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ENHANCED FEATURE OPTIMIZATION FOR MULTICLASSS INTRUSION DETECTION
IN IOT FOG COMPUTING ENVIRONMENTS

SUDARSHAN S. SONAWANE∗

Abstract. To overcome the shortcomings of traditional security measures in IoT fog computing, The Multiclass Intrusion
Detection (MCID) model is put forward. The model’s goal is to improve intrusion detection by identifying and classifying different
attack types. The behavioral, temporal and anomaly features are fused through SVM-BFE for obtaining the best possible selection
of high worth features. Finally we use a Random Forest algorithm to robustly classify them. There is also its adaptability to the
ever-changing security demands of fog computing. MCID’s ability to improve the cloud security of fog computing is shown by a
4-fold cross validation, which returns performances including precision rates up to 99.43 %, recall about 95 % and F-measures at
as much as 97.17 %. Moreover there are specificity rate totals coming in over this whole range that hit close or right
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1. Introduction. The Internet of Things (IoT) has grown quickly, integrating a wide range of devices and
facilitating easy data exchange and communication [1]. This evolution calls for the need for an intermediary
computing layer between cloud computing and IoT devices [2]. By processing data closer to its source and
increasing efficiency, fog computing was able to solve this issue. Fog computing crosses over devices with
disparate operating systems, which presents a security risk. Fog computing raises the stakes for security,
especially for intrusion detection. In decentralized environments, traditional detection systems that are built
for centralized computing architectures perform poorly [3]. The use of IoT in healthcare, transportation, and
defense makes security issues more important to handle.

This research aims to enhance intrusion detection, specifically for fog computing, in light of these challenges.
The MCID model takes this into account. Behavioral, temporal, and anomaly detections are all part of the
MCID model. The model optimizes feature selection using SVM-BFE optimization to enhance detection. To
evaluate the applicability of the MCID model, we conducted extensive testing against established benchmarks.
The NUSW-NB15 dataset offers a strong basis for evaluation. For testing, we also employed the Random Forest
algorithm. MCID’s performance is evaluated using this method, which contrasts it with other models. The
MCID model aims to enhance fog computing security. Ensuring a robust intrusion detection framework is our
goal in order to increase IoT safety and reliability.

This article follows a logical structure. Following a discussion of fog computing’s challenges, we evaluate
the MCID model’s performance and implications. In order to explain Fog Computing security challenges and
solutions, this organized approach tries to highlight the critical role that the MCID model plays in addressing
them.

2. Related Work. We face both tremendous security challenges and exciting opportunities as fog com-
puting and the Internet of Things grow quickly. Risks increase as more devices connect and systems get more
complicated. Recent research on these risks is examined in the ”Related Research” section. New threat mitiga-
tion methods have been proposed, the flaws of older security systems in fog environments have been investigated,
and their effectiveness has been put to the test. Everything from basic, efficient security to sophisticated deep
learning protection is covered in this section.

Belal Sudqi Khater et al. [4] focused on addressing resource limitations in traditional intrusion detection
systems when applied in fog computing environments. Fog computing extends cloud capabilities to network
edges using diverse hardware devices, posing challenges for resource-intensive intrusion detection systems. The
article’s objective is to propose a lightweight intrusion detection system capable of running effectively on
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resource-constrained fog devices while maintaining high detection rates with minimal computational overhead.
To achieve this, the authors introduce a novel perceptron-based intrusion detection system that utilizes vector
space representation and a multilayer perceptron model. Experimental results reveal a remarkable achievement,
with the system delivering a 94% Accuracy, 95% Recall, and 92% F1-Measure in one dataset and 74% Accuracy,
74% Recall, and 74% F1-Measure in another. Moreover, the system operates efficiently on a Raspberry Pi 3
fog device, with low energy consumption, demonstrating its suitability for fog computing environments.

KISHWAR SADAF et al. [5] proposed a novel approach using deep learning techniques, Autoencoder
and Isolation Forest. The objective is to differentiate between normal and attack packets in real-time with
high accuracy, enhancing the security of fog devices. The article introduces the Auto-IF method, combining
Autoencoder and Isolation Forest, to process incoming network packets efficiently and detect malicious attacks
in real-time while minimizing false positives. The authors extensively evaluate the method, utilizing the NSL-
KDD dataset, and report superior performance compared to other intrusion detection approaches. Notably, the
Auto-IF method effectively reduces false positives and negatives, particularly when the dataset’s contamination
percentage is around 10-12%. This contribution offers an efficient solution to bolster the security of fog devices
and ensure reliable service delivery.

Prabhat Kumar et al. [6] confronted the escalating security concerns surrounding Internet of Things
(IoT) networks. The exponential growth of connected IoT devices brings with it an increased risk of attacks
and compromise. These devices, often resource-constrained, are susceptible to security breaches that can
lead to unauthorized data access, physical infrastructure damage, or their enlistment in botnets for further
attacks. Traditional security measures prove inadequate for safeguarding IoT networks. Consequently, the
article introduces a distributed ensemble design-based intrusion detection system, leveraging machine learning
and fog computing to enhance intrusion detection’s accuracy and efficiency in IoT networks. The aim is to
protect these networks from diverse attacks and bolster their security.

K. Kalaivani et al. [7] tackled the security challenges prevalent in cloud and fog computing environments,
which are vulnerable to various types of attacks such as DDoS, Worm, Probe, R2L, and U2R. These attacks
can disrupt network resources and consume bandwidth, posing significant threats. Conventional methods often
fall short in accurately detecting and countering these attacks. The article presents a novel solution—a hybrid
deep learning intrusion detection model named ICNN-FCID. This model combines Intrusion Classification
Convolutional Neural Network (ICNN) with Long Short-Term Memory (LSTM) networks and is specifically
designed for fog computing environments. ICNN-FCID demonstrates remarkable effectiveness, achieving an
accuracy of about 96.5% and effectively classifying various attack types. By proposing this model, the article
contributes to enhancing security in cloud and fog computing environments.

Mohammed Anbar et al. [8] addressed the imperative need for effective intrusion detection systems (IDSs)
in Fog computing. Fog computing, an extension of cloud computing, shifts computational resources closer
to network edges, reducing communication costs and boosting system performance. However, its distributed
nature poses new security challenges, necessitating robust IDSs. This article conducts a comprehensive review
of recent IDS research in Fog computing, categorizing various approaches and highlighting their challenges and
limitations. The review provides a new taxonomy of IDSs, outlines shortcomings such as scalability and resource
constraints, and offers potential solutions and future research directions. In sum, this article contributes to an
improved understanding of IDSs in the Fog computing landscape, guiding further research in this vital domain.

Hassan Adegbola Afolabi et al. [9] addressed the pressing security and privacy concerns surrounding IoT
devices connected via Fog computing. These devices, due to limited resources and inadequate security, are
susceptible to various threats like DDoS attacks and brute-force attacks. The article proposes an Intrusion
Detection System (IDS) model utilizing Back Propagation Deep Neural Network (BP-DNN) to safeguard the
Fog-IoT platform. The model aims to enhance accuracy and detection rates, mitigating security breaches in
IoT devices within Fog computing.

M. Ramkumar et al. [10], proposed a Support Vector Machine (SVM)-based Intrusion Detection System
(IDS) tailored for the unique challenges of fog computing. The SVM algorithm is employed for its efficiency,
and the IDS focuses on characteristics like mean, limit, and median systems to detect intrusions efficiently.
Offering a lightweight, efficient IDS solution for fog computing with a low false-positive rate and an impressive
average detection rate of 98.6% is the contribution.
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An extensive survey examining intrusion detection systems for fog and cloud computing is carried out by
Victor Chang et al. [11]. The article seeks to shed light on various aspects of security policy deployment in
these kinds of environments. Software-as-a-Service (SaaS) and intrusion detection are highlighted as methods
for tracking and evaluating network traffic, and strategies and policies for lowering intrusion detection are also
suggested. Despite lacking its own experimental results or statistics, the article is still a useful resource for
understanding security policy deployment in fog and cloud computing environments.

Within fog computing, Wu et al. [12] presented a novel Intrusion Detection System (IDS) designed specif-
ically for Internet of Things networks. With Convolutional Neural Network (CNN) as the first classifier and
Random Forest as the second, this IDS uses a distributed ensemble design. By using this method, the efficiency
and accuracy of identifying malicious attacks on fog nodes will be improved. The suggested model considerably
improves detection performance by overcoming the drawbacks of conventional IDS, attaining an astounding
94.43% overall accuracy while effectively allocating the processing load.

The cybersecurity issues that fog computing (FC) and edge computing (EC) environments face because of
their dynamic nature and variety of network devices were addressed by Omar A. Alzubi et al. [13]. Traditional
intrusion detection systems (IDS) often fall short in these settings. To address this issue, the article proposes
an optimized machine learning-based IDS called Effective Seeker Optimization with Machine Learning-Enabled
Intrusion Detection System (ESOML-IDS). This system leverages feature selection and parameter optimization
through effective seeker optimization and machine learning. Comparative experiments demonstrate the ESOML-
IDS’s remarkable effectiveness, achieving an accuracy of 99.5% and outperforming other IDS models in FC and
EC environments.

Junaid Sajid et al. [14] addressed the susceptibility of UAVs to cyberattacks in smart farming, proposing
a fog computing-based framework to bolster security. By combining UAVs and IoT sensors for data collection,
a fog computing architecture for data transmission, and an intrusion detection system that employs machine
learning, the system identifies compromised UAVs. The framework not only enhances data collection security
but also introduces a coin-based recharge system to reward benign UAV behavior while efficiently managing
resources.

Kalaivani Kaliyaperumal et al. [15] confronted the vulnerability of fog computing systems to a range of
attacks and offer an efficient solution. Their proposed model combines deep learning techniques, such as CNN
and IDS-AlexNet, with Random Forest for attack detection. Leveraging feature selection, this model signifi-
cantly improves attack detection accuracy, achieving an impressive 97.5% accuracy on the UNSW-NB15 dataset.
This contribution enhances fog computing security and represents a substantial step toward safeguarding these
systems from various threats.

Doaa Mohamed et al. [16] tackled the increasing vulnerability of IoT networks to cyber threats by proposing
EHIDS, a hybrid intrusion detection system combining fog and cloud computing. EHIDS aims to identify
abnormal behavior in IoT devices and networks to prevent system intrusions. The article details the architecture
and implementation of EHIDS and conducts comprehensive experiments to showcase its superior performance
compared to other approaches. EHIDS reduces execution time significantly and demonstrates effectiveness in
enhancing IoT security.

Cristiano Antonio de Souza et al. [17] provided a comprehensive overview of intrusion detection in IoT and
Fog Computing. Their article discusses the challenges, principles of Machine Learning techniques, and state-of-
the-art approaches in intrusion detection. While the authors mention experiments with the IoTID20 dataset,
they primarily focus on discussing the principles and challenges of intrusion detection, guiding researchers in
this field with a rich source of information.

Guosheng Zhao et al. [18] addressed security risks in cloud-fog hybrid computing for IoT by proposing
a lightweight intrusion detection model based on ConvNeXt-SF. Their model significantly improves efficiency
and performance while maintaining detection and learning capabilities. Detailed experimental results show
its superiority, reducing training and prediction times while enhancing accuracy and addressing information
security risks effectively. This contribution offers an innovative solution for improving IoT security in cloud-fog
hybrid computing environments.

According to research in the cited articles, there are serious security risks associated with the Internet
of Things’ (IoT) rapid expansion and integration across numerous industries. According to these studies,
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IoT intrusion detection systems (IDS) and fog computing are being developed to meet their specific security
requirements. The impact of fog environments on traditional IDS resource constraints is discussed by Belal
Sudqi Khater et al. [4]. While Prabhat Kumar et al. [6] and M. Ramkumar et al. [10] stress the need
for sophisticated algorithms and specialized systems to address vulnerabilities brought on by the growth of
connected devices, KISHWAR SADAF et al. [5] use deep learning to improve detection rates.

Different approaches are provided in this domain by the Lightweight Intrusion Detection Model (LIDM) [18]
and the Combined Ensemble Intrusion Detection Model (CEIDM) [15]. One layered defense against intrusions
is provided by the CEIDM’s multiple detection methods. Limitations on IoT resources are addressed by LIDM,
which guarantees efficient intrusion detection with low computational overhead.

The proposed MCID model is pertinent and required in light of this situation. Despite being effective, many
of the current methods only deal with particular problems. Due to the complexity of fog computing, a broad-
spectrum IDS is required. Behavioral, temporal, and anomaly-based detections are addressed by the MCID
model, which takes a tri-dimensional approach to fog computing’s many challenges. To enhance detection,
MCID additionally employs SVM-BFE optimization. MCID’s robustness is highlighted by its efficient yet
comprehensive solution, which stands in contrast to the lightweight and ensemble methods of CEIDM and
LIDM.

The reviewed articles take on key security issues in the rapidly expanding IoT and fog computing space.
To avoid resource constraints in fog devices, Khater et al. [4] and Afolabi et al. [9] suggest lightweight IDS
solutions Deep learning is also used by Sadaf et al. [5] to improve real-time attack detection using AutoIF
and Kalaivani etal. [15], implementing ICNNFCID respectively. This leads to greater accuracy and fewer false
positives in the methods. Kumar et al. [6] and Ramkumar et al., advocate for machine learning-based IDS,
with consideration towards distributed designs (node autonomous monitoring) to guard against multiple attacks
of different types. In addition the researchers focus on efficiency in SVMs based filtration mechanism Anbar
et al. [8] and Zhao et al. [18], provide detailed overviews, stressing the importance of an effective policy for
security in fog computing systems and cloud communities, respectively. Wu et al. [12] and Alzubi et al. [13],
respectively, propose new IDS models utilizing ensemble learning technologies or optimization techniques that
have high accuracy and impressive performance records. Sajid et al. [14] proposed a fog computing framework
for securing UAVs in smart farming systems. Furthermore, Mohamed et al. [16] and Souza et al. [17] look at
hybrid intrusion detection as well as the basics of machine learning in IoT security, demonstrating how hard it
is to detect attacks on an IoT network.

Based on the literature reviewed, it is apparent that the MCID framework stands out as an important
contribution to the area of IoT fog computing security. With fog computing, intrusion detection is a unique
challenge. The research landscape shows that there are various attempts to solve it; these efforts focus on
resource efficiency, real-time ability and accuracy. Yet, there still is a need for an integrated solution that
solves these individual problems. This is the integrated approach offered by MCID, which integrates state-
of-the art feature optimization and classification techniques. It promises to avoid some of the limitations of
existing models while allowing for a robust system that will be more than adequate for use in highly complex
fog computing environments.

3. Methods and Materials. The proposed model addresses a critical need in the realm of IoT fog com-
puting, where the amalgamation of diverse computing entities and the decentralized nature of fog computing
render traditional security measures insufficient. The convergence of myriad devices and the ensuing data
explosion necessitate advanced intrusion detection mechanisms that can adeptly identify and categorize varied
intrusion types, ensuring the security and reliability of fog computing ecosystems. MCID, with its intricate
feature optimization and multiclass classification capabilities, is not merely a response to this need but a pio-
neering initiative, offering nuanced insights and enhanced detection accuracies in distinguishing between normal
and malicious activities. The significance of MCID lies in its ability to harness advanced machine learning tech-
niques, optimizing feature selection using SVM-BFE and employing ensemble learning for refined classification,
thereby contributing to the fortification of IoT fog computing environments against escalating and evolving
cyber threats. The justification for deploying this model is underscored by the urgent imperative to secure
multifaceted and dynamic fog computing landscapes, where conventional security protocols are rendered obso-
lete, and the demand for sophisticated, adaptive, and robust intrusion detection mechanisms is ever-increasing.
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Fig. 3.1: MCID Architecture

In essence, MCID stands as a beacon of innovation, promising enhanced security and resilience in IoT fog
computing, paving the way for the safe and seamless integration of fog computing in our interconnected digital
world.

The MCID architecture that shown in figure 3.1 is designed to optimize feature selection and enhance
intrusion detection capabilities in IoT fog computing environments. This architecture is embedded with a
fusion of Behavioral, Temporal, and Anomaly features to construct a multidimensional feature space capable of
detailed representation of data patterns and nuances, enabling heightened discernibility between varied intrusion
types and normal behaviors.

The optimal feature selection executed through a combination of Support Vector Machine-Based Backward
Feature Elimination (SVM-BFE), focusing on refining the feature space to retain the most informative and
discriminative features, while eliminating the redundant and less contributive ones. This feature optimization
is crucial for enhancing the model’s predictive accuracy and computational efficiency, thereby contributing to
a more responsive and effective intrusion detection system (IDS).

The architecture figure 3.1 employs a sophisticated multilabel classification model, utilizing ensemble learn-
ing with a Random Forest algorithm. This model is tailored to classify diverse intrusion types, such as DDoS,
backdoor, ransomware, and normal behaviors, facilitating a comprehensive intrusion detection scope within IoT
fog computing landscapes. The ensemble learning approach empowers the model with robustness and stability,
aggregating insights from multiple decision trees to ensure reliable and accurate intrusion type predictions. In
the MCID architecture, every component, from feature fusion and optimal selection to multilabel classification,
is meticulously integrated and fine-tuned. This results in an advanced IDS that is capable of identifying and dif-
ferentiating multiple intrusion types with enhanced precision, fostering a more secure and resilient environment
within the complex and dynamic ecosystems of IoT fog computing.

3.1. The Feature. The basis for intricate and successful models in intrusion detection systems is provided
by behavioral, temporal, and anomalous features, particularly in dynamic and complex environments such as
IoT fog computing. These features enhance detection capabilities by offering various angles and dimensions for
analyzing and comprehending the intricate patterns and subtleties of the data.

Activity patterns of network entities are known as behavioral features. They reveal the typical and atypical
behavior of entities through describing interactions, action sequences, and state transitions. These characteris-
tics enable models to pick up on intricate behavioral details that might point to malicious activity or security
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lapses. These features include user behaviors, system interactions, and network communication patterns. Early
detection of anomalies and intrusions is facilitated by an understanding of these features.

On the other hand, temporal features are necessary to record the time-related elements and sequences of
network events. Timestamps, durations, activity frequency, and the intervals between events or actions are
some examples of these features. In order to identify suspicious or unusual patterns and trends, intrusion
detection models can use time-based features to analyze activity sequences and timings. A layer of security is
added by identifying sophisticated and stealthy attacks that use time to go undetected through the analysis of
temporal dynamics.

Anomaly Features draw attention to anomalies, outliers, and deviations from the norm in the data. Sta-
tistical measurements, frequency distributions, and outlier scores—which indicate data deviation—are some
examples of these features. Detection models can detect unusual patterns and irregularities, even new ones, by
integrating anomaly features. By identifying new threats, abnormal features aid in the adaptation and survival
of intrusion detection systems.

3.2. Optimal Feature Selection. Feature selection is a crucial process in the realm of machine learning,
especially in scenarios where the data dimensionality is large. It becomes even more significant when applied
to sensitive domains like intrusion detection in IoT fog computing environments. This is because irrelevant or
redundant features can lead to overfitting, poor performance, and reduced interpretability.

SVM is a supervised machine learning algorithm, primarily used for classification tasks. It works by
finding the hyperplane that best separates the classes in the feature space. Given its capability to handle
high-dimensional data and its effectiveness in finding margin-based distinctions, SVM is a suitable model for
the complex and dynamic environment of IoT fog computing.

BFE is a recursive method that begins by training the model using all available features. Post training,
it evaluates model performance and identifies the least significant feature. This feature is eliminated, and the
model is retrained with the remaining features. This process is repeated until a desired number of features is
reached or further elimination results in unacceptable performance degradation.

Support Vector Machine (SVM) [19] combined with Backward Feature Elimination (BFE) offers an effective
methodology for optimal feature selection. Here’s a comprehensive description of this method in the context of
intrusion detection:

The SVM-BFE (Support Vector Machine-Backward Feature Elimination) process (see figure 3.2) starts
with standardizing the data due to the sensitivity of SVM to the scale of input data and initializing the
model with all available features. The initial SVM model, trained with all features, undergoes performance
assessment using metrics such as accuracy, F1 score, or the area under the ROC curve, preferably using cross-
validation methods on the training set. The least significant feature, which has the minimum impact on model
performance, is then identified and eliminated from the feature set, and the model is retrained with the reduced
feature set. This process of feature elimination and model retraining is iteratively carried out, with the model’s
performance being assessed at each step, until further removal degrades the model’s performance significantly,
or a predetermined number of features are left.

After the iterative process, the remaining features constitute the optimal feature set, which is expected
to provide the best generalization on unseen data. The final model, built using this optimal feature set,
undergoes validation against a separate test set to assess its generalization capability, ensuring its reliability
and effectiveness in accurately classifying and predicting the target variables. This meticulous and iterative
process aims to strike a balance between model simplicity and performance, enhancing the model’s predictability
and interpretability, crucial for applications such as intrusion detection in IoT fog computing environments.

Algorithm. Let X = x1, x2, ..., xm be the feature space where xi represents each feature, and mis the
total number of features.

Let Y be the set of class labels, Y = y1, y2, ..., yn.
Let D be the dataset represented as D(x1, y1), (x2, y2), ..., (xN , yN ), where N is the number of samples.
SVM Decision Function. SVM finds the optimal hyperplane that separates the different classes in the

feature space. The decision function of a linear SVM can be represented as: f(x) = wTx+ b where f(x) is the
decision function. w is the weight vector. x is the input feature vector. b is the bias term.
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Fig. 3.2: SVM-BFE flow diagram

Backward Feature Elimination (BFE). In the Backward Feature Elimination process, the least important
feature is iteratively removed until an optimal subset of features is obtained. This can be represented as: Start
with the full feature set:

F = x1, x2, ..., xm (3.1a)

For each feature xi in F , evaluate the SVM model, removing xi from the feature set and note the performance.
Identify the feature whose removal has the least impact on (or improves) the model’s performance:

xremove = argmin(xiF )P (F − xi) (3.2a)

where P (F −xi) represents the performance of the model trained with the feature set F excluding the featurexi.
Update the feature set by removing the identified feature: Eq 3.3

F = F − {xremove} (3.3a)

Repeat steps 2-4 until a stopping criterion is met, such as a pre-defined number of features or a performance
threshold.
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Objective. The objective is to find the optimal subset of features, F ∗, which maximizes the performance of
the SVM model:

F∗ = argmaxFP (F ) (3.4a)

Stopping Criteria. The iterative process stops when either:
The addition of any feature does not improve the model’s performance. A predefined number of features

is reached.
Final Model. The final optimal SVM model with the selected features is given by:

f∗(x) = w∗Tx+ b∗ (3.5a)

where w∗ and b∗ are the optimal weight vector and bias term obtained after training the SVM with the optimal
feature subset F ∗.

3.3. Multiclass classification by Random Forest. IoT Fog Computing forms a pivotal network ar-
chitecture, allowing data processing, storage, and applications to operate closer to the end users along the
cloud-to-thing continuum. Its dynamic and intricate nature makes it susceptible to a variety of cyber threats,
including DDoS, ransomware, injections, backdoors, and other malicious activities, highlighting the critical
need for robust intrusion detection systems (IDS) [20]. In this context, Random Forest emerges as a potent
classification algorithm, proficient in predicting varying intrusion types and discerning normal behavior from
malicious. The flow of the multiclass classification using RF [21] has been shown in figure 3.3.

Random Forest is an ensemble learning method, combining multiple decision trees [22] to construct a
‘forest’ that collaborates to render more accurate and stable predictions. This algorithm is inherently suited for
multiclass classification tasks, making it apt for identifying diverse intrusion types like DDoS [23], ransomware
[24], injection [25], backdoor [26], and normal activities within. IoT fog computing ecosystems [27]

Figure 3.3 depicts the workflow of multiclass intrusion detection module of the MCID that begins with
loading a raw dataset and then extracts behavioral, temporal, anomaly features through feature engineering
to form comprehensive feature matrix X; next is preprocessing data devoid of missing values or normalization
being processed as input required for Data is pre-processed, then split into training data and testing data. The
former is used to train a Random Forest model which employs an ensemble approach by constructing numerous
decision trees at different depths; the result of classifying the example chosen for given features are aggregated
from all these trees so that output takes one with highest frequency as answer. Each tree in the model gives
a vote to classify incoming classification data, which culminates in a majority decision. The final class label is
then decided by potential classes such as Normal, DDoS (distributed denial-of-service), Ransomware, Injection
or Backdoor. This procedure ends up with hyper-parameter tuning and optimizing, to raise as high the model
accuracy possible so that the intrusion detection system can be made more reliable and effective. Detailed
description of each step involved in this module follows:

Feature Engineering and Preprocessing. In the realm of intrusion detection, feature engineering is
a foundational step, where the raw data is transformed into a structured format. It includes the extraction
of relevant features like behavioral, temporal, and anomaly features, followed by preprocessing tasks such as
normalization, encoding, and handling missing values.

Let D be the raw dataset, and let X = x1, x2, ..., xn represent the set of extracted features after feature
engineering, where n is the number of features.

Preprocessing. Normalization:

xi,norm =
xi −min(xi)

max(xi)−min(xi)
(3.6a)

where xi,norm is the normalized value of feature xi.
Training the Model. The preprocessed data is utilized to train the Random Forest model. The algorithm

constructs multiple decision trees during training, each deliberating on a random subset of the features, and
thus, learning varied aspects of the data. Let T = t1, t2, .., tm be the set of decision trees in the Random Forest,
where m is the number of trees. Each tree t is constructed using a subset of the feature set X ′ ⊂ X and a
subset of the training dataset D′ ⊂ D.
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Fig. 3.3: Flow diagram of multiclass classification

Classification and Prediction. For every incoming data point, each tree in the ‘forest’ makes an individual
decision, classifying the data point as either normal, DDoS, ransomware, injection, or backdoor. Subsequently,
the Random Forest algorithm applies a majority voting mechanism to finalize the predicted class label, ensuring
the collective wisdom of the ‘forest’ is reflected in every prediction [28]. Each tree t in votes T for a class c in the
set of classes C = Normal, DDoS, Ransomware, Injection, Backdoor. The final predicted class ĉ is determined
by majority voting: ĉ = argmaxc∈C

∑
t∈T 1(t(x) = c) where 1 is the indicator function, and t(x) is the class

predicted by tree t for input x.
Hyper-parameter Tuning and Optimization. The model undergoes hyper-parameter tuning to refine its

performance. Parameters like the number of trees, maximum depth of the trees, and minimum samples split
are optimized to enhance the model’s predictive accuracy and generalization capability [29]. Let Θ represent
the set of hyperparameters of the Random Forest model, such as the number of trees and maximum depth.
Hyperparameters tuning aims to find the optimal set of hyperparameters Θ∗ that maximize a given performance
metric, say accuracy:

Θ∗ = argmaxΘAccuracy(Θ) (3.7a)

4. Experimental Study. The experimental study focuses on the evaluation of ”Enhanced Feature Op-
timization for Multiclass Intrusion Detection in IoT Fog Computing Environments” (MCID) using data from
the UNSW-NB15 [30] dataset. Balanced samples for each intrusion type and benign records were extracted,
each consisting of 25,000 entries for BENIGN, DDOS, RANSOMWARE, and INJECTION. These were system-
atically divided into training and test subsets with 18,750 records designated for training and 6,250 for testing
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Fig. 4.1: Flow diagram of multiclass classification

across each label.
To validate the model’s performance, a four-fold cross-validation method was applied, ensuring consistent

and reproducible results across various data partitions. The implementation leveraged Python and its associated
libraries, highlighting the capabilities of this programming language in handling such sophisticated tasks.

The effectiveness and relevance of MCID were assessed in comparison to two contemporary models. These
include ”Lightweight Intrusion Detection Model of the Internet of Things with Hybrid Cloud-Fog Computing”
(LIDM) [18] and ”Combined Ensemble Intrusion Detection Model using Deep learning with Feature Selection
for Fog Computing Environments” (CEIDM) [15]. This comparative analysis offers insights into the model’s
capabilities, strengths, potential areas for enhancement, and its position in the broader spectrum of intrusion
detection in IoT fog computing environments.

4.1. Performance Analysis. We examine the evaluation outcomes of a thorough 4-fold cross-validation
exercise on the MCID, LIDM, and CEIDM datasets in the ”Performance Analysis” section. To comprehend
classification behavior and class predictions, we make use of confusion matrices. This performance metrics
analysis teaches readers about recall, f-measure, specificity, precision, and more. The performance of the model
is evaluated by looking at both aggregated macro metrics and individual class-wise metrics. The model’s
performance is given by the overall accuracy metric. This part provides readers with a comprehensive overview
of the model’s performance on various datasets, including its advantages and disadvantages. MCID: The
provided confusion matrices in figure 4.1 represent the performance of a classification model across four folds
of cross-validation on the MCID dataset. In each matrix, diagonal values depict correct predictions, while off-
diagonal entries indicate misclassifications. Across the four folds, the model consistently demonstrates strong
performance, particularly in the ”DDOS” class, with minimal misclassifications. Notably, there are occasional
misclassifications between ”BENIGN” and the other classes, especially ”RANSOMWARE” and ”INJECTION”.
Despite these, the overall high true positive rates across classes suggest the model’s robustness on the MCID
dataset.

In the provided metrics of the table 4.1, there is a consistent observation of high performance across all
folds for the classes BNGN, DDOS, RNSM, and INJC. For Fold#1, the precision values range from 0.9217 for
BNGN to 0.9847 for INJC. Similarly, for Fold#2, the precision values are slightly higher, ranging from 0.9276
for BNGN to 0.9836 for INJC. Fold#3 showcases the lowest precision for BNGN at 0.8994, but it also has the
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Table 4.1: Performance Metric Values obtained from 4 fold cross validation performed on MCID

Fold Metrics BNGN DDOS RNSM INJC
#1 Precision 0.9217 0.9635 0.9533 0.9847
#1 Recall 0.9701 0.9501 0.9501 0.9501
#1 F-measure 0.9453 0.9567 0.9517 0.9671
#1 Specificity 0.9725 0.988 0.9845 0.9951
#2 Precision 0.9276 0.9634 0.9579 0.9836
#2 Recall 0.9701 0.96 0.9501 0.9501
#2 F-measure 0.9484 0.9617 0.954 0.9666
#2 Specificity 0.9748 0.9878 0.9861 0.9947
#3 Precision 0.8994 0.9794 0.9658 0.9706
#3 Recall 0.96 0.9501 0.9501 0.9501
#3 F-measure 0.9287 0.9645 0.9579 0.9602
#3 Specificity 0.9642 0.9933 0.9888 0.9904
#4 Precision 0.9557 0.9943 0.9542 0.9479
#4 Recall 0.9701 0.9501 0.9701 0.96
#4 F-measure 0.9628 0.9717 0.9621 0.9539
#4 Specificity 0.985 0.9982 0.9845 0.9824

Table 4.2: Accuracy and Macro Metric Values obtained from 4 fold cross validation performed on MCID

Fold Id Accuracy Macro Precision Macro Recall Macro F-measure Macro Specificity
#1 0.9775 0.9558 0.9551 0.9552 0.9850
#2 0.9788 0.9581 0.9576 0.9576 0.9859
#3 0.9763 0.9538 0.9526 0.9528 0.9842
#4 0.9813 0.9630 0.9626 0.9626 0.9875

highest precision for DDOS at 0.9794. Fold#4 stands out with a notably high precision for DDOS at 0.9943.
Recall values remain fairly consistent across folds, mostly hovering around the 0.95 mark. The F-measure,
which combines precision and recall, also shows commendable results with the highest being 0.9717 for DDOS
in Fold#4. Specificity, which indicates the true negative rate, is highest for DDOS in Fold#3 and Fold#4,
reaching up to 0.9982. Overall, the metrics indicate a strong performance with slight variances across folds and
classes.

The table 4.2 provides an overview of the model’s performance across four different folds. Accuracy values,
which represent the proportion of correct predictions, consistently exhibit strong performance, ranging from
0.9763 in FOLD#3 to a peak of 0.9813 in FOLD#4. This high accuracy is further corroborated by the macro-
level metrics. Macro Precision, which indicates the average precision across classes, demonstrates values above
0.95 for all folds, with FOLD#4 having the highest at 0.963. Similarly, Macro Recall, representing the average
recall across classes, fluctuates around the 0.95 mark, with FOLD#4 slightly leading the pack. The Macro
F-measure, a harmonic mean of precision and recall, echoes these findings with values very close to Macro
Recall. Lastly, the Macro Specificity, which measures the true negative rate, consistently remains high across
all folds, highlighting the model’s capability to correctly identify negative cases, with the highest specificity
seen in FOLD#4 at 0.9875. Overall, the model demonstrates robust and consistent performance across different
folds.

LIDM. The confusion matrices presented in figure 4.2 provide insights into the performance of the model
trained on the LIDM dataset across four folds of cross-validation. In each fold, the diagonal elements of
the matrix represent the number of correct predictions for each class: BENIGN, DDOS, RANSOMWARE,
and INJECTION. For instance, in Fold#1, the model correctly classified 5938 instances as BENIGN but
misclassified 130 as RANSOMWARE and 175 as INJECTION. Similarly, 5813 DDOS instances were correctly
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Fig. 4.2: Confusion matrices obtained from 4 fold cross validation performed on LIDM

Table 4.3: Performance Metrics by Fold and Category

Metrics BNGN DDOS RNSM INJC
Fold#1 Precision 0.9117 0.9976 0.9081 0.9598

Recall 0.9501 0.9301 0.9501 0.9400
F-measure 0.9305 0.9627 0.9286 0.9498
Specificity 0.9693 0.9993 0.9679 0.9869

Fold#2 Precision 0.8546 0.9709 0.9316 0.9841
Recall 0.9301 0.9400 0.9301 0.9301
F-measure 0.8907 0.9552 0.9308 0.9563
Specificity 0.9473 0.9906 0.9772 0.9950

Fold#3 Precision 0.9400 0.9657 0.9440 0.9406
Recall 0.9301 0.9600 0.9501 0.9501
F-measure 0.9350 0.9629 0.9470 0.9453
Specificity 0.9802 0.9886 0.9812 0.9800

Fold#4 Precision 0.9320 0.9556 0.9446 0.9283
Recall 0.9301 0.9400 0.9501 0.9400
F-measure 0.9310 0.9477 0.9474 0.9341
Specificity 0.9774 0.9854 0.9814 0.9758

identified, but 108 of them were falsely predicted as RANSOMWARE. Each fold displays some variability
in misclassifications across classes. For example, Fold#2 shows a noticeable increase in misclassifications of
BENIGN as RANSOMWARE compared to Fold#1. On the other hand, in Fold#3 and Fold#4, the number
of correctly predicted RANSOMWARE instances is consistent at 5938. Overall, the confusion matrices provide
a comprehensive view of the model’s strengths and weaknesses across different data splits in the four-fold
cross-validation.

In the table 4.3 four-fold cross-validation of the LIDM application, the performance metrics clearly exhibit
its robustness in threat detection and classification. For instance, in Fold#1, DDOS detection exhibits an
exceptional precision of 0.9976, indicating that 99.76% of the identified DDOS threats were accurate. This
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Table 4.4: Accuracy and Macro Metric Values obtained from 4 fold cross validation performed on LIDM

Fold ID Accuracy Macro-Precision Macro-Recall Macro-F-measure Macro-Specificity
#1 0.9713 0.944 0.9426 0.9429 0.9809
#2 0.9663 0.935 0.9326 0.9333 0.9775
#3 0.9738 0.948 0.9476 0.9476 0.9825
#4 0.9700 0.940 0.9400 0.9401 0.9800

remarkable precision is echoed in Fold#2 for the INJC category with a value of 0.9841. The recall values,
which reflect the system’s sensitivity, remain consistent, as evidenced by RNSM’s recall of 0.9501 in both
Fold#1 and Fold#3. Furthermore, the F-measure, which is a harmonized average of precision and recall,
remains commendably high across all threats, such as the 0.9627 for DDOS in Fold#1 and 0.9563 for INJC in
Fold#2. Specificity, indicating the system’s ability to correctly identify non-threats, is notably high in Fold#1
for DDOS at 0.9993 and for INJC in Fold#2 at 0.995. All these metrics emphasize the reliability and efficacy
of the LIDM application in the realm of cyber threat detection and classification.

In the table 4.4 four-fold cross-validation evaluation of the LIDM application, the metrics consistently
demonstrate a high level of performance across all folds. The accuracy of the application remains stellar, ranging
between 96.63% in Fold#2 and 97.38% in Fold#3. This trend of remarkable proficiency is also reflected in the
Macro-Precision, with values spanning from 0.9353 in Fold#2 to 0.9476 in Fold#3. Similarly, the Macro-Recall,
indicating the application’s sensitivity in correctly identifying threats, consistently hovers around the 94%
mark across all folds. The Macro-F-measure, a harmonized average of precision and recall, fortifies this trend
by consistently staying above 93%. Lastly, the Macro-Specificity, a measure of the application’s aptitude in
correctly recognizing non-threats, remains impressive, reaching as high as 98.25% in Fold#3. All these metrics
collectively underscore the effectiveness and reliability of the LIDM application in its operational domain.

CEIDM. The confusion matrices presented in figure 4.3 for CEIDM across four folds depict the classifi-
cation performance for the categories: ”BENIGN”, ”DDOS”, ”RANSOMWARE”, and ”INJECTION”. Across
the folds, the diagonals of the matrices, which represent the true positive classifications, show consistently high
values. This indicates a generally high accuracy in classification for each category. However, there are evident
misclassifications. For example, in Fold#1, ”RANSOMWARE” has been occasionally mistaken as ”DDOS”,
while ”INJECTION” has a considerable number of false predictions across other categories. Similarly, in other
folds, while the diagonal values remain dominantly high, indicating successful classifications, the off-diagonal
values point out areas where the model struggled, resulting in misclassifications. These matrices offer valuable
insights for further refinement of the classification model to enhance its accuracy across all categories.

The table 4.5 presents performance metrics of CEIDM, evaluated across four folds. These metrics include
Precision, Recall, F-measure, and Specificity for four classes: BNGN, DDOS, RNSM, and INJC. For Fold#1,
the model exhibits high precision for the BNGN class at 0.9747, while the DDOS class has the lowest precision
of 0.8971. However, the recall for DDOS is higher than BNGN in this fold. This trend of varying precision and
recall figures is observed across all folds. The F-measure, which combines precision and recall, also demonstrates
varied performance among classes, with values mostly hovering above 0.9. Specificity, indicating the true
negative rate, remains notably high across all classes and folds, often surpassing 0.97. By Fold#4, the model’s
precision for the RNSM class peaks at 0.9547. In order to sum up, the CEIDM model exhibits good performance
for all metrics and classes, though there is some variation between the folds.

The table 4.6 presents an overview of the aggregate performance metrics for the CEIDM model over
four folds. The metrics encapsulated include Accuracy, Macro-Precision, Macro-Recall, Macro-F-measure, and
Macro-Specificity. Throughout all folds, the model consistently maintains an accuracy around 0.96, indicating
a strong overall classification performance. The Macro-Precision and Macro-Recall, which provide an average
performance measure across the classes, mostly hover in the low 0.93s to high 0.92s range, denoting that the
model is both precise and sensitive in its predictions. The Macro-F-measure, which combines the precision and
recall, mirrors these figures closely. Notably, the Macro-Specificity remains robust across all folds, predominantly
exceeding 0.97, suggesting that the model is adept at correctly identifying negatives. In essence, CEIDM
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Fig. 4.3: Confusion matrices obtained from 4 fold cross validation performed on CEIDM.

Table 4.5: Performance Metrics by Fold and MetricPerformance Metric Values obtained from 4 fold cross
validation performed on CEIDM

Fold’s Metrics BNGN DDOS RNSM INJC
Fold#1 Precision 0.9747 0.8971 0.9508 0.9123

Recall 0.9200 0.9501 0.9400 0.9200
F-measure 0.9466 0.9228 0.9454 0.9161
Specificity 0.9921 0.9637 0.9838 0.9705

Fold#2 Precision 0.8635 0.9315 0.9445 0.9458
Recall 0.9200 0.9200 0.9101 0.9301
F-measure 0.8909 0.9257 0.9270 0.9379
Specificity 0.9515 0.9774 0.9822 0.9822

Fold#3 Precision 0.8765 0.9659 0.9231 0.9515
Recall 0.9501 0.9301 0.9200 0.9101
F-measure 0.9118 0.9477 0.9215 0.9303
Specificity 0.9554 0.9891 0.9745 0.9845

Fold#4 Precision 0.9206 0.9252 0.9547 0.9302
Recall 0.9501 0.9200 0.9501 0.9101
F-measure 0.9351 0.9226 0.9524 0.9200
Specificity 0.9727 0.9752 0.9850 0.9772

Table 4.6: Accuracy and Macro Metric Values obtained from 4 fold cross validation performed on CEIDM

Fold ID Accuracy Macro-Precision Macro-Recall Macro-F-measure Macro-Specificity
#1 0.9663 0.934 0.9325 0.9327 0.9775
#2 0.9600 0.921 0.9200 0.9204 0.9733
#3 0.9638 0.929 0.9276 0.9278 0.9759
#4 0.9663 0.933 0.9326 0.9325 0.9775
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Fig. 4.4: Comparative analysis of precision, recall, f-measure, and specificity

consistently delivers reliable and robust performance metrics across the four evaluation folds.

4.2. Comparative Analysis. This section provides evaluation comparing the proposed MCID model with
its contemporaries, LIDM and CEIDM. Through a meticulous examination of performance across vital metrics
such as precision, recall, F-measure, specificity, and accuracy, along with their macro counterparts, insights
are drawn regarding the inherent strengths, potential pitfalls, and distinguishing characteristics of each model.
This analysis seeks to offer a comprehensive perspective on the standing of MCID within the contemporary
landscape.

According to comparative analysis presented in figure 4.4, MCID consistently demonstrates commendable
performance across all metrics and folds, indicating its robustness and generalizability. Notably, it exhibits high
specificity, especially in the initial folds, ensuring a low false positive rate which is crucial in many applications.
Additionally, its balanced results across precision, recall, and F-measure highlight its capability to provide
reliable classification without significant trade-offs. Even in scenarios where it doesn’t lead, MCID remains
a close competitor, showcasing its potential as an effective and versatile method in comparison to LIDM and
CEIDM.

The bar graphs in figure 4.5 provide insight into the performance of three methods (MCID, LIDM, and
CEIDM) across four different folds. At a glance, MCID consistently offers the highest accuracy across all folds,
with FOLD#4 being its best at 0.9813. While LIDM and CEIDM often hover close in metrics, LIDM slightly
outperforms CEIDM in accuracy for most folds. However, in terms of Macro Precision, Recall, and F-measure,
MCID again generally surpasses the other two, solidifying its position as the most effective model among the
three, especially in FOLD#4. For Macro Specificity, all methods perform quite commendably, with minimal
variance across folds. Yet, MCID again edges out with the highest value in FOLD#4. Overall, the MCID
method proves superior, with FOLD#4 consistently representing the highest metric values for this method.

A comparative analysis table 4.7 summarizes the average performance improvement of MCID over LIDM
and CEIDM with respect to four key metrics. The list presents percentages (showing improvements) along
with their standard deviations. Compared with LIDM and CEIDM, the model is very reliable in terms of
detailing every step along the way. Every time it was tested for its ability to forecast results, on average a
0.8425 % improvement occurred when compared with LIDM and an even larger increase of 1.4975 % over that
achieved by CEIDM. Furthermore, in Macro Precision it is better than LIDM by 1.685 % and CEIDM by
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Fig. 4.5: Comparative analysis of Accuracy and macro values of the precision, recall, and f-measure

Table 4.7: comparative table of improvement rate

Metric Improvement vs LIDM (%) Improvement vs CEIDM (%)
Accuracy 0.8425 1.4975
Macro Precision 1.685 3.08
Macro Recall 1.735 3.1125
Macro F-measure 1.71 3.1
Macro Specificity 0.55 0.975

3.08 %, while in terms of Macro Recall the latter figure comes to as much as 1.735 % over against those for
respectively approximately definitive idiomatic expressions (LIDM) and common sense fine-grained Macro F-
measure’s general performance Is MCID 1.71% ahead and 3.1 % higher over the two other models respectively,
which suggests that this is a balanced improvement in both precision and sensitivity of classifications at its
peak value for each parameter (F max). For Macro Specificity, MCID retains a small edge over LIDM (240.86P
compared to 239.57 P) and an even greater margin over CEIDM at 1 point of distortion error or more—a
whopping improvement in both cases! These figures together attest to MCID’s strength and its prowess at
helping unleash the full potential of intrusion detection in IoT fog computing environments.

5. Conclusion. In sum, the MCID framework represents an important step forward in IoT fog computing
security. It fills the critical gaps that traditional security measures are often unprepared to fill, dealing with
fog computing environments which by their nature tend to be complex and constantly evolving. With a rich
set of features and sophisticated machine learning techniques, MCID is offered as an efficient solution to the
problems of intrusion detection. By its detailed architecture, the system can fully exploit behavioral, temporal
and anomaly characteristics, optimizing them through SVM-BFE. This leads to a streamlined feature set that
improves the system’s accuracy and speed. Also, using a Random Forest algorithm for multilabel classification
helps MCID precisely identify various kinds of intrusion targets. Cross-validation results further show that the
MCID framework has high efficacy across many different metrics, making it a potent weapon in comprehensive
security. Based on the precision, recall rate. F-measure and specificity values it achieves accuracy in threat
detection and classification while minimizing false positives to grant IoT devices a high level of reliable protection
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under fog computing networks. In short, the design of MCID is an important step in making fog computing
secure. Its novel methodology and early successes open the gateway for more research and development on this
front, foreshadowing a model that is scalable as well as flexible enough to conform with changes in the threat
environment created by IoT.
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