SNR in the presence of the EOG signal. For the first signal,
the SNR values of the methods like the ICA, WICA, FICA, NN, and DLM are 44.2953 dB, 46.4878 dB, 44.2953
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Fig. 4.3. Analysis of the artefact removal in the presence of the EMG signal

dB, 48.6889 dB, and 50.8412 dB respectively. The value of SNR is 37.9052 dB for ICA, 38.1418 dB for WICA,
37.9052 for FICA, 50.6948 for NN, and 52.8694 for DLM respectively for the second signal. It is clear that for
the proposed DLM algorithm, the value of SNR is greater when compared with the existing artefact removal
methods. Similarly, the analysis using the third and the fourth signal indicate that the SNR value of the
proposed DLM is greater when compared with the other methods. Finally, for the fifth signal, the SNR dB’s
are 42.2801, 43.8368, 42.5828, 49.4697, and 51.8589 for the artefact removal methods like the ICA, WICA,
FICA, NN, and DLM respectively that prove the proposed method is superior over the existing methods.

Figure 4.4.b) shows the analysis in terms of MSE in the presence of the EOG signal. The effective method
responds with the minimum value of the MSE error. For the first signal, the MSE values of the methods like
the ICA, WICA, FICA, NN, and DLM are 20, 20, 20, 116.62, and 0.1832 respectively. The value of MSE is
20 for ICA, 20 for WICA, 16.3022 for FICA, 92.5998 for NN, and 4.5254 for DLM respectively, for the second
signal. It is clear that for the proposed DLM algorithm, the value of MSE is minimum when compared with
the existing artefact removal methods. Similarly, the analysis using the third and the fourth signal indicate
that the MSE value of the proposed DLM is less when compared with the other methods. Finally, for the
fifth signal, the MSE values are 20, 20, 7.6076, 11.8829, and 0.3772 for the artefact removal methods like the
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Fig. 4.4. Analysis of the artefact removal in the presence of the EOG signal

ICA, WICA, FICA, NN, and DLM respectively that prove the proposed method is superior over the existing
methods.

Figure 4.4.c) shows the analysis in terms of RMSE in the presence of the EOG signal. The effective method
responds with the minimum value of the RMSE error. For the first signal, the RMSE values of the methods
like the ICA, WICA, FICA, NN, and DLM are 4.4721, 4.4721, 4.4721, 10.7991, and 0.4280 respectively. The
value of RMSE is 4.4721 for ICA, 4.4721 for WICA, 4.0376 for FICA, 9.6228 for NN, and 2.1273 for DLM,
respectively for the second signal. It is clear that for the proposed DLM algorithm, the value of RMSE is
minimum when compared with the existing artefact removal methods. Similarly, the analysis using the third
and the fourth signal indicate that the RMSE value of the proposed DLM is less when compared with the other
methods of artefact removal. Finally, for the fifth signal, the RMSE values are 4.4721, 4.4721, 4.7582, 3.4471,
and 0.6141 for the artefact removal methods like the ICA, WICA, FICA, NN, and DLM respectively that prove
the proposed method is superior over the existing methods.

4.5. Comparative discussion. The comparison Table 4.5 presents the comparison of the artefact removal
methods with respect to the SNR, MSE, and RMSE parameters. The maximum SNR of 52.8789 dB is obtained
using the proposed DLM method, whereas the other methods like the ICA¸ WICA, FICA, NN, and DLM
obtained an SNR value of 44.4474 dB, 50.9866 dB, 47.9796 dB, and 50.7035 dB respectively. Similarly, the
MSE value for the proposed method is minimum as 0.1832, but for the methods like the ICA¸ WICA, FICA,
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Table 4.1

Comparative discussion of the artefact removal methods

Methods SNR (dB) MSE RMSE Computational time (Sec)
ICA 44.4474 6.94 2.6345 12.5

WICA 50.9866 7.1040 2.6653 11
FICA 47.9796 7.60 2.75 9.5
NN 50.7035 0.3088 0.5557 7

DLM 52.8789 0.1832 0.428 6

NN, and DLM, the MSE error is 6.94, 7.1040, 7.60, and 0.3088 respectively. Likewise, the minimum RMSE of
0.428 is obtained by the proposed method when compared with the other existing artefact removal methods.
Also, the proposed method has the computational time of 6 sec, which is minimum than the computational
time of other comparative methods.

5. Conclusion. The paper concentrates on the proposed method of artefact removal using the DLM-
based NARX neural network. The proposed algorithm uses both the dragonfly optimization and LM learning
algorithm for framing the DLM algorithm that trains the NARX neural network. The artefact removal used
a simple subtraction method that subtracts the artefact from the ECG signal such that the ECG signals
obtained are clear and is suitable for diagnosing the cardiac-related diseases. The adaptive tuning of the
artefact removal is carried out using the DLM-based NARX neural network such that the proposed methods
stand as an effective approach for artefact removal. The experimentation performed using the artefact signals,
such as EMG, EEG, and EOG proves that the proposed method is effective when compared with the existing
methods. The maximum SNR of 52.8789 dB, a minimum error of 0.1832, and a minimum error of 0.428 is
obtained using the proposed DLM-based NARX neural network that generates the clean ECG signal. The
proposed method stood as an effective method in extracting the clean signal from the artefact ECG signal.
The performance of the proposed method is further increased by using recent optimization algorithms. The
training speed of the proposed method also needs further improvement.
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