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A STUDY ON THE PREDICTION METHOD OF ENGLISH PERFORMANCE IN
UNIVERSITIES BASED ON THE STACKING INTEGRATED MODEL

TONGSHENG SI∗

Abstract. Students’ performance in higher education reflects their overall quality in higher education. By predicting the
performance, students with greater learning problems can be screened out early and given appropriate guidance. To predict
students’ performance in English, the knowledge information of courses, examination papers, and historical examination records
are used to build a feature project of students’ examinations. Meanwhile, the features strongly correlated with their performance
are filtered out. Then the next step of performance prediction is carried out. The results showed that a neural network long and
short-term memory performance prediction model incorporating an attention mechanism was more effective than other models in
predicting English performance in higher education. Further experiments found that the model reduced the error by 1.04% on the
MAE metric, 0.53% on the RMSE metric, and increased its value by 4.12% on the R2 metric. Adding the new feature dataset led
to better forecasting by the Att-LSTM model in all metrics. This indicated that the enhanced dataset temporality could improve
the effectiveness of the Att-LSTM model in predicting English grades in higher education. The stacked integrated prediction model,
by integrating multiple strong regressors, can avoid poor prediction and excessive overall bias due to one regressor and increase
the soundness and prediction precision of the mode.
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1. Introduction. With the fast growth of national education computerization, a large amount of data
on education has been generated in the education management system[15]. Data mining has been a new
power in these sectors [5]. However, the application of this technology in student performance prediction is
still underdeveloped and still being explored [12]. Big data has made a huge difference in how people work,
live and think, and its impact on the education sector cannot be ignored [9]. Big data is becoming a huge
force for progress and change in the education system [2]. Education is undergoing a dramatic change due
to the influence of big data. The education sector continuously generates and accumulates a large amount of
data, which constitutes big data in agriculture [10]. Big data’s importance in education and its huge value is
gaining more attention. With the construction of information systems on campus, there is a hardware basis
for collecting and processing the various data generated by students on campus [6]. Therefore, this study uses
the Stacking integrated model to study English performance prediction in colleges. A multi-model overlay
prediction model based on the integrated learning stacking method is proposed for college students’ English
grades. The algorithm takes the prediction results of XGBoost, LightGBM and Att-LSTM models as input
and then uses multiple regressors to integrate the prediction results to obtain the students’ grade prediction
results.

2. Related Works. Under the influence of big data, the education sector is undergoing a dramatic change.
It constantly generates and accumulates large amounts of data, which constitute a large amount of energy in
agriculture. The importance of big data in education and its huge value is becoming increasingly visible. With
the continuous construction of information systems on campuses, there is a hardware basis for collecting and
processing the various data generated by students on campus. So that college English can be promoted and
students can achieve better grades. Achievement prediction has become an important topic and has been
thoroughly studied by many scientists. Mubarak et al. proposed a supermodel of deconvolutional networks
and long-term and short-term memory, dubbed CONV-LSTM, to extract features automatically from the raw
MOOC dataset and to forecast each student to drop or finish the course. The proposed model showed an
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improved performance [11]. Wu L proposed a spatial recurrent mould grounded in deep attention, which learnt
to focus on key target components and encoded those into space expression characterization. The method
was experimentally demonstrated to outperform two typical fine-grained recognition tasks [13]. Thanh et al.
proposed a profound study using classroom data conversion and factorial data over time to predict the pupils’
grades. The experiment was built on 16 statistical collections relevant to various fields of study, collected
from about 4 million samples from the student message board of a large-scale discipline network in Vietnam.
The outcomes indicated that the presented approach offered excellent forecasting results, particularly when
transforming the data and applied to practical cases [4].

Liu et al. proposed a new framework for student performance prediction using machine learning to cap-
ture features and fused attention mechanism-based recurrent neural networks. Experiments demonstrated the
effectiveness and practicality of the method with an accuracy of 98% [7]. Baruah et al. presented a deeply
neuro-fuzzy web based on the MapReduce framework for multiple universe optimization of grade competition-
based student performance prediction. The values of the proposed method in terms of mean square error, root
mean square error and mean absolute error were 0.3383, 0.5817, and 0.3915, respectively [3]. Abdollahi et al.
presented a depth study-based multi-step algorithm to predict trip times using 5-fold cross-validation to detect
the ability of the prediction mode. The proposed algorithm performed on a mean of 4 minutes outperforming
a deep neo-network applied to the original eigenspace [1]. Meng et al. presented a deep feedforward forecasting
model of neighbourhood neural networks to implement a suitable software system for employment forecasting
and guidance of college and high school students, and the results showed some applicability [8]. Zhang et al.
presented a method for predicting exploits using a multi-step N-gram characteristic selection and hierarchical
integrated study. The results showed that the presented approach was validated on the server exploit buffer
spill exploit and resource management exploit datasets with the lowest false positive and false negativity rates
of 1.58% and 4.06%, respectively [16]. Xie et al. proposed a model for predicting grades through an attentive
multilayer LSTM that combined students’ demographic and clickstream datasets for integrated analysis. The
results showed higher prediction accuracy and could provide timely interventions [14].

Currently, the research on student performance prediction is less concerned with the association between
course knowledge data and performance. Its applicability and extensibility are narrow, which is not conducive to
the practical application of relevant research findings. Meanwhile, existing studies have also paid little attention
to the effect of time-series factors on predicting pupil achievement. Thus, this study proposes a neural network
long- and short-term memory performance prediction mode incorporating an attention mechanism and a multi-
model overlay of university students’ English performance prediction mode. The algorithm takes the prediction
results of XGBoost, LightGBM and Att-LSTM models as input, and then uses multiple regressors to integrate
the prediction results. Finally, the prediction results of students’ performance are obtained, and a new idea is
proposed for the comprehensive research of English education in colleges.

3. A Stacking Integrated Multi-Model Overlay Based Approach for Predicting English Per-
formance in Higher Education.

3.1. A neural network long and short-term memory performance prediction model incorporat-
ing attention mechanism. The first step for predicting English grades in higher education is pre-processing
students’ English grade data. The pre-processing allows richer information to be obtained on language test
data and makes it easier to access questions. The data set records all knowledge points besides the student’s
English grades, with classification, sectioning, numbering and complexity information. Also, for each English
test, the dataset records the points in the question paper, and the scores accounted for by those points. They
are pre-processed through cleaning, feature engineering, and the generation of training datasets to investigate
the intrinsic correlation between the data. These data provide a view of the overall distribution of student per-
formance and also enable an understanding of whether there are any anomalies in the examination performance.
Student performance is plotted according to a range of statistics per 10 points while being able to draw a box
plot of student performance, as shown in Figure 3.1. Figure 3.1 shows that most students in this English
course are within 60-100. Among them, the median score of students is more than 80, and a few students score
under 60, indicating the good overall performance of college students. However, a small number of students
have a score of 0 and might miss exams. The exam score of 0 is low, so this part of the anomaly is removed. In
the construction of feature engineering, a computer program is usually used to record data, which is convenient,
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Fig. 3.1: Statistical Chart of Student Test Results

fast, and has a large amount of data. Attributes with strong correlations with scores are generally screened
out, while those with weak correlations are excluded. Point-biserial correlation coefficients are used to analyse
correlations between bivariate and continuous variables. The relation between student performance and gender
is obtained by computing the point-biserial correlation coefficient, which is given in equation 3.1.

rpb =
(
(Y1)− (Y0)

)
/S

Y
√

((N0N1)/(N(N−1)))
(3.1)

In equation 3.1,Y0 is the observed mean of the gender metric coded as 0. Y1 is the mean of observations for
gender indicators grouped under the code 1.N0 is the approximate value of the observed values of males and
females coded as 0. N1 is the quantity of gender-specific views encoded as 0. N is the number of observations.
Sy is the reference deviation of all metric measurements. If one starts with the complexity of the test paper,
Pearson’s coefficient of correlation is used to assess the intensity of the online relationship between two contin-
uous entities. Pearson’s coefficient is used to calculate the total complexity and its performance correlation, as
shown in equation 3.2.

r =

∑
(x−mx) (y −my)√∑
(x− xm)2

∑
(y − ym)2

(3.2)

In equation 3.2, mx represents the mean of the total complexity of x. my denotes the average of the outcomes.
y indicates the outcome of the correlation. The paper’s complexity greatly impacts students’ final grades and
could be used to forecast their grades. In turn, the different points of English knowledge can have a differential
effect on students’ achievements. The data size is effectively reduced by reducing the dimensionality of the
original data. To perform a non-negative matrix decomposition for an already existing matrixV ∈ Rn∗m

+ , the
matrix W ∈ Rn∗r

+ needs to be found with the matrix H ∈ Rr∗m
+ such that it satisfies equation 3.3.

Vn∗m ≈ Wn∗rHr∗m (3.3)

In equation 3.3, ≈ is used mainly because the solution used is only an approximation. r < n, r < m. In
the general case of (n+m) r < nm, the relationship between a more complex feature set is constructed by
feature engineering. Table 3.1 shows the specific feature descriptions. Table 3.1 divides the college English
exam papers into three granularities for each knowledge point from coarse to fine, namely, class, subsection
and knowledge point. The student’s performance will change in each test. However, the long-term performance
will stabilize within the same range. After multiple exams, students learn from their previous mistakes and
can avoid the same mistakes, so their performance on exams will have some influence on subsequent exams.
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Table 3.1: Description of college English achievement characteristics

Features Format Describe
Student Id String Student ID
Exam Id Integer Exam ID
Complexity Integer Complexity
ComplexityRate1-5 Float Proportion of complex 1-5
Type1-10 Integer Chapter classification 1-10
Subjects1-10 Integer Subjects classification 1-10
Knowledge1-100 Integer Knowledge points 1-100

Fig. 3.2: Flow Chart of the Noticing Mechanisms

Therefore, the prediction of English grades in higher education can be seen as a time series prediction. In
this study, student performance is predicted by the LSTM model, which incorporates an attention mechanism.
The flow processing of the general attention mechanism is shown in Figure 3.2. In the general concentration
mechanism, four key data values are available. The input is represented as a key-value pair (Q,K) of Q and K.
The weights of the key-value pair are obtained by calculating the similarity between the Query and each Key.
Then the values representing the importance are obtained by normalization. Finally, the attention values are
obtained by summing the results for each value according to the importance values. The attention function
can use addition or dot product. The attention function can be expressed as shown in equation 3.4.

Atteneion (Query, Source) =

Lx∑
i=1

Similarity (Query,Keyi) ∗ V aluei (3.4)

In equation (4), Lx is the total length of the input features. There are 3 main stages in the attention mechanism.
The first step is to choose the appropriate method to find the correlation coefficient between the query and the
key. Methods such as vector dot product method, vector similarity method and MLP neural network method
can be used. The formula for the calculation method, see equation 3.5.

F (Q,Ki) = QTKi

F (Q,Ki) =
QTKi

∥QT ∥∥Ki∥
F (Q,Ki) = MLP

(
QT ,Ki

) (3.5)

In equation 3.5, F (Q,Ki) is the correlation coefficient. Qis the Query. Ki is the different keyword Key.
For Ki, the correlation coefficient F (Q,Ki) can be expressed as Si. The previous correlation coefficients are
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Fig. 3.3: Cell Architecture of LSTM

processed using Softmax on the second stage to obtain the weighting coefficients. The two advantages of this
processing are that all keyword weights are processed as a probability distribution with a sum of 1, and that
the importance of important keywords can be increased by its own function. The result of the Softmax formula
is shown in equation 3.6.

ai = Softmax {(}Si) = Softmax {(}F (Q,Ki)) =
eF (Q,Ki)∑Lx

j=1 e
F (Q,Ki)

(3.6)

In equation 3.6, ai is the weighting factor corresponding to Ki. In the third stage, the weighting coefficients
ai and Vi are calculated to obtain the final attention values, as shown in equation 3.7.

Attention (Q,K, V ) =

Lx∑
i=1

aiVi (3.7)

In equation 3.7, Vi denotes the value of the weight coefficient. LSTM is controlled by input, output, and
forgetting gates, which enhance its long-term memory capability and effectively solve the gradient disappearance
while filtering relatively unimportant information and reducing training time. The complete LSTM cell state
is displayed in Figure 3.3.

From Figure 3.3, in the LSTM cell state, Ct−1 is the cell preservation state after the previous processing.
ht−1is the retained state-of-play of the latent level after the last processing. σ is the input data where the
sigmoid function is performed. ⊗ represents the need to perform a dot product operation on the data. tanh
represents the activation function operation to be performed on the data. In the LSTM cell, the forgetting gate
is represented by ft, the entry gate is represented by it, and the out gate is represented by ot. The input data
of LSTM is represented by xt. The hidden state input to the next cell after completing LSTM is represented
by ht. The cell state input to the next cell after completing LSTM is represented by Ct. LSTM is mainly used
to obtain information about the input feature. The attention mechanism helps it quickly sift out the important
messages from many features and focus on the most helpful information. Unimportant data are filtered out
to increase the training efficiency of the mode. The Att − LSTM market mode is designed by combining the
attention mechanism. The model has good results for predicting English grades in colleges, and its architecture
is shown in Figure 3.4.

Figure 3.4 shows that the college English grade prediction model of Att-LSTM contains a five-layer struc-
ture with an input layer, an LSTM, an attention mechanism, a fully connected layer and an output layer. The
input layer is to import the student performance data into the model. Various data related to students and
courses have been filtered and constructed through feature engineering. Feature vectors are constructed based
on historical examination paper information, knowledge and performance information that can be identified.
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Fig. 3.4: Att LSTM Model Architecture

The exam count window is n. The feature window for consecutive exams is Xn. See equation ( 3.8) for details.{
Xn = (x1, x2, . . . , xn)
xn = (r1, r2, . . . , rk)

(3.8)

In equation ( 3.8), xn represents the nth test, where the data features of this test are represented by rk. The
LSTM layer is governed by three doors: the forgetting door, the input and the lower gate. The LSTM first
filters the cell states by the activation function of the forgetting gate. A vector is calculated from the secrecy
state ht−1 at the former time t − 1 and the current input information xt, and the vector takes values within
0-1, indicating the degree of data retention corresponding to the cell state. No retention at all is represented
by 0 and full retention is represented by 1. The specific calculation is shown in equation ( 3.9).{

f1 = σ (Wfxt + Ufht−1 + bf )
σ(x) = sigmoid(x) = 1

1+e−x

(3.9)

In equation ( 3.9), f1 is the forgetting gate. xt is the input message for the present. Wf and Uf are the
parameters of importance. bf is the parameter for the correction offset. After the calculation of the forgetting
gate is completed, the calculation of what new data should be entered for the cell state is then done. The data
are updated by the hide status ht−1 from the previous time t-1 and the present input information xt. Then the
new candidate memory cell C̃t is obtained using ht−1 and xt via tanh function, calculated as shown in equation
(3.10). 

it = σ (Wixt + Utht−1 + bi)

C̃t = tanh (Wc̃xt + Uc̃ht−1 + bc̃)

tanh(x) = sinh x
cosh x = ex−e−x

ex+e−x

(3.10)

In equation (3.10), it is the input gate for the current operation t. The parameters of importance are Wi, Ui,
WC̃ , and UC̃ . bC̃ is the correction offset. C̃t is the state of the memory cell selected for the current operation.
tanh {(}x) is the hyperbolic tangent function. Once C̃t is calculated, Ct−1 is updated and the value after Ct

is determined. However, after xt passes through it, it will use σ (x) to fuse the data from C̃t into Ct. The
calculation results are shown in equation 3.11.

Ct = ft ⊗ Ct−1 + it ⊗ C̃t (3.11)

In equation 3.11), Ct−1 represents the memory cell state from the previous operation t-1. After calculating Ct,
the information is sent to the next hidden layer of cells based on ht−1 and xt. Then tanh is used to calculate
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Fig. 3.5: Schematic Diagram of Student Achievement Prediction Model

a vector at ot to obtain the final result. The calculation steps are shown in equation ( 3.12).{
σt = σ (Woxt + Uoht−1 + bo)
ht = ot ⊗ tanh (Ct)

(3.12)

In equation ( 3.12), ot is the outgate. Wo and Uo are the significance parameters. bo is the correction offset. xt

is the data source for the current operation t. h is the current hidden status. The input feature information is
captured at the attention mechanism layer, and low-impact features are filtered out. The fully connected layer
aggregates the results of the attention regime tier into the final prediction data.

3.2. Stacking-based multi-model overlay prediction model for English language performance
in higher education. The stacking algorithm combines multiple prediction models and uses the prediction
results of each model as a new training set for retraining, thus improving the prediction performance and making
the predictions more stable. The construction of the Stacking model consists of two main layers, one consisting
of three base regressors, LightGBM, XGBoost and Att-LSTM. The second is a meta-regressor using the LR
algorithm, which uses the output data from the first layer as its input, and LR to make the final prediction of
student performance. This constitutes a stacking prediction model with a two-layer structure, which is shown
in Figure 3.5 below.

Figure 3.5 shows that in the first level of the training model, the whole data collection is organized first
into a single set for training Dtrain and a test set at Dtest. The three machine learning algorithms are then
trained separately to obtain the three base regressors M1, M2, and M3. To guard against modes that perform
well on already existing known domains and behave badly on an unknown dataset, it is essential to ensure
the generalization capability of the scale. In this study, a five-fold cross-validation method is applied to each
underlying regressor during the definition. The set of training is partitioned into D1

train, D2
train, D3

train, D4
train,

and D5
train and each copy is taken as the validation set in turn for five times iterative coaching. The mode

expression for each training is shown in equation 3.13

Mk
t = Ni

(
Dtrain −Dk

train

)
(3.13)

In equation 3.13, Mk
i is the mode produced by the algorithm at the crisscross certification training. Ni is the

i − th algorithm. i ∈ (1, 3), k ∈ (1, 5). The trained base regressor Mk
i predicts the remaining validation set.

The specific calculation is shown in equation 3.14.{
Ŷ k
i = Mk

i

(
Dk

train
)

Ŷi =
(
Ŷ 1
i , Ŷ

2
i , Ŷ

3
i , Ŷ

4
i , Ŷ

5
i

)
=

(
ŷ1i , ŷ

2
i , ŷ

3
i , . . . , ŷ

n
i

)T (3.14)

In 3.14, Ŷ k
i is the set of predictions from base regressors for the cross-validation training using Mk

i . Ŷi is the
predicted value of Dk

train for all validation sets for the i − th base regressor after 5 cross-validations. During
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Fig. 4.1: Complexity of Papers and Mean Score Spread of the School Community

the cross-validation process, the base regressor Mk
i predictions at Dtest are calculated. This average is then

used as the test set for the next regressor. The detailed calculation is shown in equation 3.15.{
Ẑk
i = Mk

i (Dtest )

Ẑi =
1
5

∑5
k=1 Ẑ

k
i =

(
Ẑ1
i , Ẑ

2
i , Ẑ

3
i , . . . , Ẑ

m
i

) (3.15)

In 3.15, Ẑk
i is the prediction result of the crisscross certification training of the i− th base regressor used for

the test set. Ẑi is the mean of the predictions from the base regressor for the i− th cross-validation. In the run
of the linear regression model, the mediated results derived from the basis regressor in the first run are used
in the stacking algorithm to construct a new training set Strain and test set Stest. The data formats for Strain

and Stest are
((

Ŷ1i, Ŷ2i, Ŷ3i

)
, yi

)
and

((
Ẑ1j , Ẑ2j , Ẑ3j ,

)
, yj

)
, and the prediction results are shown in equation

‘3.16. {
Mstacking = LR (Strain )
PredSet = Mstacking (Stest )

(3.16)

4. Experiments and Analysis of English Performance Prediction in Universities Based on
Stacking Integration Model.

4.1. Experiments and analysis based on the Att-LSTM prediction model. In terms of feature-
building choices, students’ test scores were generally influenced by test difficulty. The harder the test question,
the more challenging it is to obtain a high score. All knowledge points in English in higher education were
categorized, and labelled, and their complexity determined. The distribution of the correlation between the
complexity of a paper and the average score in a particular exam is shown in Figure 4.1 below.

Figure 4.1 showed that there were 5 levels of paper complexity, with the difficulty categorized into 1-5. The
complexity of the paper was determined for a given examination. Overall, the complexity of the paper was
negatively correlated with the mean score, the more difficult the paper, the lower the student’s score. To verify
the effectiveness of a neural network long and short-term memory performance prediction model incorporating
an attention mechanism in predicting English performance in higher education, three benchmark models were
used in the experiments for comparison. To further ensure the stability of the experimental results, a quintuple
across the verification process was employed to split the database into 5 equal portions. One of them was used
as the validation set, and the remaining four were used as the training set. The models were trained on the
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Table 4.1: Experimental results

Models Evaluation Indicators 1 2 3 4 5
MAE 4.597 4.581 4.569 4.602 4.599

RF RMSE 6.564 6.547 6.534 6.571 6.564
R2 0.241 0.211 0.211 0.268 0.262
MAE 4.435 4.378 4.388 4.413 4.399

RNN RMSE 6.415 6.34 6.348 6.325 6.366
R2 0.284 0.291 0.28 0.281 0.284
MAE 4.269 4.295 4.284 4.292 4.291

LSTM RMSE 6.23 6.266 6.261 6.262 6.251
R2 0.244 0.239 0.245 0.233 0.247
MAE 4.213 4.219 4.208 4.217 4.204

Att-LSTM RMSE 6.136 6.175 6.164 6.178 6.146
R2 0.244 0.236 0.248 0.238 0.248

Fig. 4.2: Comparison of Forecast Results of Different Indicators

training set using different machine-learning algorithms. By iterating five times, the trained model was tested
on the validation set for its effectiveness and predicted a result on the testing machine to obtain five test results.
finally, the five results were averaged as the final model prediction results in Table 4.1.

In Table 4.1, the experiments provided statistics on the prediction findings of the different modes. The
prediction results of the prediction models constructed by the four model algorithms tended to be stable over
the five training sessions over multiple training sessions. Figure 4.2 compares the five prediction experiments for
different students’ performance prediction models at different metrics for a more intuitive view of the individual
metrics.

In Figure 4.2, the performance metrics for each model were increasingly better from RF to Att-LSTM.
The Att-LSTM model outperformed the other benchmark modes. Since the Att-LSTM model incorporated
an attention mechanism, it could better capture the more valuable information when processing the data, and
the prediction results would be better. However, to further ensure the stability of the experimental results
evaluation, similar to the previous experimental setup, the constructed dataset was divided randomly into
training and testing sets, and the ratio of the two data subsets was kept 8:2. A five-fold validation of crossover
was used and the mean value was used as the final mode metric. The experimental outcomes are listed in Table
4.2.

From Table 4.2, the effectiveness of the Att-LSTM model in predicting English grades in higher education
could be improved when the temporality of the dataset was enhanced. By comparing the different data results,
the error was reduced by 1.04% on the MAE metric, 0.53% on the RMSE metric, and its value was improved
by 4.12% on the R2 metric. Across the metrics, the addition of the new feature dataset resulted in better
prediction results for the Att-LSTM mode. It was demonstrated that the Att-LSTM grade prediction model
could achieve the task of student grade prediction on both datasets and had relatively good results.

4.2. Experiments on predicting English performance in higher education based on stacking
integration model. To verify the effectiveness and accuracy of a stacking multi-mode overlay prediction
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Table 4.2: Att-LSTM model prediction results

Models Dataset MAE RMSE R2
Att-LSTM D1 4.201 6.142 0.214

D2 4.112 6.121 0.221

Table 4.3: Att-LSTM model prediction results

Models Evaluation Indicators 1 2 3 4 5

LightGBM
MAE 4.211 4.213 4.239 4.211 4.179
RMSE 6.154 6.121 6.201 6.189 6.159
R2 0.124 0.101 0.101 0.118 0.132

XGBoost
MAE 4.175 4.148 4.188 4.163 4.201
RMSE 6.180 6.129 6.168 6.151 6.159
R2 0.132 0.141 0.130 0.150 0.141

Att-LSTM
MAE 4.145 4.125 4.139 4.142 4.139
RMSE 6.123 6.126 6.129 6.122 6.131
R2 0.224 0.231 0.230 0.223 0.239

Stacking
MAE 4.131 4.121 4.121 4.122 4.114
RMSE 6.114 6.125 6.101 6.101 6.046
R2 0.230 0.231 0.229 0.232 0.238

model for college English grades, a comparison experiment was conducted using a Stacking integrated model
with the base regressors LightGBM, XGBoost, and Att-LSTM. Five experiments were conducted on each of
the four models in the training set, and the mean was obtained as the final test result, as indicated in Table
4.3.

In Table 4.3, the Stacking integrated model had improved in terms of evaluation metrics compared with the
single performance prediction models, namely XGBoost, LightGBM, and Att-LSTM. To more intuitively verify
the various performance of the Stacking integrated model and observe its stability, the experimental results of
cross-validation of each model on different data sets were counted, and the change curves of MAE and RMSE
of different prediction models under five experiments were plotted. This is shown in Figure 4.3. From Figure
4.3, the Att-LSTM model outperformed XGBoost and LightGBM in all indicators of the first three prediction
models and achieved better experimental results by capturing the changes in students’ historical performance.
In the above figures (a) and (b), the XGBoost model had large fluctuations in the prediction of grades in the
face of different data, while the Stacking integrated prediction model could avoid poor prediction and large
overall deviation due to one regressor by integrating multiple strong regressors, which improved the robustness
and prediction accuracy of the model. After determining the base regressors and meta-regressors, the stacking-
integrated student performance prediction model was constructed. The experimental results showed that the
Stacking integrated college English performance prediction model would have better prediction results than
using only the base regressor.

5. Conclusion. The study addressed the problem of predicting English grades for students in higher ed-
ucation. Using a dataset of course knowledge points and historical English grades of college students, two
prediction models were designed for grade prediction, thus enhancing the applicability of student grade predic-
tion. Feature engineering was established based on students’ test scores. Attributes with strong correlation
to grades could be filtered out, while those with weak correlations were excluded. Attributes with test paper
complexity were selected for the next grade prediction. The neural network long and short-term memory per-
formance prediction model incorporating the attention mechanism is more effective than any other models. In
further experiments, by comparing the results of different data, the error was reduced by 1.04% on the MAE
metric, 0.53% on the RMSE metric, and its value was improved by 4.12% on the R2 metric. Across the metrics,
the addition of the new feature dataset resulted in better prediction findings for the Att-LSTM model. This



2132 Tongsheng Si

Fig. 4.3: Results Comparison Chart

indicated that enhanced dataset temporality could improve the efficiency of the Att-LSTM mode in predicting
English grades in higher education. The stacked integrated prediction model, by integrating multiple strong
regressors, could avoid poor prediction and excessive overall bias due to one regressor and improve its robustness
and prediction accuracy.
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