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ECONOMIC DISPATCH OF MULTI REGIONAL POWER SYSTEMS BASED ON CMOPSO
ALGORITHM

JINHUA GUO∗

Abstract. With the progress of society and the aggravation of environmental pollution, the economic dispatch of the power
system is developing towards multiple environmental and economic goals. To improve energy utilization efficiency, this study inno-
vatively proposes a multi-objective particle swarm optimization algorithm based on competitive learning, and uses this algorithm to
solve multi regional environmental and economic scheduling problems. In addition, the study solves static and dynamic economic
(S-DE) scheduling problems in multiple regions through improved competitive group optimization algorithms. The research results
show that under different testing systems, the average distribution uniformity indicators of the research algorithm built on compet-
itive learning are 0.8058 and 0.8457, and the average anti generation distance is 67.6316 and 1664.0978. The improved competitive
group optimization algorithm solves the maximum, minimum, and average fuel costs for static economic scheduling in multiple
regions, which are 656.2243 $/h, 655.8592 $/h, and 655.9866 $/h, respectively. Thus, the designed algorithm can effectively solve
economic scheduling problems, which is of great significance for resource integration, saving power generation costs, and reducing
pollution emissions.
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1. Introduction. Economic dispatch, as one of the methods to promote high-quality development of
the power system, can ensure the normal operation of the power system. Economic dispatch requires the
optimal scheduling of power generation units with the best fuel cost, without violating various operational
constraints [1]. The power dispatch system generally involves multiple regions, and it is necessary to dispatch
electricity reasonably between regions to fully utilize the system’s resources [2]. The early solutions to the
problem of multi regional economic dispatch were mathematical methods, such as dynamic programming,
gradient algorithms, etc. These mathematical methods have good results in economic scheduling problems with
fewer constraints, but they are difficult to solve problems involving complex factors [3]. With the development
of technology, more and more researchers are applying heuristic optimization algorithms to economic scheduling
problems due to their ability to effectively solve complex problems. However, these studies also have certain
shortcomings, such as the scheduling problems involved being relatively single and the constraints considered
being incomplete [4]. Based on these issues, this study innovatively proposes the use of Competitive Multiple
Objective Particle Swarm Optimization (CMOPSO) based on competitive learning to solve multi regional
environmental and economic scheduling problems. The study also adopts an Improved Competitive Swarm
Optimizer (ImCSO) algorithm to address S-DE scheduling issues in multiple regions. This study aims to
improve energy utilization efficiency and achieve optimal scheduling of power generation units through optimal
fuel costs. The study is divided into four parts. The first part is an overview of research related to economic
dispatch in the power system. The second part is the design of the algorithm used to solve economic scheduling
problems. The third part is the analysis of the results of the research method. The fourth part is the conclusion.

2. Related Works. Economic dispatch is an important way to promote the high-quality development of
the power system and occupies an essential position in the stable operation of the power system. At present,
there are many studies on the economic scheduling of power systems. Goudarzi A and other researchers have
proposed an intelligent sequence algorithm for synchronous scheduling of electricity and heat. This algorithm
includes both an optimization algorithm that combines enthusiasm assistance and mathematics, as well as an
improved particle swarm optimization algorithm. In addition, the study also designed constraint management,
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indicating that the proposed method is significantly superior in performance to conventional methods [6]. Lyu
C and other scholars proposed a new degradation cost model for the cyclic degradation problem in microgrid
economic scheduling, and used Wasserstein fuzzy sets to describe uncertainty. In addition, this study also
expresses real-time microgrids through distributed robust optimization problems. This method has good per-
formance and can effectively solve the cyclic degradation problem during microgrid economic scheduling [7].
Wang X and other experts designed a sparse polynomial chaotic expansion proxy model based on data-driven
to solve the stochastic economic scheduling problem of wind power uncertainty. This model can provide infor-
mation such as mean and variance in stochastic economic scheduling solutions. This method has high accuracy
and efficiency in solving stochastic economic scheduling problems [8]. Marco et al. analyzed existing power
energy systems to reduce carbon dioxide emissions and proposed a modeling method for power planning tools.
This method utilized computational strategies and linear programming optimization methods. This method
had strong analytical ability and can effectively plan the power system [9].

Experts such as Lev K have designed a coordination mechanism between tie line power planning and regional
power grid economic dispatch for cross regional power grid economic dispatch under various uncertain power
sources and loads. It adopts a quality-of-service approach to analyze the service attributes in power dispatch. In
addition, the study also constructed a model free hierarchical optimization method based on learning technology,
and used reinforcement learning algorithms to effectively solve the economic dispatch problem of cross regional
power grids [10]. Scholars such as Xu D have designed a maximum minimum two-layer optimization model
and a two-stage robust optimization model to solve the problem of unpredictability during power grid backup,
and used column constraint generation algorithm to solve it. This model can effectively solve the problem of
unpredictability during power grid backup, and has obvious advantages in random scenarios [11]. Wang S et
al. designed a multi-agent power grid control scheme to meet the requirements of the system and computing
platform for autonomous control of the power grid. This scheme is data-driven and adopts deep reinforcement
learning, which can be learned from scratch. This method can meet the requirements of power grid autonomous
control for systems and computing platforms [12]. Shaheen A M and other experts have designed a multi-
objective manta ray foraging algorithm to minimize emissions from DC AC hybrid power grids. This algorithm
imitates the feeding process of manta rays and adopts fuzzy decision-making technology. It has been compared
and tested on multiple systems, and the results show that the robustness of this method is significantly better
than other comparison algorithms [13].

In summary, there is currently a wealth of research on economic dispatch in the power system, and the
methods used are also diverse. However, these studies also have certain shortcomings, such as the scheduling
problems involved being relatively single and the constraints considered being incomplete. Based on these issues,
this study innovatively proposes the use of CMOPSO algorithm to solve multi regional environmental and
economic scheduling problems, and uses ImCSO algorithm to solve multi regional S-DE scheduling problems.

3. Design of Economic Dispatching Method for MRPS Based on CMOPSO and ImCSO Al-
gorithms. This study uses an improved competitive group optimization algorithm to solve the S-DE dispatch
problems of multi region power systems. It optimized the competitive group optimization algorithm through
ranking pairing learning and differential evolution, and designed specific steps for the algorithm in multi region
S-DE scheduling problems. A MOPSO based on competitive learning was used to solve the problem of multi
regional environmental and economic scheduling, and specific steps were designed for this algorithm to solve
the problem.

3.1. Design of S-DE scheduling methods for multiple regions based on ImCSO algorithm. The
economic dispatch of multi-regional power systems (MRPS) is mainly divided into Multi Area Static Economic
Dispatch (MASED), Multi Area Dynamic Economic Dispatch (MADED), and Multi Area Environment Eco-
nomic Dispatch (MAEED) [14]. The core goal of MASED is to minimize the combustion cost of the power
system. To solve the MASED problem, an ImCSO algorithm was adopted for improvement through rank-
ing pairing learning and differential evolution. The learning process of ranking paired learning is shown in
Fig 3.1 [15].

In Fig. 3.1, ranking pairing learning requires sorting all particles first. The sorting is based on the fitness
information of the particles, and then the particles are divided into winner and loser groups according to the
sorting results. The particles of the loser group need to learn from the particles of the winner group. The
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Fig. 3.1: The learning process of ranking paired learning

operation of particle sorting and grouping is equation (3.1).
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In equation (3.1), t means the iteration numbers. W are the particles in the winner group population. L
is the particle in the loser group population. GW represents the winner group. GL represents the loser group.
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represents the position item. Where i is the serial number. D is the dimension of

the optimization problem. ps represents the population size. The updates of the velocity and position terms
of particles in GL are shown in equation (3.2).{
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In equation (3.2), V t
i =

[
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]
represents the velocity term. R1, R2 and R3 represent a set

of random numbers with a distribution range of [0, 1]. φ is a social factor that can control X̄t. X̄t represents
the average position of the entire population in the t-tph iteration. Xt

i,center is the center position, and its
calculation is equation (3.3).

Xt
i,center = a× X̄t

GW + (1− a)× X̄t
GL (3.3)

In equation (3.3), a represents a random real number within [0, 1]. X̄t
GW represents the average position

of particles in the GW population. X̄t
GL is the average position of particles in the GL. The update of winner

particles in the GW is mainly achieved through differential evolution strategy (DES). The specific update steps
include mutation, crossover, and selection. The mutation step requires the generation of mutated individuals,
and the specific process is equation (3.4).
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In equation (3.4), r1, r2, and r3 are random positive numbers that are different from each other, with a
value range of {1, 2, · · ·, ps}. Zt,W

i represents the mutant individual. F represents the variation factor. The
purpose of the cross step is to generate experimental individuals, and the specific operation is equation (3.5).
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Fig. 3.2: The process of ImCSO algorithm

In equation (3.5), U t,W
i represents the experimental individual, and its value range is

[
ut,W
i,1 , ut,W

i,2 , · · ·, ut,W
i,D

]
.

CR represents the crossover factor. randj is the dimension, with a value range of [1, D]. randj represents a
random real number within the range of [0, 1]. jrand is a random integer in [1, D]. The selection step is to
choose individuals between Xt,W

i and U t,W
i to enter the next generation, grounded on fitness. The specific

process of this step is equation (3.6).
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The improvement of competitive swarm optimization algorithm can be achieved through ranking pairing
learning and differential evolution. Fig 3.2 is the process of the ImCSO.

In Fig. 3.2 the first step of the ImCSO algorithm is to set the population size, maximum number of iterations,
and algorithm parameters. The second is to initialize the population. The third is to evaluate all particles
and record the globally optimal particle as Gbest. The fourth step is to divide the population into GW and
GL based on fitness information. The fifth step is to update the particles in GL through a pairing learning
strategy. The sixth step is to evaluate the updated particles and update Gbest. The seventh step is to use
DES to update the particles in GW . The eighth step is to evaluate the updated particles and update Gbest.
The ninth step is to determine whether the termination condition is met. If so, output the result, otherwise
return to the fourth step. When using ImCSO to solve MASED problems, the position of each particle in the
population corresponds to an effective solution. The position information Xi of the effective solution of the
MASED system composed of M regions is equation (3.7).

X_i = [P11, P12, · · ·, P1N1︸ ︷︷ ︸
power in area 1

, P21, P22, · · ·, P2N2︸ ︷︷ ︸
power in area 2

, ···, PM1, PM2, · · ·, PMNM︸ ︷︷ ︸
power in area M

, T12, T13, · · ·, T(M−1)M

]︸ ︷︷ ︸
power transmission

(3.7)
In equation (3.7), P represents the output power (OP) of the generator set. T is the transmission power

between regions. N and Mrepresent the number of generators and regions. The most crucial aspect in solving
MASED problems is inequality and equality constraints. For the constraint of power generation capacity, the
repair of Nwq OP is equation (3.8).

Pwq =
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wq ,
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wq ,
Pwq,
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if

otherwise
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In equation (3.8), Nwq represents the q-the generator unit in the w-the region. Pwq represents the actual
OP of the q-the generator unit in the w-the region. Pmin

wq represents the minimum OP of the unit. Pmax
wq is

the maximum OP of the unit. Regarding the transmission capacity constraints of the interconnection line, the
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Fig. 3.3: Specific steps for solving MASED problems using ImCSO

transmission power repair between regions is equation (3.9).
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In equation (3.9), Twk represents the transmission power from region w to region k. Tmin
wk is the minimum

value. Tmax
wk is the maximum value. For the constraint of prohibited operation zone, if P l
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its repair is equation (3.10).
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In equation (3.10), m represents the m-the prohibited operation zone. Pu
wq,m represents the upper boundary

of the m of the q-the generator unit in the w-the region. P l
wq,m represents the lower boundary. For the actual

power balance constraints in the region, it is necessary to use a power balance repair operator. The repair of
this constraint requires calculating the violation degree difw of the w-the region, as shown in equation (3.11).

difw = PGw −

PDw + PLw +

M∑
k=1.k ̸=w

Twk

 (3.11)

In equation (3.10), PGw represents the total electricity generation of region w. PGw represents the load
demand of region w. PGw is the network loss of region w. If difw > 0, select a generator set in region w to
OP Pwq = max

(
Pwq − difw, P

min
wq

)
. If difw < 0, then Pwq = min

(
Pwq + difw, P

max
wq

)
. Due to the fact that the

equality constraints of the entire MASED system after repair are not fully satisfied, the study further considers
the penalty function as the objective function to solve fitness, as shown in equation (3.12).

Fit (Xw) = FC (Xw) + factor (V1 + V2 + · · ·+ VM ) (3.12)

In equation (3.12), FC (Xw) represents the total fuel cost. factor represents the penalty factor. Vw is the
degree of power balance constraint violation in repaired region w. The specific steps for solving the MASED
problem using ImCSO are shown in Fig. 3.3.

In Fig. 3.3, the first step in solving the MASED using ImCSO is to initialize the positions and velocities of
all particles in the population. The second step is to evaluate the fitness of all particles. The third step is to
record the position of the globally optimal particle and its corresponding fitness information. The fourth step
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is to update GL with a paired learning strategy. The fifth step is to update GW using DES. The sixth step is
to determine the termination conditions. If so, proceed to the next step, otherwise go back to step four. The
seventh step is to output the position of the globally optimal particle and its corresponding fitness information.
The research also adopts the ImCSO algorithm for solving the MADED problem, and the specific solving steps
are consistent with the MASED problem.

3.2. Design of Multi regional Environmental and Economic Scheduling Method Based on
CMOPSO Algorithm.. MAEED is a multi-objective optimization (MOO) that requires ensuring the com-
prehensive optimization of power generation costs and pollution emissions in the power system. This study first
explains the solution methods for MOO, and then designs the specific steps for solving MAEED problems using
the CMOPSO. MOO does not have a unique optimal solution, and can only achieve a relatively optimal overall
goal. MOO is mainly solved through the concept of Pareto optimality, involving Pareto dominance, Pareto
frontiers, etc. [16, 17]. The effectiveness of different algorithms in solving MOO problems varies. Therefore,
this study used distribution uniformity index and comprehensive performance index inverse generation distance
to evaluate the performance of the algorithm in solving MOO problems. The expression of the distribution
uniformity index is shown in equation (3.13) [18].

∆(B,S) =

∑α
w=1 d (Ew, B) +

∑
X∈B

∣∣d (X,B)− d̄
∣∣∑α

w=1 d (Ew, B) + |S| d̄
(3.13)

In equation (3.13), S represents the set of points uniformly distributed on the leading edge of the real
Pareto. B represents the Pareto optimal solution set. Ew is the extreme solution. Where α is the sequence
number of the extreme solution, with a value range of [1− ϕ]. ϕ represents the number of targets. X represents
the solution, and d is the calculation of the minimum Euclidean distance. d̄ represents the average value of the
min Euclidean distance. |S| is the number of concentration points. The calculation of the inverse generation
distance of the comprehensive performance index is shown in equation (3.14) [19].

IGD (B,S) =

∑
δ∈S d (δ,B)

|S|
(3.14)

In equation (3.14), δ represents the point on the true frontier. The focus of MOO is to handle multiple
constraint conditions, and common constraint processing methods can easily lead to local optimization problems
in the algorithm. To avoid this issue, the study adopted the ε constraint criterion and the multi archive set
method to handle the multi constraint problem of MOO. The expression of ε in the ε constraint criterion is
equation (3.15).

ε (Gen) = ε (0)×
(
1− Gen

maxGen

)cp

(3.15)

In equation (3.15), ε is the variable value. ε (0) represents the initial threshold. Gen represents the current
iterations. cp is an index with a value of 2. maxGen represents the maximum iterations of the population.
The core idea of multi archive constraint processing is classification, which categorizes solutions from different
categories into different sets. The steps of processing MOO by combining the ε-constraint criterion and the
multi archive set method are divided into three steps. The first step is to partition the solution with the support
of the ε constraint. The second is to sort the infeasible solutions. The third is to determine whether the particles
in the feasible solution meet the size of the population. MOPSO has the advantages of simple structure and
fewer parameters that need to be adjusted, and is often used for engineering optimization problems. The process
of this algorithm is Fig 3.4.

In Fig. 3.4, the first step of the MOPSO algorithm is to initialize the population, calculate the target vector,
and liberate non dominated data into external files. The second step is to update the Gbest and individual
optimal value Pbest in the population. The third step is to update the velocity and position information of
the particles, calculate the target vector, and then update Pbest. The fourth step is to select Gbest. The
fifth step is to determine the termination condition. If it is determined to be yes, output the external file
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Fig. 3.4: Process of MOPSO

Fig. 3.5: The competitive strategy of CMOPSO algorithm

set; otherwise, return to the second step. However, the MOPSO algorithm did not solve the balance problem
between population convergence and diversity, so the study introduced a competition mechanism and formed
the CMOPSO algorithm. The competition mechanism mainly involves competitive learning strategies. The
core idea is to let elite particles compete and then let the winning particles guide the update of the current
particles. The competitive learning mechanism includes three aspects. The first aspect is elite particle selection,
which is studied using the non dominated sorting genetic algorithm II. The second aspect is spatial competition,
and the competition strategy of the CMOPSO algorithm is Fig 3.5.

In Fig. 3.5, both g and h are particles. θ1 and θ2 are both the angles between particles and Xw. If θ1>θ2, h
wins and is recorded as XW . The third aspect is learning strategies. The effective solution position information
expression when using the CMOPSO algorithm to solve the MAEED problem is consistent with MASED, and
the repair method of constraint conditions is also the same as MASED. The process of using the CMOPSO
algorithm to solve the MAEED problem is Fig 3.6.

In Fig. 3.6, the first step of the CMOPSO algorithm in solving the MAEED problem is to initialize the
positions and velocities of all particles in the population. The second step is to fix the constraint violation of
particles, and then calculate the target values of fuel cost and pollution emissions. The third step is to perform
non dominated sorting and crowding distance sorting, and then determine the elite population. The fourth step
is to select the winning particles. The fifth step is to update the velocity and position information of particles.
The sixth step is to mutate and repair the particles, and calculate their objective function values. The seventh
step is to determine the termination condition. If yes, output Pareto frontier particle information; otherwise,
return to the third step.

4. Analysis of Economic Dispatching Results for MRPS Based on CMOPSO and ImCSO
Algorithms. This study sets the simulation environment and running times for the ImCSO algorithm and
CMOPSO algorithm, and verifies their effectiveness through algorithm comparison. The comparison indicators
of the algorithm include fuel cost, cost convergence curve, Pareto frontier, distribution uniformity index, and
comprehensive performance index inverse generation distance.
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Fig. 3.6: The process of using CMOPSO algorithm to solve MAEED problems

Table 4.1: Comparison of fuel costs with different algorithms under MASED test system 1

Algorithm Minimum
value($/h)

Mean
value($/h)

Maximum
value($/h)

Standard devi-
ation

Time(s)

DE 656.2642 657.0810 658.5198 5.7913 1.43
PSO 655.9438 656.6521 661.2338 11.3302 1.64
CSO 655.8728 656.1905 657.0903 3.7779 1.58
ImCSO 655.8592 655.9866 656.2243 1.9642 1.60

4.1. Analysis of S-DE dispatch results in multiple regions based on ImCSO algorithm. In order
to conduct simulation analysis on the ImCSO algorithm, two MASED testing systems and two MADED testing
systems were selected for the study. A comparative analysis was conducted on the effectiveness verification
of the ImCSO algorithm. Comparative algorithms include Competitive Swarm Optimizer (CSO), PSO, and
Differential Evolution (DE). The simulation environment for comparing algorithms is MATLAB 9.6, with 10
runs. Table 1 shows the fuel cost comparison of different algorithms under MASED test system 1.

In Table 4.1, the maximum, minimum, average, and standard deviation of the fuel cost of the ImCSO
algorithm are lower than those of other comparative algorithms, with values of 656.2243 $/h, 655.8592 $/h,
655.9866 $/h, and 1.9642, respectively. The running time of the ImCSO algorithm is 1.6 seconds, which is not
significantly different from other comparative algorithms. The fuel cost values of the DE algorithm are 658.5198
$/h, 656.2642 $/h, 657.0810 $/h, and 5.7913, respectively, with a running time of 1.43 seconds. The four values
of fuel cost for the PSO algorithm are 661.2338 $/h, 655.9438 $/h, 656.6521 $/h, and 11.3302, respectively,
with a running time of 1.64 seconds. The relevant values for the fuel cost of the CSO algorithm are 657.0903
$/h, 655.8728 $/h, 656.1905 $/h, and 3.7779, respectively, with a running time of 1.58 seconds. Therefore, the
performance of the ImCSO algorithm is better and more stable. The comparison of cost convergence curves of
different algorithms under different MASED testing systems is Fig 4.1.

As Fig. 4.1a, with the increase of iterations, the total fuel cost of different algorithms gradually decreases.
In Test System 1, the ImCSO algorithm flattened after nearly 4000 iterations, while the DE, PSO, and CSO
algorithms stabilized after nearly 15000, 14000, and 5000 iterations, respectively. In test system 2 of Figure 4.1b,
the ImCSO algorithm tends to flatten out after nearly 10000 iterations, while the DE, PSO, and CSO algorithms
tend to flatten out after 30000, 32000, and 25000 iterations, respectively. From this, the ImCSO algorithm
converges faster and has better performance. Table 2 is the fuel cost comparison of different algorithms under
MADED test system 1.

In Table 4.2, the minimum fuel cost values for ImCSO, DE, PSO, and CSO algorithms are 13003.9526
$/h, 13166.7657 $/h, 13492.8771 $/h, and 13476.6407 $/h, respectively. The average fuel costs of the four
algorithms are 13151.3299 $/h, 13291.1036 $/h, 14167.4435 $/h, and 16795.4673 $/h. The maximum fuel costs
are 13299.2825 $/h, 13434.3578 $/h, 17826.6214 $/h, and 34830.2087 $/h. The standard fuel cost values are
78.1757, 69.2933762.1120, and 4659.4287. The running time of each algorithm is 81.427s, 179.1231s, 127.6157s,
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(a) Cost convergence curve of
MASED test system 1

(b) Cost convergence curve of
MASED test system 2

Fig. 4.1: Comparison of cost convergence curves of different algorithms in different MASED test systems

Table 4.2: Comparison of fuel cost of different algorithms under MADED test system 1

Algorithm Minimum
value($/h)

Mean
value($/h)

Maximum
value($/h)

Standard devi-
ation

Time(s)

DE 13166.7657 13291.1036 13434.3578 69.2933 179.1231
PSO 13492.8771 14167.4435 17826.6214 762.1120 127.6157
CSO 13476.6407 16795.4673 34830.2087 4659.4287 116.0529
ImCSO 13003.9526 13151.3299 13299.2825 78.1757 81.427

and 116.0529s respectively. Therefore, it can be concluded that the ImCSO algorithm has the smallest running
time, and the maximum, minimum, and average fuel costs are lower than other algorithms. And this also
indicates that the ImCSO algorithm performs better in solving MADED problems. In order to further validate
the performance of the ImCSO algorithm, other algorithms were selected for comparison in the study. The
selected algorithms for the study include Gravitational Search Algorithm (GSA), Gbest guided Artificial Bee
Colony (GABC), Teaching Learning Based Optimization (TLBO), and Differential Evolution Algorithm with
Strategy Adaptation (DESA). The F1 values and CPU utilization of different algorithms are compared in
Table 4.3.

From Table 4.3, it can be seen that in terms of CPU utilization, the maximum value of the ImCSO algorithm
is 17.5%, and the minimum value is 16.1%. The maximum values of DE, PSO, CSO, GSA, GABC, TLBO, and
DESA algorithms are 28.2%, 22.8%, 21.5%, 20.8%, 24.8%, 23.6%, and 27.1%, respectively, while the minimum
values are 26.7%, 21.3%, 19.2%, 18.5%, 23.6%, 22.1%, and 25.5%, respectively. On the F1 value, the maximum
value of the ImCSO algorithm is 0.993 and the minimum value is 0.976. The maximum values of DE, PSO, CSO,
GSA, GABC, TLBO, and DESA algorithms are 0.837, 0.938, 0.953, 0.966, 0.888, 0.924, and 0.861, respectively,
while the minimum values are 0.811, 0.921, 0.938, 0.953, 0.857, 0.902, and 0.834, respectively. It can be seen
that the ImCSO algorithm has advantages in CPU utilization and F1 value, indicating better performance of
the algorithm.

4.2. Analysis of multi-regional environmental and economic dispatch results based on CMOPSO
algorithm.. Two MAEED testing systems were also selected for the simulation analysis of the CMOPSO algo-
rithm. To verify the effectiveness of the CMOPSO algorithm, a comparative analysis was conducted. Compar-
ison algorithms include MOPSO, BB-MOPSO [20], and TV-MOPSO [12]. The comparison content includes
Pareto Frontier, Distribution Uniformity Index, and Comprehensive Performance Index Reverse Generation
Distance. The simulation environment for comparing algorithms is MATLAB 9.6, with 10 runs. The Pareto
frontier comparison of different algorithms under different MAEED testing systems is shown in Fig 4.2.

From 4.2a, different algorithms have more repetitions in obtaining Pareto frontiers, but the CMOPSO
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Table 4.3: Comparison of F1 values and CPU utilization of different algorithms

Algorithm CPU utilization F1
Number of experiments Number of experiments
1 2 3 4 5 1 2 3 4 5

DE 26.7% 27.3% 26.8% 27.4% 28.2% 0.815 0.837 0.826 0.811 0.832
PSO 21.7% 21.3% 22.6% 22.8% 21.5% 0.925 0.934 0.938 0.921 0.933
CSO 20.8% 19.5% 21.5% 20.2% 19.2% 0.938 0.949 0.953 0.952 0.945
GSA 19.3% 20.8% 19.1% 18.5% 19.4% 0.957 0.966 0.955 0.961 0.953
GABC 23.7% 24.3% 24.5% 23.6% 24.8% 0.871 0.857 0.866 0.888 0.865
TLBO 22.5% 23.2% 23.6% 22.1% 23.4% 0.902 0.913 0.908 0.924 0.917
DESA 25.9% 26.7% 25.5% 27.1% 26.9% 0.855 0.842 0.857 0.861 0.834
ImCSO 17.2% 16.8% 17.5% 16.1% 17.1% 0.977 0.983 0.989 0.976 0.993

(a) Pareto frontiers of MAEED test
system 1

(b) Pareto frontiers of MAEED test
system 2

Fig. 4.2: Pareto frontier comparison of different algorithms in different MAEED test systems

algorithm has a wider distribution of Pareto frontiers than other algorithms, and the extreme solutions are also
better than other algorithms. In Figure 4.2b, there is a significant difference in the Pareto frontier obtained by
different algorithms. The distribution of Pareto frontiers obtained by the CMOPSO algorithm is significantly
higher than other algorithms, and also higher. From this, the CMOPSO algorithm performs better and achieves
better extreme solutions. The comparison of distribution uniformity indicators of different algorithms under
different MAEED testing systems is Fig 4.3.

In Fig. 4.3a in MAEED test system 1, the maximum value of the MOPSO algorithm’s distribution uni-
formity index is 1.0578, the min value is 0.7472, and the average value is 0.8669. The max values of the
distribution uniformity indicators for the BB-MOPSO algorithm and TV-MOPSO algorithm are 0.9873 and
0.9625, respectively, and the min values are 0.7152 and 0.7187. The average values are 0.8358 and 0.8575. The
max value of the distribution uniformity index of the CMOPSO algorithm is 0.9051, the minimum value is
0.6919, and the average value is 0.8058. According to 4.3b, in MAEED test system 2, the maximum value of
the MOPSO algorithm’s distribution uniformity index is 1.1872, the minimum value is 0.9815, and the average
value is 1.0498. The maximum values of the distribution uniformity indicators for the BB-MOPSO algorithm
and TV-MOPSO algorithm are 1.1308 and 1.1032, and the min values are 0.8617 and 0.9353. The average
values are 0.9937 and 1.0149, respectively. The max value of the distribution uniformity index of the CMOPSO
algorithm is 0.9605, the min value is 0.68, and the average value is 0.8457. From this, the distribution unifor-
mity index of the CMOPSO algorithm is superior to the comparison algorithm, which also indicates that the
algorithm has superiority in MAEED problems. The comparison of the comprehensive performance indicators
of different algorithms under different MAEED testing systems in terms of inverse generation distance is shown
in Fig 4.4.
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(a) Comparison of distribution uni-
formity indicators of different algo-
rithms in MAEED test system 1

(b) Comparison of distribution uni-
formity indicators of different algo-
rithms in MAEED test system 2

Fig. 4.3: Comparison of distribution uniformity indexes of different algorithms in different MAEED test systems

(a) Comparison of inverse genera-
tion distance between different algo-
rithms in MAEED testing system 1

(b) Comparison of inverse genera-
tion distance between different algo-
rithms in MAEED testing system 2

Fig. 4.4: Comparison of the comprehensive performance index of different algorithms in different MAEED test
systems

From Fig. 4.4a, in MAEED test system 1, the maximum anti generation distances of the MOPSO algorithm,
BB-MOPSO algorithm, and TV-MOPSO algorithm are 204.3648, 204.6281, and 143.2398, respectively. The
minimum values are 93.1586, 116.6733, and 76.4959, respectively, and the average values are 123.6742, 155.883,
and 95.2604, respectively. The maximum anti generation distance of the CMOPSO algorithm is 112.6341,
the min value is 43.9868, and the average value is 67.6316. From Figure 4.4b, in MAEED test system 2,
the maximum inverse generation distances of the three comparison algorithms are 10879.9507, 4959.483, and
10117. 1681, The minimum values are 1769.6697, 1473.3904, and 2036.2403, respectively; The average values
are 6675.7363, 2898.1252, and 4685.6277, respectively. The maximum anti generation distance of the CMOPSO
algorithm is 6121.3624, the minimum value is 702.5518, and the average value is 1664.0978. From this, the
CMOPSO algorithm has the best comprehensive performance. In order to further verify the performance of
the CMOPSO algorithm, other algorithms were selected for comparison in the study. Comparison algorithms
include Multi Objective Differential Evolution with Ranking based Mutation Operator (MODE-RMO), Hybrid
Immune Multi Objective Optimization Algorithm (HIMOA), and Multi Objective Ant Lion Optimization Al-
gorithm (MALO). The experiment was conducted a total of 100 times. The comparison of runtime of different
algorithms under different MAEED testing systems is shown in Figure 4.5.
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(a) Comparison of runtime of differ-
ent algorithms in the MAEED1 test-
ing system

(b) Comparison of runtime of differ-
ent algorithms in the MAEED2 test-
ing system

Fig. 4.5: Comparison of runtime of different algorithms in different MAEED testing systems

From Figure 4.5a, it can be seen that in MAEED test system 1, the maximum running time of the
CMOPSO algorithm is 127.8 seconds, and the minimum value is 101.3 seconds. The maximum running times of
MODE-RMO, HIMOA, and MALO algorithms are 169.8 seconds, 180.2 seconds, and 188.9 seconds, respectively,
while the minimum values are 147.4 seconds, 158.9 seconds, and 163.3 seconds, respectively. As shown in
Figure 4.5b, in MAEED test system 2, the maximum running time of the CMOPSO algorithm is 139.6 seconds,
and the minimum value is 118.4 seconds. The maximum running times of MODE-RMO, HIMOA, and MALO
algorithms are 172.9s, 183.6s, and 190.8s, respectively, while the minimum values are 153.4s, 161.5s, and 165.2s,
respectively. From this, it can be seen that the CMOPSO algorithm has obvious advantages in runtime and
better performance.

5. Conclusion. In response to the improvement of energy utilization efficiency, this study innovatively
proposes the use of CMOPSO algorithm to solve multi regional environmental and economic scheduling prob-
lems. Moreover, the ImCSO algorithm is adopted to handle S-DE scheduling matters in multiple regions.
Research showed that the maximum, minimum, and average fuel costs of the ImCSO for solving MASED
problems were 656.2243 $/h, 655.8592 $/h, and 655.9866 $/h, respectively. The maximum, minimum, and
average fuel costs of the ImCSO algorithm for solving MADED problems were 13299.2825 $/h, 13003.9526
$/h, and 13151.3299 $/h, respectively. All values were smaller than other comparison algorithms. From this,
the ImCSO algorithm performed better in solving MASED and MADED problems. The CMOPSO algorithm
have a wider Pareto frontier distribution when solving MAEED problems. Under different testing systems, the
maximum values of the distribution uniformity index of the CMOPSO algorithm were 0.9051 and 0.9605, the
minimum values were 0.6919 and 0.68, and the average values were 0.8058 and 0.8457, respectively. Under
different testing systems, the maximum anti generation distance of the CMOPSO algorithm was 112.6341 and
6121.3624, while the minimum value was 43.9868 and 702.5518, respectively. The average value was 67.6316
and 1664.0978. From this, the performance of the CMOPSO algorithm is superior to that of the comparison
algorithm. However, there are also certain shortcomings in the research, which only considers multi-objective
issues of the environment and economy, and does not involve many other factors, which is also an area for
further research to improve.
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