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PARALLEL SEED SELECTION METHOD FOR OVERLAPPING COMMUNITY
DETECTION IN SOCIAL NETWORK
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Abstract. Social network analysis is one of the key areas of research during modern times. The social network is growing
with more users and the ties between them day by day. This reason brings out many research queries and new conclusions from
this area. Overlapping community detection in the social network is one such research problem which has acquired interest among
researchers nowadays. Earlier, the investigation was in finding out algorithms to detect communities in the network sequentially.
There are many distinguished findings toward overlapping community detection. Due to the velocity of data in the current era, the
available algorithms will be a bit sluggish in processing the data. The proposed algorithm uses parallel processing engine to resolve
this delay problem in the current scenario. The algorithm in parallel finds out the superior seed set in the network and expands it
in parallel to find out the community. The work shows amazing improvement in the runtime and also detects quality groups in the
network.
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1. Introduction. Complex networks are commonly utilized for modeling the synergies in real-world sys-
tems in various areas, such as sociology, biology, knowledge dispersion and many different fields. One important
feature of this complex network is that the nodes are tightly connected with each other in groups and in turn,
the groups will be loosely connected to each other. The tightly connected groups are called as communities.
The communities usually have common properties. Therefore, finding the communities from a complex network
could give many insights about the network. The community detection can be done in two different ways:
Firstly, the network partition can be calculated to cut the graph into partitions. Secondly, the selection of seed
nodes will be done and the local communities will be centered around these seeds.

The proposed work is of the latter category where, the most important nodes in the community will be
identified using a parallel superior seed set selection (P4S) algorithm. The identified superior seeds will be ex-
panded by their neighborhood till it reaches the next seed. Since the algorithm expands using the neighborhood,
it will form the closely knitted group around the seed nodes.

Seed selection process is an important process in the field of network science. Usually, the measures for
calculating the important nodes from the target network is named as centrality measures [24, 25]. There are
many centrality measures, to name a few, Degree [31], Betweenness [34], Closeness [18], Eigen vector [35], Page
Rank [32] and so on. These seed nodes play an important role in finding a good community in community
detection problem and fast spreading in information diffusion application.

2. Related Works. Data nowadays is huge and need to be processed as fast as possible. There is a
need of parallel algorithms to process the volume of data which comes in high velocity. Processing the data in
the faster may fetch the organizations a good profit. There are lots of seed selection algorithms available for
different applications. Each application might have to adopt different seed selection algorithms which match the
application requirement. For example, if the application is a marketing application, the out-degree centrality
or the page rank centrality may be used for the seed selection process. So, each centrality measures[9, 10, 2]
will have their own limitations with various applications. The proposed method finds out a generic seed by
combining various centralities.

There are some related works available in the literature. There are some diffusion models [40, 28, 21, 7]
and community detection algorithms [36, 3, 26, 14, 11] which will have a seed selection part in their model
[22, 12, 27, 6]. Some of the algorithms selects the seeds in random and optimize its result at the end of the
process [15]. There is a excellent study on seed nodes in [13]. Evolutionary algorithms are used to find out the
seed nodes in some cases [34].
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There are several graph computations algorithm available for large-scale graphs, various parallel modules
have been developed, e.g., Pregel [20], GraphLab [19] Giraph++ [8], GraphX [37], GRACE [30], GPS [23] and
Blogel [38] ,based on MapReduce [5] and BSP (Bulk Synchronous Parallel) models [29].

The proposed algorithm uses GraphX to process the graph in parallel. Our previous work Superior seed
set selection algorithm (4S) [1] was extended to parallel processing in this article. The experiment result proves
that the proposed parallel algorithm can find out the good clusters fastest then the available algorithms.

3. Problem Statement. Some of the seed selection algorithms which are already available are using
random nodes for selecting the seed node. The selection of a seed node or a seed set is really important in the
algorithms which use seeds to find out communities. Since, the community detection algorithm needs to work in
unsupervised way the seeds should be excellent to obtain a perfect local community. The selection of excellent
seeds will reduce the number iterations in the community detection algorithm.

Nowadays the data need to be processed is large because of the growing use of internet and social media.
Reducing iterations will not be enough to make the algorithm work faster. There is a need of parallel algorithms
which can process the data in a synchronized manner. Parallel processing algorithms are modern nowadays.
The uses of these kinds of algorithms will be fast and effective.

4. Problem Formulation. Assuming an undirected graph G = (V,E). The nodes of the graph G be
n = |V | nodes and the edges of the graph G be m = |E|. The overlapping community detection algorithm is used
to determine the community C = C1, ...., Cx of all the nodes of G. |C| be the number of communities identified.
In the proposed work, |C| is the number of seed node selected from parallel superior seed set selection algorithm.

Various centrality measures µi for a node i can be calculated which will be the importance measure of
node i. Let us assume the graph to be undirected. The traditional methods uses any one of the centrality
measures with respect to the use case, to define its seed set S(G) = si, sj , . . . , sκ where si, sj , . . . , sκ ∈ V .
Some models pick seed set randomly and gets the parameter κ as input, to decide the number of seeds in
the set. The difficulty in the conventional methods is that, the seed set need to be adjusted according to the
circumstances of the problem. The proposed parallel, unified model determines the superior seed set S(G) from
the centrality measures collectively. This article introduces a threshold value τ , which limits the number of seed
nodes selected for the S(G).

A community may be basically described as a collection of nodes that may share common features, or engage
in similar roles in the network. Also, it is tightly knitted groups with a high density of inter community ties and
a low density of intra-community ties. The proposed algorithm produces results that are composed of one of
two types of assignments, crisp assignment of nodes or fuzzy assignment of nodes. With crisp assignment, the
relationship between a node and a cluster is binary. That is, a node i either belongs to community C or does
not. With fuzzy assignment, each node is associated with two or more communities. Throughout the article,
the terms set, cluster, and community are used interchangeably.

5. Proposed work. The main idea of this work is to use the parallel processing architecture to find out
the best seeds and subsequently the best seeds from P4S algorithm will be used to find out the communities
hidden in the network. The work has been done with GraphX a module in spark parallel processing engine.
The algorithms for the Parallel seed selection and parallel community detection has been explained below in
the following sections. The parallel community detection framework is depicted in the Fig 5.1. The input of the
algorithm will be the unlabeled network, for example, social graph or collaboration networks or the network of
web pages. The output of the work will be the expanded communities from the selected seeds. The goodness of
the communities is tested by comparing the inter-density and intra-density of the communities along with the
graph density. The algorithm for the P4S has been given in the Algorithm 1. Algorithm 2 shows the parallel
seed set expansion algorithm which finds out the communities.

GraphX is the Apache Spark ingredient for graph-parallel calculations, developed upon a division of math-
ematics called graph theory. It is a distributed graph processing framework that lies on top of the Spark core.
GraphX inherits the Spark RDD with a Resilient Distributed Property Graph. The property graph is a di-
rected multi-graph. The multiple edges it has will be parallel. The parallel edges permit multiple relationships
between the same vertices. The Fig. 5.2 shows the architecture of the parallel 4S and parallel community
detection implemented in the spark.
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Fig. 5.1. Parallel community detection framework

Algorithm 1 Parallel Superior Seed Set Selection Algorithm (P4S)

1: procedure P4S(g, τ) ◃ Parallel Superior Seed set selection(P4S)
2: READ graph G(V,E)
3: COMPUTE
4: degree centrality d
5: eigen value centrality e
6: local clustering coefficient l
7: page rank centrality p ◃ Parallel
8: SORT d, e, l, p
9: for δ do ◃ Parallel

10: Threshold τ ← vertex count/δ
11: Fetch τ count of top nodes from list of d, e, l, p
12: Intersect (d, e, l, p)

13: return SuperiorSeedsSet S(g) ◃ top seeds

Algorithm 2 Parallel community detection using neighborhood expansion

1: procedure SeedExpansion(g, S(g)) ◃ Parallel Seed Expansion
2: COMPUTE
3: DistanceMatrix/S(g)
4: MaximumExpansionThreshold ExMax

τ

5: for S(g) do ◃ Parallel
6: while ( do!ExMax

τ )
7: NeighbourhoodExpansion

8: DETERMINE nor selected nodes V φ
9: for V φ do ◃ Parallel

10: DETERMINE Neighbors of V φ−NeiV φ
11: Degree NeiV φ
12: Assign node to the max degree nodes community

13: return SuperiorSeedsSetS(g) ◃ top seeds
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Fig. 5.2. Implementation of Parallel 4S and Parallel community detection algorithm in Spark architecture

The GraphX processors will be used to compute the superior seed set and the seed expansion of the node
to form community in parallel. Three node clusters was used for computing the communities in parallel.

5.1. Parallel Superior Seed Set Selection (P4S). Parallel superior seed set selection algorithm ex-
tracts the very important nodes in the input graph. The input data will be stored in the distributed file system
for further processing. Centrality measures are used to coin out the important nodes in the network. Each
centrality measure will have its own importance and use cases to work on. Combining these centrality measures
can identify good seeds across all the centrality measures. For the experiment done for this work Page rank,
Degree, Eigen value, Local clustering coefficient centralities was used. The centralities measure calculation will
automatically run in parallel when GraphX is used. Sorting according to the centrality ranks will be done for
all centrality measures used. A threshold value will be used to split the top ranks for all measures. Finally, set
intersection of the top nodes from each centrality measure will be done to get the superior seed set. Fig. 5.3
depicts the process of finding the superior seed set.

5.2. Parallel Community Detection. Community detection from seed by expanding greedily through
neighbors is a classical process. The proposed work is the modified version of the seed expansion in a parallel
way. Since we have multiple seeds the algorithm will expand in parallel from the seeds till it reaches the next
seed and stops expanding. The distance between the seeds will be calculated by the distance matrix. The
ExMax

τ defined in the Algorithm 2 is the maximum expansion limit. The nodes which are not selected in the
first iteration will be picked and added to its neighbors community. In case of more than one neighbor the
highest degree node will add the ungrouped node to its community.

6. Experiment. The real-world datasets used for the experiments are from [17]. All the datasets are
connected, undirected graphs. The datasets are from various categories like collaboration networks and product
networks. The detailed information about the datasets is given in the Table 6.1.

Collaboration networks. In a collaboration network, vertices denote authors, and edges denote co-
authorship. If authors u and v are co-authors, they will be connected by an edge. So, if an article is written
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Fig. 5.3. Parallel 4S algorithm for finding top seed set

Table 6.1

Summary of real-world networks used

Graph
No. of
Vertices

No. of
edges

Max.
Deg

Avg.
Deg

Avg. CC
Ground-
truth

HepPh 11,204 117,619 491 21.00 0.6216 N/A
AstroPh 17,903 196,972 504 22.00 0.6328 N/A
CondMat 21,363 91,286 279 8.50 0.6417 N/A
DBLP 317,080 1,049,866 343 6.60 0.6324 Yes
Amazon 334,863 925,872 549 5.50 0.3967 Yes
Orkut 731,332 21,992,171 6933 60.10 0.2468 Yes

by n authors, then their relationship will be represented as a clique in the network. HepPh, AstroPh, and
CondMat networks are formed based on the journal submitted to High Energy Physics (Phenomenology) group,
Astrophysics group, and Condensed Matter Physics group under the arXiv e-print service, respectively. The
DBLP network is formed based on the DBLP computer science bibliography website.

Product network. In the Amazon product network, vertices denote products and edges denote co-
purchasing information. If products u and v are frequently co-purchased, then there will be an undirected
edge between them.

Social networks. In a social network, vertices denote users of the social network and the edges denote
social communications between them. Users can construct a friendship relationship with each other in this web
application.

7. Community Evaluation.

7.1. Intra-Density, Inter-Density and Graph Density. The cohesiveness of the edges in a graph G
can be readily attained by calculating the graph density ρ.

ρ =
|E|

n(n− 1)/2
(7.1)

where n is the count of nodes in the network and n(n − 1)/2 is the maximum possible edges and |E| is the
number of edges in graph G.
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Consider c is a community in the given network G where |G| = n and |c| = nc. Internal edges are edges
which have it both sides situated inside the community c and the external edges of community c refer to the
edges which connect a vertex in c to the rest of the graph. The internal degree of vertex v in community c is
denoted by kintv is the number of edges connecting v to other vertices in c and the external degree of v denoted as
kextv is the number of edges connecting v to the rest of the graph. The intra cluster density δi(c) of a community
c is the ratio between the number of internal edges of c and the number of all possible internal edges:

δi(C) =
|Ei|

nc(nc − 1)/2
(7.2)

where |Ei| is the count of internal edges in the community.
Similarly, the inter-cluster density δe(c) is the ratio between the number of inter-cluster edges of c and the

number of all possible inter-cluster edges:

δe(C) =
|Ee|

nc(n− nc)
(7.3)

where|Ee| is the count of inter community edges in the community.
The proposed parallel seed set selection algorithm has been implemented in the real-world datasets and has

given a better result. The goodness of the community has been tested with the inter-cluster and intra-cluster
density. Usually For overlapping communities, internal and external metric values will be used. Because,
combination metrics and modularity scores will result in confusing values that should be inconsistent[15]. The
goodness of the community using graph density ρ, intra-cluster density δi(c) and inter cluster density δe(c) can
be given as:

δi(C) > ρ > δe(C)(7.4)

The comparison of inter-cluster density, intra-cluster density and graph density of the real datasets are
plotted in the result and discussion section. The experiment was done for the seed sizes 71, 84, 114, 128, 152,
172, 207, 240 and 270.

7.2. Clustering Coefficient. A clustering coefficient is a measure of the degree to which nodes in a
graph are inclined to tie together. Research results suggests that in most real-world networks, and in some
social networks, nodes are likely to create tightly connected groups characterized by a pretty high density of
ties; this likelihood will greater than the average probability of a connection randomly established between two
nodes [33].

The local clustering coefficient li for a vertex i is then given by the ratio of links between the nodes within
its neighbors divided by the number of edges possible between them. The local clustering coefficient for an
undirected graph is given as:

Ci =
2|ej,nei : vj , vnei ∈ Ni, ej,nei ∈ E|

neii(neii − 1)/2
(7.5)

where vertex vj , has neii neighbors, neii(neii−1)
2 edges will be the maximum possible edges exist among the

vertices within the neighborhood.

8. Result and discussion. The problem of community assessment is still an open and difficult problem
in spite of huge sum of work addressing this topic [13]. The experiment done on the real-world datasets are
given on the summary Table 6.1. The values of inter-density, intra-density and graph density are compared to
find the goodness of the cluster. The result from the six real-world datasets specified in Table 6.1 has been
plotted in the Fig 8.1. Every dataset used for the experiment passes the test and it goes hand in hand with the
Eq. (7.4). In all cases the intra-cluster density δi(c) from Eq. (7.2) of all the communities identified is greater
than the graph density ρ and the inter-cluster density δe(c) from Eq. 7.3 of nodes after finding communities is
lesser then the graph density ρ from Eq. 7.1.
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Fig. 8.1. Data comparison between the inter-cluster density, intra-cluster density and graph density: (a) Amazon dataset (b)
AstroPh (c) CondMat (d) DBLP (e) HepPh (f) Orkut

The clustering coefficient can be a measure to find out the closely connected groups. The clustering coeffi-
cient equation is given the Eq. 7.5. The comparisons of clustering coefficient with the number of communities
are given in the Fig. 8.2. The clustering coefficient of two datasets namely Amazon Fig. 8.2a and AstroPh
Fig. 8.2b are shown. The result shows an increasing trend in the clustering coefficient as the number of seeds
increases. This shows that the larger the seed set higher the density of the community. Fig. 8.3 shows the
comparison of clustering coefficient and number of nodes in each community. The result of comparison of av-
erage clustering coefficient of the entire network and the average community clustering coefficient is compared
in the Fig. 8.4a and the comparison of average degree of the entire graph and the average degree of all the
communities detected are shown as a bar plot in Fig. 8.4b. The plots clearly show that the density of the sub
graphs increases after the community detection.

The running time factor is one of the important problems in community detection algorithms. When the
input graph becomes larger the operations in graph will become complex and operations on it will be costly.
The running time of the algorithm was compared with five important algorithms from the literature shown in
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Fig. 8.2. Number of communities VS Clustering Coefficient (a) Amazon (b)AstroPh

Fig. 8.3. Number of nodes in the community VS Clustering Coefficient (a) Amazon (b)AstroPh

the Table 8.1. OSLOM [16], DEMON [4], Big Clam [39], nise-sph-fppr and nise-grc-fppr from [35].
As it can be clearly seen in the Table 8.1 the proposed P4S algorithm with seed expansion algorithm works

faster than the other algorithms compared. Since it is parallel execution, the algorithm finishes its execution
faster than the other algorithms compared.

The details in the Table 8.2 depict the coverage (%) of each algorithm. In this case the proposed algorithm
doesnt gives 100% as nise-sph-fprr and nise-grc-fppr [35]. When the number of communities is considered the
proposed P4S method gives better result than the algorithms compared.

9. Conclusion. The proposed P4S method has been implemented and tested in this article. The work
gives encouraging result and it could produce better communities in less time. The P4S selects very good seeds
and because of the seeds he communities can be expanded from the seeds easily. Since the seeds have a good
density of nodes around it, the expansion will be faster when the process starts and it drags a little to complete.
The generated communities from this method prove the seeds selected are excellent. The goodness metric of the
communities selected has been tested with the density metrics. The density test proves that the communities
generated are also good. The communities detected has also been tested with the clustering coefficient and
proved to be good after the detection of community. The trend line shows that larger the seed set higher the
density will be. The runtime of the algorithm was also calculated and it shows a very good improvement.
Finally, the coverage of the algorithm was tested and the P4S covers more than 95% in most of the iterations.
When considering the number of communities with the coverage % the result P4S gave is better. The algorithm
still needs many improvements with respect to the centrality measures selection, range of threshold values and
seed expansion approach.
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Fig. 8.4. (a) Comparison of average clustering coefficient of nodes before and after community detection. (b) Comparison of
average degree of nodes before and after community detection.

Table 8.1

Running times of different methods on our test networks in (Minutes)

Graph oslom demon bigclam nise-sph-fppr nise-grc-fppr P4S
HepPh 19.26 0.45 11.383 0.36 2.8 0.3
AstroPh 38.05 0.7 48.016 0.6 2.43 0.483
CondMat 20.65 0.83 7.35 0.6 1.23 0.45
DBLP 350 233 433 18.33 29.733 12.6
Amazon 175 115 85 37.6 42.716 20.3
Orkut N/A N/A 4199 43.916 236 31.83

Table 8.2

Returned number of communities and graph coverage of each algorithm

Graph oslom demon bigclam nise-sph-fppr nise-grc-fppr P4S

HepPh
Coverage (%)
no.of.clusters

100
608

88.3
5,147

84.37
100

100
99

100
90

94.83
270

AstroPh
Coverage (%)
no.of.clusters

100
1,241

94.15
8,259

91.11
200

100
212

100
246

95.4
270

CondMat
Coverage (%)
no.of.clusters

100
1,534

91.16
10,474

99.96
200

100
201

100
249

98.5
270

DBLP
Coverage (%)
no.of.clusters

100
17,519

84.89
174,560

100
25,000

100
26,503

100
18,477

97.4
270

Amazon
Coverage (%)
no.of.clusters

100
17,082

79.16
105,685

100
25,000

100
27,763

100
20,036

96.71
270

Orkut
Coverage (%)
no.of.clusters

N/A
N/A

N/A
N/A

82.13
25,000

99.99
25,204

99.99
32,622

98.5
270
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