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ENHANCING IOT SECURITY IN RUSSIAN LANGUAGE TEACHING: A IMPROVED
BPNN AND BLOCKCHAIN-BASED APPROACH FOR PRIVACY AND ACCESS

CONTROL
QI JIA∗

Abstract. Russian language instruction emerges as a pivotal course in tertiary education, necessitating novel approaches to
maintain instructional quality and efficacy. This study introduces a novel approach to Russian language teaching that combines
the robustness of Machine Learning with the security framework of Blockchain technology and is tailored to the unique needs
of the Internet of Things (IoT) environment. At its core, the study creates an advanced back-propagation deep neural network
enriched with a deep noise-reducing auto-encoder and a support vector machine to improve privacy and access control in IoT-based
educational platforms. The proposed model employs a polynomial kernel function and a one-error penalty factor in a single hidden
layer, resulting in a system that is not only efficient in handling small-scale data samples but also adept at processing larger data
volumes, a common scenario in IoT settings. This design effectively overcomes the problems of overfitting and slow convergence
that are common in traditional models. Furthermore, the incorporation of blockchain technology ensures a decentralized and secure
data handling framework, reinforcing the privacy and access control aspects that are critical in the digital education domain. The
combination of these technologies yields a more rational, scientifically based evaluation system, propelling the standardization and
enhancement of Russian language instruction forward. This method not only improves language teaching quality, but it also paves
the way for more secure, scalable, and efficient IoT applications in educational settings.
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1. Introduction. A major attempt to raise the calibre of instruction and teaching is teaching assessment.
The assessment results provide feedback on the quality of the teachers’ instruction and serve as a foundation for
developing more effective teaching strategies. Learning outcomes are also reflected in teaching assessment, which
can be used by students to modify their learning strategies and progress. It is an effective technique to support
the management of education and teaching in a scientific and logical fashion, as well as to create a teaching
force that is more targeted and concentrated. The variety of contemporary indicators for assessing teaching
quality and the complexity of evaluation index aspects make it difficult to quantify a particular indicator in the
teaching evaluation process during the teaching phase. The teaching process is characterised by a multi-factor
loop, and the interdependence of teachers, teachers, and students creates a straightforward non-linear challenge
for evaluating the quality of the instruction. Neurons are arranged in layers in non-linear systems called
neural networks. Deep learning’s robust information processing capabilities give teaching quality evaluation
a contemporary instrument, significantly lowering the subjectivity of conventional teaching evaluation and
enhancing its rationality. This shows the value and importance of using neural networks to create a model for
assessing the quality of training with the goal to progress scientific teaching objectives and enhance standards
for education and instruction.

The Internet of Things (IoT) has emerged as a critical component in the rapidly evolving landscape of
digital education, revolutionizing how educational content, including language instruction, is delivered and
managed. While this transformation provides unprecedented opportunities for interactive and personalized
learning experiences, it also poses significant challenges in terms of data privacy, security, and access control.
Russian language instruction in tertiary education, which is becoming increasingly important as Russia’s global
influence grows, is at the forefront of this digital shift. In this IoT-driven environment, the need to safeguard
sensitive educational data and ensure the integrity of the teaching process is more pressing than ever. Our
research focuses on developing an improved back-propagation deep neural network model with elements such
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as a deep noise-reducing auto-encoder and a support vector machine that is specifically tailored for the context
of Russian language instruction in IoT environments. This model aims to improve not only the effectiveness
of language teaching but also the inherent security concerns associated with IoT-based educational systems.
Within this framework, the integration of ML and Blockchain promises to deliver a more secure, efficient, and
personalized educational experience.

Use of neural networks for teaching assessment relies on the development of a solid scientific model to
evaluate educational quality [1, 2]. However, the low computing efficiency, sluggish convergence, and insuffi-
cient accuracy of current assessment models make further investigation and development of evaluation models
necessary. To address the issues of overfitting and poor accuracy of existing models, this research suggests
adaptive backpropagation neural networks and includes deep noise reduction autoencoders and support vector
institutions to develop deep backpropagation neural networks on this basis. The research’s goal is to create
models for evaluating teaching quality that can handle samples from massive data sets.

The application of technology in an IoT environment for educational purposes. This novel approach ad-
dresses critical issues in digital education, specifically Russian language teaching. The use of these technologies
in the classroom is a significant step forward in terms of improving both the quality of instruction and the
security of the digital learning environment. The creation of an improved back-propagation deep neural net-
work model that incorporates a deep noise-reducing auto-encoder and a support vector machine represents a
significant step forward in the evaluation and improvement of language instruction quality. This model was
created specifically to process and analyze the complexities of language teaching data, making it a useful tool
for educational institutions.

2. Related Works. Numerous experts and academics have conducted a number of studies on the conven-
tional teaching quality assessment system in an effort to enhance the teaching quality assurance system, fairly
evaluate teaching quality in order to improve teaching standards, and advance education teaching towards
scientific standardisation. In order to selectively label sample features, A system of active learning developed
by Huang W combines Gaussian process and sparse Bayesian learning. The algorithm’s improved performance
was later confirmed [3]. Yuan Z analysed and evaluated feature selection techniques based on current automatic
scoring systems, employed multiple regression techniques for score evaluation, and confirmed the effectiveness of
the algorithm model through carefully controlled tests with the goal to expand the English translation scoring
system [4]. Xiaolong developed a model employing evaluation indices from diverse viewpoints for assessing the
effectiveness of online education programmes for colleges and universities. The experimental findings revealed
that the algorithm model’s training error was relatively small [5]. On the basis of the empirical modal decom-
position approach and the adaptive complementary method, Sun Q developed the classroom theory teaching
quality evaluation model and improved the correlation vector machine. After employing the baseline weights of
the genetic algorithm algorithm network, the model can effectively assess the quality of English interpretation
training using a process based on genetic algorithms [7].

To enhance the scientific rigour and applicability of teacher assessment, Lin L applied data mining tech-
niques and machine learning methods for data analysis and joint model creation [8]. This was done to prevent
subjectivity from influencing teaching evaluation and to advance the thoughtful growth of teaching evaluation.
In order to incorporate artificial intelligence methods into classroom evaluation activities, Guo J suggested an
integrated model including statistical modelling and integrated learning based on computer vision and intelli-
gent voice recognition. The experimental findings demonstrated the model’s superior functionality, with model
accuracy as high as 0.905 [9]. To improve the efficiency of online teaching, Ding X et al. used association rule
mining techniques for segmentation fusion and autocorrelation matching detection of teaching timeliness and
developed an online teaching timeliness evaluation model based on intelligent learning. The simulation results
show that the approach has a high level of confidence for assessing how timely online education is [10]. In order
to assess the effectiveness of evaluating ideological and political education, Wang Y et al. employed machine
learning and artificial intelligence to develop a fuzzy hierarchical analytic model of the quality of ideological
and political teaching. The model uses a three-layer structure to establish a model network structure for data
administration, modification, and management of the model assessment. A database for real-time updating
was also built. The outcomes of the simulation experiment show that the research model meets the criteria for
assessing the efficacy of ideological and political training in universities and other institutions [11]. To address
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Fig. 3.1: Functional diagram of the back propagation method

the flaws in the taekwondo teaching model used in colleges and universities and to enhance the teaching effect of
taekwondo, Liang H developed a taekwondo teaching effect evaluation model based on the intelligent algorithm
of human feature recognition using support vector institutions. The performance of the model was confirmed
using controlled trials and quantitative statistical techniques, and the concept has some practical applications
in classroom education [12].

The aforementioned research on teaching quality evaluation models demonstrates that there are still some
gaps in the current findings, and it is relatively uncommon to see teaching quality evaluation models built by
combining deep neural networks to solve the issues of fuzzy model index weights, excessive randomness, and
easy over-fitting of models, which have significant ramifications for handling large-scale data set samples.

3. Deep Neural Network Evaluation Model Construction Based on Improved BP.

3.1. Construction of a BPNN Evaluation Model Incorporating Adaptive Learning Rate and
Momentum Terms. This study addresses the shortcomings of existing models and methods for processing
evaluation datasets, with such improvements enhancing the gradient descent method of back propagation neural
networks (BPNN) and speeding up the convergence of the model. This study also adds support for vector
institutions and deep noise reduction autoencoders to the adaptive BP neural network, a change that can help
to handle large evaluation sample data.

The basic processing units for algorithm learning are the neurons, which are the building blocks of artificial
neural networks. The function of BPNN’s back propagation approach is depicted in Figure 3.1 [13, 14]. Back
propagation neural networks are more fundamental neural networks that use forward propagation for output
results and back propagation for error propagation. Figure 3.1 illustrates the process of input, processing,
computation and output of data in forward propagation. When the error is back-propagated, the error layer
determines the discrepancy between the target’s desired value and the output’s actual value. The error value
will adjust the neuron weights and thresholds of each layer until the error reaches the required end of the
algorithm. The error is transported forward from the output layer(OL) through the HL in an inverse forward
propagation way.

The study builds a three-layer BPNN using forward propagation learning to initialise the network with the
number of god will elements as n, p, and q in each layers, respectively. Equation 3.1 shows the input value.

hij(k) =

n∑
i=1

wijxi(k)− bj (3.1)

In equation 3.1, k is a sample chosen at random, x(k) is the input vector, Wij is the network’s connection
weight, and bj is the threshold value chosen at random from the range (−0.5, 0.5). Equation 3.2 displays each
neuron’s output value from the HL, ho..

ho(k) = f(hij(k)) (3.2)
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In accordance with 3.3, the method for determining each neuron’s input value yi in the OL based on the HL’s
output value, the connection weights, and the OL’s threshold value is shown.

yit(k) =

p∑
j=1

wjtho,j(k)− bt (3.3)

Wjt is the connection weight and bt is the threshold value in equation (3). Similar to how the input value yi of
the neuron is used to determine the output value yo , as shown in equation 3.4.

yo,t(k) = f(yi,t(k)) (3.4)

The target accuracy of the network is set to ϵ during the backpropagation phase of the BPNN, commonly
known as error backpropagation. When the accuracy is less than the set accuracy, the bias derivatives of the
neurons in the OL are calculated in equation 3.5.

δt(k) = yo(k)(1− yo(k))(t(k)− yo(k)) (3.5)

δt(k) stands for the partial derivative in equation 3.5. Equation 3.6 illustrates how the connection weights AWjt

and the threshold bj AA between the HL and the OL are corrected using the derived partial derivatives and
the neuron outputs of the HL. In equation 3.6, N and N + 1 represent before and after correction respectively,
and µ represents the learning step.{

w
(N+1)
jt (k) = wN

jt(k) + µδt(k)ho,j(k)

b
(N+1)
t (k) = bNt (k) + µδt(k)

(3.6)

In a similar manner, the HL neuron’s partial derivative δh(k) is computed, as shown in equation 3.7.

δh(k) =

[
q∑

t=1

δt(k)wjt

]
ho,j(k)(1− ho,j(k)) (3.7)

The connection weights Wij , bj between the input and HLs are corrected, and the procedure is shown in
equation 3.8. {

w
(N+1)
ij (k) = wN

ij (k) + µδh(k)xi(k)

b
(N+1)
j (k) = bNj (k) + µδj(k)

(3.8)

Finally, determine whether the global error meets the required precision, if so, the algorithm learning ends;
otherwise, samples are chosen to recalculate the input and output values of the HL neurons until the error meets
the requirements or the algorithm iteration ends. The global error calculation is illustrated in equation 3.9.

E =
1

2n

n∑
k=1

q∑
t=1

(tt(k)− yt(k))
2 (3.9)

The BPNN takes a long time to train or even fails to converge well, may fall into local minima during learning,
uses gradient descent to make the error converge very slowly, and the training results are unstable. To address
these problems, the model enhances the BPNN by introducing adjustable learning rate and momentum com-
ponents. The number of neurons n and q in the input and OLs are determined according to the input sample
dimension and the output result dimension, and the number of neurons p in the HL is determined according
to the empirical equation 3.10. in equation 3.10 is a constant between [1, 10] .

p =
√
n+m+ a (3.10)
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The Adaptive Gradient (AdaGrad) method’s learning rate dynamically adapts in response to network fault[15-
16]. Equation 3.11 illustrates the process of adaptive learning rate change. In equation (11), µ(0) represents
the starting learning rate, and in this investigation, β and γ have the values 1.05 and 0.7, respectively.

µ(n) =


βµ(n− 1) if E(n) < E(n− 1) and 1 < β < 1.5

γµ(n− 1) if E(n) > E(n− 1) and 0.5 < γ < 1

µ(n− 1) otherwise
(3.11)

Equation 3.12 illustrates the inclusion of the momentum factor in the adaptive learning rate approach, which
serves as a dampener in the process of the error back propagation correction weight. In equation 3.12, α stands
for the momentum term, w for weight, and w for moment.

∆w(n) = −µ

n∑
t=0

α(n−t) ∂E(n)

∂w(n)
(3.12)

The weighting adjustment equation is shown in equation 3.13, where the learning rate is represented by µ and
the error is represented by E(n) .

w(n+ 1) = w(n)− µ(n)

n∑
t=0

α(n−t) ∂E(n)

∂w(n)
(3.13)

3.2. Deep Neural Network Evaluation Model Construction Based on Improved BPNN. The
momentum terms as well as the adaptive learning rate in the BPNN evaluation model have certain advantages
when handling small-scale datasets, but their capacity to handle complicated and high-dimensional large dataset
samples is constrained. The paper builds a deep network model to solve this issue by layering deep noise
reduction autoencoders over BP neural networks and adding Support Vector Regression (SVR) to the OL.

Artificial neural networks are deepened by deep neural networks, which have many HL. Deep noise reduction
autoencoders have a stronger ability to extract essential features than the original autoencoders because they
consist of many autoencoders that add noise to the data set to prevent overfitting during training [17, 18].

As seen in Figure 3.2, the feature of zeroing is mostly used for noise reduction processing of the noise
contained in the input original data. First, set a particular probability to set part of the data in the original
matrix x to 0 to get the residual input matrix x̃ with lost data. The compressed matrix y is obtained by layer-
by-layer coding, followed by layer-by-layer pass to obtain x′ , error between x and x′ for network parameter
learning, and iteration to obtain the compressed coded y . The entire training process improved in robustness
and generalizability.

To minimise the error and complete reconstructing the original input dataset, the error between the re-
constructed dataset and the original dataset is then calculated using an error function, and the BP algorithm
is used to propagate the error to the entire depth noise reduction autoencoder and modify the weights and
thresholds. The cost function is the mean squared error function, whose expression is given in equation; the
weights and thresholds are updated using the gradient descent method 3.14.

L(x, y) =
1

n

n∑
i=1

(yi − xi)
2 (3.14)

The Adam algorithm combines the two well-known techniques ”Adagrad” (for sparse gradients) and ”RMSPro”
to solve optimisation issues involving vast amounts of data and high feature latitude. (for non-stationary data).
Figure 3.3 illustrates how the Adam approach, which is computationally efficient and ideal for very noisy and
sparse gradient issues, can replace the conventional random gradient descent method to update the network
weights more effectively. It also functions as a deep noise reduction autoencoder. The deep noise reduction
autoencoder’s OL neurons are shown as dashed circles in Figure 3.3, while the true output is a classifier or
predictor.
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Fig. 3.2: Structure of Noise Reduction Automatic Encoder

Fig. 3.3: Structure of deep automatic noise reduction encoder

Support Vector Machines (SVM) are a subclass of generalised linear classifiers that conduct supervised
learning (supervised learning) binary categorization of data for tasks including regression, classification, and
recognition. A linear classifier is a line that divides two groups of data in a two-dimensional plane. A plane serves
as a linear classifier in three dimensions. In higher dimensions, a hyperplane is created from a linear classifier.
Linear and non-linear regression are two categories for support vector analysis. In the former, complex nonlinear
relationships are mapped into a high-dimensional space, where they are then realised and behave like linearized
relationships in the latter [19, 20]. In response to the various indications for evaluating the quality of Russian
language education and the complex non-linear connection between indicators and evaluation conclusions, the
study uses support vector non-linear regression.Support vector regression serves as the predictor for the final OL
in the deep noise reduction auto-coding unsupervised training layer of the final deep neural network evaluation
model built using the improved BPNN, and the error between the original input dataset and the unsupervised
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Fig. 3.4: Sigmoid function curve

training output data is minimised to obtain the feature vectors of the original input dataset. The support
vector regression model’s structure is depicted in

The data is often pre-processed before being fed into the model, and the study normalises the sample data
to transform the data between intervals . One way to lessen the difficulty of weight adjustment is to scale back
the amount of the input value change. On the other hand, Figure 4.1 depicts the activation function of the
BPNN as a double S-shaped curve.

The transformation between [-1,1] and the derivative of the activation function is identical, Which is shown
in Equation 3.15.

y = f(x) =
1− ex

1 + ex
(3.15)

The normalisation operation can speed up the convergence of the network and improve the computational
efficiency. The operation process is shown in equation . In equation , xmax and xmin denote the maximum and
minimum values in the data, xi and zi denote the data output before and after processing, and xmid denotes
the intermediate values of data changes. {

zi =
xi−xmin

1
2 (xmax−xmin)

xmid = xmax+xmin

2

(3.16)

4. Performance Testing of Improved BP Deep Neural Network Evaluation Models.
4.1. Test Experimental Protocol Design and Model Parameter Analysis. A test experiment was

created to confirm the effectiveness of the built model. The experiment identifies metrics for assessing the effec-
tiveness of Russian language instruction from two perspectives—student evaluation and teaching supervision
groups—as well as from two dimensions—preparation before instruction and during instruction. These metrics
include teaching attitude, teaching content, teaching methods, and answering questions after class. They also
include professional quality, teaching ability, preparation before instruction, and the energy of the classroom
environment. The dataset originates from a university academic system’s dataset on the evaluation of Russian
language courses and contains 3684 examples of data. Student evaluations are used as model input values and
the evaluations of the teaching supervisory team are used as the target expectation values of the algorithm
model. Finally, all data are normalised to increase the algorithm’s calculation efficiency.

The amount of neurons in the input layer was set to 30, and the amount of neurons in the output layer to
1, the growth ratio of the adaptive learning rate to 1, the decline ratio to 0, and the momentum term to 0.65
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Fig. 4.1: Effect of the number of neurons on mean square error and accuracy

in order to compute the number of neurons in the HL. The number of neurons in the HL was determined by
applying Equation 3.10 and utilising the mean-square error (MSE) and prediction accuracy as the assessment
indices. The optimum amount of neurons for the HL was determined using Mean Square Error (MSE) and
prediction accuracy. The training outcomes are shown in Figure 4.1. Figure 4.1 demonstrates that the mean
squared error is at a minimum of 22.9 and the prediction accuracy is at a maximum of 0.96 when there are 12
neurons in the HL. The minimal prediction accuracy is only approximately 86%, and the mean squared error
does not change significantly when the number of neurons changes, but the accuracy value fluctuates more.
The evaluation model’s accuracy is taken into account for determining the HL’s number of neurons, which is
set at 12.

2, 3, 4, and 5 HLs, together with 12 HL neurons, were chosen as the parameters. The unsupervised training
was done using Adam’s technique, and the evaluation index was the difference in error between the reconstructed
data feature vector and the original data set. Figure 7 displays the training outcomes after 5000 iterations.
Figure 4.2 illustrates how the error value curves all exhibit a declining trend as the number of iterations rises.
The model with two HLs exhibits the highest decline in error value, with a 68.% drop from the start of the
iteration. When there are just two HLs, the algorithm model’s training result is perfect; nevertheless, with the
same number of repetitions, the error value climbs steadily as the number of HLs rises.

The penalization coefficient and the kind of kernel function are the two primary factors influencing support
vector regression in the supervised prediction output process. Model complexity and empirical riskiness are
both impacted by the penalty coefficient, and modifying these two factors enhances the algorithm’s overall
performance. To calculate the Mean Absolute Percentage Error (MAPE) between the predicted evaluation
result value and the actual evaluation value, the penalty coefficients are taken to be in the range of 1 to 9, and
the kernel functions are taken into consideration to be Liner, Poly, radial basis function, and Sigmoid function.
Figure 4.3 displays the model training outcomes and the evaluation index, the MAPE. In accordance to Figure
8, despite the lesser degree of error fluctuation, the excessive penalty still causes the MAPE to be excessively
large. The MAPE of the support vector machine consisting of all kernel functions roughly tends to increase as
the error penalty factor increases. In comparison to the other three types of functions, the polynomial function
has the significantly lowest MAPE value, with a MAPE value of only 0.0506 when the penalty coefficient is 1.
Support vector regression uses the polynomial function as its kernel function.

4.2. Quality Analysis of Model Training Results. With two HLs, 12 neurons each, and an error
penalty value of 1, the adaptive learning rate was set to 1.1 for growth ratio, 0.8 for decline ratio, and 0.65 for
momentum term. The kernel function for the training of the model was decided to be a polynomial function. To
compare the MAPE, MSE, Root Mean Square Error (RMSE), and Symmetric Mean Absolute Percentage Error
(SMAPE) of the various algorithms, the BP deep neural network developed in this study was first compared
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Fig. 4.2: Effect of the number of HLs on mean square error

Fig. 4.3: Effect of error penalty coefficient on MAPE of different kernel functions

with the adaptive BPNN, traditional BPNN, and support vector machine algorithms. Figure 8 displays the
training outcomes and the RMSE. Figure 4.4 shows that the BP deep neural network developed in this study
had the lowest values for all four metrics, with MAPE of 0.0492, MSE of 23.29, SMAPE of 1.26, and RMSE of
4.47. The typical BP neural network had higher error values for all four metrics. In particular, the MAPE and
MSE measures were 25.34 and 111 percentage points higher than the BP deep neural network’s, making them
inappropriate for use as direct assessment models in comparison. The SMAPE values of the adaptive BPNN
were the ones that were closest to those of the BP deep neural network. Although they performed slightly
worse in terms of the magnitude of the other three errors, overall performance was not significantly different,
proving that the construction of adaptable BP neural networks was correct and highlighting the need for further
advancements in adaptable BP neural networks. When the algorithm learning was finished, the comparison of
training time and accuracy is continued, and the results are displayed in Figure 4.5. Figure 4.5 demonstrates
that the enhanced adaptive BP neural network and the deep neural network have much higher accuracy values,
up to 5 percentage points higher than the traditional BP neural network. However, the accuracy rates of
the four networks are not significantly different. The adaptive BP neural network, however, took the shortest
amount of time to train—only 1.07s—a difference of 10.63 seconds from the traditional BPNN and 2.9 seconds
from the deep BP neural network. This shows that the adaptive BP neural network handles the concerns with
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(a) MAPE, MSE (b) SMAPE, RMSE

Fig. 4.4: Comparison of network performance of different algorithms

Fig. 4.5: Network training time and accuracy of different algorithms

delayed convergence and slipping into local minima that the classic neural network experiences and is more
suited to handling tiny data sample sets. The deep BPNN exhibits some improvements in error values, but
these advantages are not significant because the deep BPNN’s structure is complex and the number of HLs
grows, which lengthens processing time for small sample sets. The performance of the BP deep neural network
was then compared when it was used with various optimisation techniques, such as BPNN-Gradient Descent,
BPNN-Momentum, and BPNN-RMSProp. The training results are displayed in Figure 4.6s. The BP deep
neural network and the BPNN-RMSProp algorithms’ mean squared error values reduced the quickest and had
the sharpest curve trend below 1000 iterations, as can be seen in Figure 4.6. As the number of iterations
increases, the error curve flattens out and the error values do not decrease significantly, even though the BPNN
created using Adam’s optimisation algorithm in this study had the best results in terms of reconstructing
the input data at the end of unsupervised learning training and had the lowest error values at the end of
the iterations. The error values of the Gradient Descent algorithm and Momentum algorithm also showed a
decreasing trend, but the error values were larger and the algorithm’s overall training performance was not
better. However, the error curves of the Gradient Descent and Momentum algorithms also show a decreasing
trend. Finally, the sample data were normalised on the large-scale dataset to highlight the benefits of BP deep
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Fig. 4.6: Performance Comparison of Different Optimization Algorithms BPNN

Table 4.1: Performance Comparison of Large Datasets

!

Model MAPE MSE SMAPE RMSE Times
Adaptive-BPNN 0.2453 68.9 6.890 9.087 45.98

Deep-BPNN 0.0876 28.6 3.002 7.930 79.24
TRadition-BPNN 1.6274 106.6 8.236 11.231 123.69

SVM 0.8952 89.7 7.263 8.563 86.66

neural networks on large-scale datasets. The final training results are displayed in Table 1 after comparing the
MAPE, MSE, SMAPE, and RMSE values and training duration of the four networks. Table 4.1 demonstrates
how Deep-BPNN outperforms Adaptive-BPNN in terms of error performance measures when processing massive
datasets. These metrics are all significantly lower for Deep-BPNN. The training duration was 79.24 seconds,
but even though there were more HLs and total HL neurons, the training time was still within a reasonable
range.

5. Conclusion. This study enhanced the conventional BP neural network by including a support and a
deep noise reduction autoencoder vector mechanism to the adaptive learning BPNN to create a deep neural
network to meet the challenging nonlinear problem of evaluating the quality of teaching Russian. The results
of the model performance test indicate that 12 neurons, with a mean squared error of 22.9 and a prediction
accuracy of 0.96, are the ideal number for a single HL. When there are two HLs, the error curve of the built-in
deep neural network model shrinks the quickest, reaching a maximum reduction of 68.3%. The error penalty
factor was adjusted to 1 using the polynomial function, which is best for enhancing the algorithm’s overall
performance. The MAPE value at the end of the model training was only 0.0506. With a MAPE of 0.0492, an
MSE of 23.29, a SMAPE of 1.26, and an RMSE of 4.47, the BP deep neural network outperformed the adaptive
BPNN, regular BPNN, and support vector machine algorithms in terms of error values and accuracy magnitudes.
The adaptive BP neural network is better suited for processing small-scale data sample sets because its error
value is marginally larger than that of the BP deep neural network, but its training time is shorter—only 1.07s,
10.63s less than the traditional BPNN and 2.9s less than the deep BP neural network. With the lowest error
value at the end of the iterations and the highest performance at reconstructing the input data throughout
unsupervised learning training, the deep BPNN built utilising Adam’s optimisation technique clearly has an
edge when working with large-scale data sets. Further study is still required to determine the effectiveness and
duration of training for the built-in deep neural network model.
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