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THE APPLICATION CHARACTERISTICS AND CREATION OF DIGITAL SCULPTURE
BASED ON PARAMETER MODEL

ZHAO XU∗AND QIUYANG LI†

Abstract. Recently, digital sculpture based on parametric models has emerged both domestically and internationally; To
improve the accuracy and efficiency of constructing digital sculpture parameter models, this study proposes a method for con-
structing digital sculpture parameter models based on improved point cloud registration algorithms by iterating the nearest point
algorithm and multi-scale matrix descriptors to increase the iteration efficiency and accuracy of point cloud registration algorithms.
The results show that under the Bunny model, the number of three scale feature points is 2146, and the coarse registration error
is 0.925 * 10-6 m; As the noise increases, the efficiency of the algorithm proposed in the study increases by an average of 10.1%;
The average relative rotation error is reduced by 1-2 orders of magnitude, and the registration time is shortened by 62.7% on
average; For a 30dB noise point cloud, it is reduced by one order of magnitude, and as the noise increases, the efficiency of the
algorithm proposed in the study increases by an average of 10.1%. In the Dragon model, the number of three scale feature points
is 2235, the coarse registration time is only 26 seconds, and the registration error is 0.285 * 10-5m; The average relative rotation
error is reduced by 1-2 orders of magnitude, and the registration time is shortened by 62.7% on average. The digital sculpture
creation method on the ground of parameter models proposed in this study has improved the registration accuracy and efficiency
of parameter models.
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1. Introduction. Digital sculpture (DS) embodies a high degree of integration between science and art,
giving artistic forms a rational mathematical order. DS refers to the use of computer technology and information
technology to digitize traditional sculpture and apply it to the field of sculpture. DS can be divided into two
types: parametric model-based DS and physical model-based DS. Parametric modeling-based DS refers to the
creation of a three-dimensional digital model through parametric modeling and its application in DS creation.
Compared to the first two, DSs on the ground of physical models can better represent the true form of materials,
but the production efficiency is lower and the production cost is higher [3]. From a technical perspective,
parameter modeling is the application of digital casting and rapid prototyping manufacturing technology in
traditional handicrafts. This technology can shorten the traditional product design and production cycle from
months to days or even minutes, with the ultimate goal of providing designers with a better user experience [4, 5].
The existing algorithm selects reference points from the front surface of the input model, and the modeling
result is prone to unreasonable height level phenomenon. To solve the defects such as cusps, another height field
reconstruction is required, which multiplies the amount of numerical computation and results in low modeling
efficiency. Moreover, the existing algorithm can only conduct digital sculpture modeling for 3D mesh models
with a single topology, and cannot process 3D models with complex topology structures, otherwise topological
tearing will occur after model deformation. The existing algorithm can only deal with the triangular mesh model
of manifold, and can not deal with the triangular mesh model with sharp edge. If the model containing non-
manifold triangular mesh is used for modeling, the program will crash and so on. Compared with triangular grid
data, point cloud data has the advantages of simple representation and convenient acquisition. The modeling
method based on point cloud deep learning can get rid of the shackles of grid model and make modeling more
flexible. In order to solve the above problems, the mesh modeling method based on differential deformation
theory can effectively deal with complex topological structure problems, while the point cloud modeling method
based on iterative nearest point improvement can get rid of the bondage of the mesh model and make the
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modeling more flexible. The research of this paper will promote the degree of automation of digital sculpture
design to a certain extent, reduce the intensity of digital sculpture design, and provide a theoretical basis for
subsequent research.

The article conducts research through four. The first is a review of the current research status of DS
and parameter model construction methods; The second is the application feature analysis of DS and the
construction of a DS parameter model on the ground of an improved point cloud registration algorithm; The
third is to verify the performance of the parameter model designed in the research; The fourth is the conclusion.

2. Related works. The emergence and development of parameter modeling technology are mainly influ-
enced by computer technology and information technology, and its application fields have also expanded from
traditional sculpture to fields such as film and television special effects and virtual reality. Sun et al. proposed
a lumped parameter model for liquid sloshing in a rigid cylindrical groove with multiple rigid partitions to im-
prove the accuracy of dynamic analysis of complex fluid solid systems and reduce computational workload; By
dividing the fluid domain into simple subdomains, the value of the convective velocity potential is obtained, and
the equivalent lumped parameter model is established according to the same shear and torque generated with
the Analytical expression; After verification, the model has feasibility [6]. Zhou and other scholars proposed
an improved model on the ground of hybrid adaptive Particle swarm optimization hybrid Simulated annealing
algorithm to solve the problem of poor accuracy and robustness of traditional battery parameter models; This
model used three equivalent circuit models to conduct experiments on three different types of batteries, and
its accuracy and adaptability were tested; The results show that the parameter model has a fast Rate of con-
vergence and accurate prediction ability [7]. The Sequeira team has established a high computational efficiency
and accuracy motor parameter model to improve the thermal management of the motor; This model verifies the
lumped parameter thermal network of the motor through commercial motor CAD modeling, and conducts de-
tailed finite element analysis, taking into account all key parameters; The final results indicate that the contact
resistance sensitivity between the lining and the lamination is high, and the maximum temperature difference
between the slot winding and the end winding is 2% [8]. Qin et al. proposed cascade visual geometry coding,
which can improve point cloud registration through the visual information of RGB images. Intermodal features
are iteratively fused by using the inductive bias of 2D and 3D convolution to better consider the correlation
between the two modes. Geometry-centric coding modules first use three-dimensional convolution in geometric
space to enhance visual features, thereby explicitly embedding geometric information, and enhance the salience
and relevance of local features through two-dimensional convolution [9]. Zhang et al. innovatively introduced
face template deformation into portrait relief modeling, matched key points on the image with feature points on
the template, and made the face template fit the target face on the image by minimizing the distance between
the two. To solve the problem of missing height field detail after feature matching, the illumination parameters
are obtained by solving a linear system containing the intensity of image pixels and the normal information of
model vertices. SFS is used to optimize the height field of the face model. Finally, the linear compression of
height field and Laplasian detail enhancement techniques are used to generate high relief of face [10].

After decades of development, DS has become increasingly mature in technology and its application scope
has also been expanding. In addition to its application in the field of sculpture, DS has also expanded to other
fields, and more and more artists and designers have conducted research and exploration on it. Edward et
al. proposed a generation algorithm for the axial generation process; This algorithm creates various types of
DSs by calculating color values and dynamically increasing the size of shapes; Compared with methods on the
ground of manipulating pixels/voxels and tracking particle paths, this method has good balance performance
and the ability to create complex visual effects [11]. The Zhou team introduced an automated system to design
a vivid brick sculpture to represent a three-dimensional model; This system transforms the building model into
a LEGO sculpture while maintaining its original styling characteristics. By extracting the visual features of
the model, various transformation parameters are obtained; Then it used a deformation algorithm to eliminate
the differences between discrete positions, ultimately generating a vivid LEGO DS [12]. Liu et al. proposed
a 3D visual measurement method on the ground of digital image processing to improve the noise resistance of
3D measurement systems; This method eliminates most of the environmental noise by designing the optimal
weight function. Under the spatio-temporal background of the video sequence, the decision Tree model is
used to extract and track the stripes; The results indicate that in complex lighting environments, this method
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can accurately measure in real-time, providing support for DS modeling [13]. Ramazan and other scholars
proposed an automatic key point detection and matching method on the ground of iterative nearest point
algorithm before rough registration of point clouds to improve the precision of fine registration of DS; This
method matches the model through the geometric relationship between key points and the angle and distance
between key points; The results show that the algorithm has higher accuracy and fewer iterations [14]. Lanteri
et al. proposed a new digital photogrammetry method using Agi soft Photos can® software to better define
the drawing details of DS; This method highlights the detailed features of the model through the generated UV
3D model, and restores the vivid expression of the model through the infrared 3D model; This method has the
advantages of non-invasive, economical, and efficient [15].

In summary, although researchers have proposed many methods for constructing DS parameter models
on the ground of different algorithms and have achieved certain results, they lack accuracy, robustness, and
efficiency; Therefore, through the improved point cloud registration algorithm-based DS parameter model, it is
expected to be able to quickly and accurately achieve the creation of DS.

3. Research on the Application Characteristics and Parameter Model Construction of Digital
Sculpture. This study designed a DS creation method on the ground of parameter models through an improved
point cloud registration algorithm; This method first obtains the Multi scale Matrix Descriptor (MSM) by
optimizing the curvature change, measuring angle and eigenvalue property (CME), then detects the key points
using the Local Surface Patches (LSP) algorithm, and finally corrects them using the Iterative Closest Point
(ICP) algorithm.

3.1. Analysis of the Application Characteristics of Digital Sculpture. The creation of traditional
sculpture is a ”linear” production process. For example, clay sculpture is the process of first setting up a frame,
then laying large pieces of mud, and finally thoroughly shaping the form. This process is irreversible, that is,
the order of each step cannot be arbitrarily changed, let alone jump to one of the steps. The problem with
the ”linear” method is that when an error occurs in the first step, to correct the error, one must step back and
start over. Compared with traditional sculpture, DS has significant differences in the creative process. These
differences come from the characteristics of computer technology on the one hand, and the differences in the
properties of materials themselves on the other hand [16]. Using modeling software to create sculptures, the
materials used will not be real soil, stone, wood, or metal, but rather computer data.

DS has deep ”interactivity” characteristics, while traditional sculpture works often exhibit ”non interactiv-
ity”. In traditional sculpture art, it takes a lot of time to carve a standard cube or sphere from a statue. In
DS systems, real-time observation and feedback of sculpture effects are achieved by simply processing sculpture
data through command tools [17, 18]. For example, by using modeling software, a standard sphere can be
peeled off from the sculpture in the shortest possible time and the effect can be seen quickly. The most essential
feature of DS is its virtualization and digitization, which is not affected by natural forces and can simulate the
effects of natural forces. Its shape is easy to penetrate, can be quickly replicated, and does not occupy physical
space. DS has broken the limitations of sculpture in space, while also causing changes in the preservation and
shaping of artworks.

Point cloud registration algorithm modeling is one of the creative methods for many DS. The point cloud
registration algorithm collects data from multiple locations, which can be used to represent differences in
objects, terrain, or other details in a certain area. The parameter model construction process using point cloud
registration algorithm is shown in Figure 3.1. Firstly, it inputs the source point cloud and the target point
cloud, and then comprehensively considers factors such as curvature change, measurement angle, feature values,
etc. to obtain CME; By optimizing the normal vector angle, point density, curvature, and other factors of the
three scale feature points, the MSM is obtained; Then the matching relationship is initially established, and the
unit Quaternion algorithm is used to calculate the initial registration parameters to achieve rough registration.
Finally, the ICP algorithm was modified to achieve ICP registration.

The curvature reflects the degree of deviation of the surface from the plane. For a given point pi , the more
intense the depth change of the neighborhood, the more obvious the areal feature centered on point pi. The
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Fig. 3.1: Flowchart of parameter model construction

weighted covariance matrix of point pi in the neighborhood with radius r is shown in equation 3.1.Cov(pi) =

∑
|pi−pj |≤r ωij(pi−pj)(pi−pj)

T∑
|pi−pj |≤r ωij

ωij =
1

|pi−pj |

(3.1)

In equation 3.1, pj is the neighborhood point. This study sets P as a point cloud, consisting of N points,
given a query point pi (i ∈ [1, N ]) ; Its neighborhood is a sphere with a center of pi and a radius of r. The
adjacent points of pi on the sphere are represented by pik , and k is the number of adjacent points of pi . The
Covariance matrix in the sphere is constructed by taking p̄i as the center of mass of pik. The specific formula
is shown in Equation 3.2.

Cov2(pi) =

pi1 − p̄i

...
pik − p̄i


T pi1 − p̄i

...
pik − p̄i

 (3.2)

The cos values of the two normal vectors pi and pik are used as the first scale to characterize the fluctuation
changes of the point cloud surface area. The calculation method is shown in equation 3.3.

F1(pik) =
vi · vik

|vi| · |vik|
(3.3)

In equation 3.3, F1(pik) represents the cos values of vi and vik ; vi and vik represents the normal vectors
of query point pi and adjacent point pik, respectively; |vi| and |vik| represent the modulus of a vector. Then
it projects the point set pik onto a tangent plane perpendicular to vi, and the Euclidean distance between the
projected point and pi is used as the second scale to describe the point density. The calculation formula is
shown in equation 3.4.

F2(pik) =
√
∥pi − pik∥2 − (vi · (pi − pik))2 (3.4)

In equation 3.4, ∥pi − pik∥ represents the Euclidean distance between two points. The surface curvature,
as the third scale, is calculated using Equation 3.5.

F3(pik) =
λi2

λi0 + λi1 + λi2
(3.5)

In equation 3.5, λi0 ≤ λi1 ≤ λi2 is the characteristic value. It combines the histogram matrices of the three
scales mentioned above to obtain the MSM descriptor of the feature points. The calculation formula is shown
in equation 3.6.

MMSM =

N∑
i=1

j∑
k=1

(
vote

〈∣∣∣∣25F1(pik)

2

∣∣∣∣〉+ vote
〈∣∣∣∣15F2(pik)

r

∣∣∣∣+ 25

〉
+ vote

〈∣∣∣∣∣ 20F3(pik)∑
F3(pik)

∣∣∣∣∣
〉

+ 40

)
(3.6)
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Fig. 3.2: Flowchart of key point detection steps

In equation 3.6, MMSM is an Nx60-dimensional matrix; N is the number of feature points; j is the number
of neighborhood points; vote(x) is a defined function that represents the xth histogram as 1, and

∑
F3(pik) is

the average value of curvature. Then it establishes a -dimensional tree, searches for the sub vectors with the
smallest Euclidean distance between F (Pm) and F (Qm) , and establishes a preliminary matching relationship
on the ground of the points corresponding to the vectors; The mathematical expression is shown in equation 3.7.

K = {(h1
i , h

2
i ) | h1

i ∈ Pm, h2
i ∈ Qm, i = 1, 2, . . . , Ni} (3.7)

In equation 3.7, Pm and Qm represent the point set for extracting feature points; F (Pm) and F (Qm)
represents the multi-scale matrix descriptors of two point clouds, respectively. Finally, the research uses the
unit quaternion algorithm for matching point pair K to calculate the initial registration parameters, namely,
rotation matrix R and translation vector T .

3.2. Construction of Digital Sculpture Parameter Model on the Ground of Improved Point
Cloud Registration Algorithm. To accurately estimate transformation parameters and improve registration
accuracy, strict detection and matching of key points are particularly important [19, 20]. This study selected
the LSP algorithm for key point detection, which is a point-by-point significance measurement method. The
key point detection steps are shown in Figure 3.2. For the surface curvature of each point, the study used
covariance analysis, which utilizes the ratio of the minimum value of each point to the sum of the feature values.
However, working directly on the point cloud without any intermediate subdivision, the detector mainly targets
samples in high curvature areas, while considering local variation and estimation of second-order error measures.
In this method, the maximum surface curvature is considered and voxel-based filtering is applied to improve
computational efficiency.

The shape index is introduced here to represent the saliency of vertices, and the specific calculation method
is shown in equation 3.8.

SI(p) = 1

2
− 1

π
tan−1 Cmax(p) + Cmin(p)

Cmax(p)− Cmax(p)
(3.8)

In equation 3.8, SI(p) represents the shape index; Cmax represents the maximum curvature; Cmin represents
the minimum curvature; (p) represents the set of points p. The calculation method for the average shape index
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Fig. 3.3: Darboux coordinate system

is shown in equation 3.9.

µSI(p) = 1

N

∑
p

SI(p) (3.9)

In equation 3.9, µSI(p) is the average shape index; N is the number of points in set (p) . When the SI of
a feature point satisfies SI(p) ≥ (1 + α)µSI(p) ∨ SI(p) ≤ (1 − β)µSI(p), it can be considered significant, where
α and β are scalar parameters. On the ground of this, point cloud points are divided into three-dimensional
blocks on the xyz plane, and an appropriate block size dataset is determined on the ground of resolution.

This study utilizes a 3D detector to extract key points from point cloud data, and then uses a 3D descriptor
to characterize the neighborhood of the key points and map them to an appropriate space. Ultimately, it is
defined as descriptors on different surfaces that match each other. In this method, a 3D keypoint descriptor
is a description of the environment around a point in the cloud, but this description is often on the ground of
geometric relationships. For two point clouds with similar features, most of the points correspond to the same
surface points.

Point feature histogram (PFH) is a common descriptor tool. In addition to point matching, PFH descriptors
are also used to identify points in the point cloud, such as edges, corners, and points on the surface. This
algorithm adopts a Darboux coordinate system, which is constructed between all pairs of points in the local
neighborhood of a point, as shown in Figure 3.3. In the Darboux coordinate system, the source point is a
point with a smaller angle between the connecting line of points ps and pt and the surface normal. If ns/t is
the normal vector of the corresponding point, then equation 3.10 can be used to represent the structure of the
Darboux coordinate system x , y , and z . 

x = y × z

y = ns

z = y × pt−ps

∥pt−ps∥

(3.10)

In addition to two normal vectors, the PFH method also uses three angles and one distance element
to describe the geometric relationship of point pairs. It adds the four elements of angle and distance to the
histogram of point p and the average percentage of point pairs in the p neighborhood, with a similar relationship.
In PFH, these histograms are calculated for all possible point pairs in the k neighborhoods of point p . The
three angles in the Darboux coordinate system can be represented by equation 3.11.

α = z × nt

ϕ = y(pt − ps)/∥pt − ps∥
θ = arctan(xnt, ynt)

(3.11)
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This study selected the Iterative Closest Point (ICP) algorithm, which is a point set to point registration
method that does not require segmentation and feature extraction of the processed point set to achieve very
accurate registration results. Under good initial values, it can also achieve good algorithm convergence. This
study sets the target point cloud P = {pi}

Np

i=1 and the source point cloud Q = {qi}
NQ

i=1 , and each point qi in
the source point cloud Q can be expressed as equation 3.12.

q′i = Rqi + T (3.12)

In equation 3.12, R represents Rotation matrix; T represents the translation matrix. Then, for each point
pi on the target point cloud P , It takes the point pi and q′i closest to Euclidean distance as the corresponding
point, and obtains the calculation equation 3.13.

E(R, T ) =
1

k

k∑
i=1

∥Rqi + T − pi∥2 (3.13)

In equation 3.13, E(R, T ) represents the mean value of the sum of the squares of the residuals, which is
defined as the iterative Error function; k represents the number of nearest point pairs. ICP algorithm is to
find the minimum value of function 3.13, so as to continuously update the Rotation matrix R and translation
matrix T until the cut-off conditions are met. To reduce the iteration time of the ICP algorithm, the study
introduced the bidirectional k-dimensional tree ICP algorithm, and on the ground of this, redefined the weight
Psii of the i-th corresponding relationship; The specific calculation formula is shown in equation 3.14.

Ψi =

(
1− d(pi, qi)

max d(pj , qj)

)2

(3.14)

In equation 3.14, d(pi, qi) is the distance between two points; maxd(pj , qj) is the maximum distance among
these corresponding relationships. The larger the distance between points, the lower the weight of the cor-
responding relationship; A new iterative Error function can be obtained according to equation 3.14, and the
specific calculation method is shown in equation 3.15.

E′(R, T ) =
1

k

k∑
i=1

Ψi∥Rqi + T − pi∥2 (3.15)

4. Performance analysis of parameter models. This study was conducted on a computer configured
with an Intel core i7 2.3GHz CPU and 8GB of memory, running software Matlab 2019a, and using Stanford
University’s Bunny (35947) and Dragon (56053) point cloud models [14]. By comparing the proposed algorithm
with other algorithms, the advantages and disadvantages of registration time and accuracy were analyzed, and
the feature point extraction results and registration effects were analyzed.

4.1. Result and Analysis of Feature Point Extraction. Relative rotation error is often used in
image processing and computer vision to evaluate the performance of image alignment, registration or attitude
estimation algorithms. Relative rotation error measures the difference between the actual rotation Angle and
the estimated rotation Angle. The smaller the index, the smaller the difference between the actual measurement
and the estimated rotation Angle, the better the performance of the algorithm. The registration time is used
to describe the computational resources and time complexity required by the algorithm. The smaller the index,
the less time it takes for the digital sculpture to complete the point cloud registration, and the lower the
requirements for the equipment. The Stanford dataset is scanned with the Cyberware 3030 MS scanner at
Stanford University’s Computer Graphics Lab. The scenes in this dataset are generated by the model through
random rigid body transformation and the addition of three scales of Gaussian noise. The real point cloud
data obtained from various 3D scanning devices mainly uses the point matching relationship between the point
clouds to estimate the spatial transformation relationship between the point cloud sequences from different
viewing angles, so as to complete the attitude normalization to obtain the point cloud in a larger field of view
or carry out three-dimensional reconstruction. The presence of noise in the Stanford data set will disturb the
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(a) Comparison of the number of feature points (b) Comparison of Coarse Registration Errors

(c) Coarse Registration Time Comparison

Fig. 4.1: Coarse registration results on the ground of Dragon model

local geometry of the point cloud and interfere with the accurate expression of features. Testing in the data
set can reflect the registration accuracy of the proposed method. From the real point cloud data set obtained
by various 3D scanning devices, the point cloud feature matching method proposed in this paper can solve the
three-dimensional rotation and spatial displacement changes generated by the object in a given time, so as to
obtain the motion information of the object in three-dimensional space, including velocity and angular velocity,
and track the moving object.

To verify the coarse registration performance of feature points in parameter models, this study compared the
CME constraint extraction feature points with curvature change (CC), measurement angle (MA), Eigenvalue
property (EP), and pairwise combination methods. Figure 4.1 is a comparison of feature point registration
on the ground of the Dragon model; Figure 4.1a shows that the number of feature points in a single feature
extraction method is much greater than that in a combination method, with MA having the most feature points
at 28836 and CME having the least feature points at 2235. Figure 4.1b shows that the coarse registration error
of CME is 1.743 * 10-6 m, which is the smallest among several methods, indicating that CME has the best
feature point extraction effect. Figure 4.1c shows that MA has the longest coarse registration time, reaching
352 seconds, while CME only has a coarse registration time of 26 seconds.
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(a) Comparison of the Number of Feature Points (b) Comparison of Coarse Registration Error

(c) Coarse Registration Time Consumption

Fig. 4.2: Coarse registration results on the ground of Bunny model

Figure 4.2 is a comparison of feature point registration on the ground of the Bunny model; Figure 4.2a
shows that MA has the highest number of feature points at 24976, while CME has the lowest number of feature
points at 2146. Figure 4.2b shows that the coarse registration error of CME is 0.925 * 10-6 m, which is the
smallest among several methods. EP has the largest coarse registration error, with a value of 1.905 * 10-6 m.
Figure 4.2c shows that MA has the longest coarse registration time, reaching 228 seconds, while CME has only
19 seconds for coarse registration. In summary, it has been proven that CME has the best registration effect,
and the registration effect of the pairwise combination method is better than that of a single method, indicating
that the more feature constraints there are, the more advantageous the registration is.

The proposed algorithm is compared with other algorithms under different Gauss white noise, RICP al-
gorithm, NICP algorithm, MR-KICP algorithm and classical ICP algorithm, and the comparison results are
shown in Table 4.1. This table shows that compared to the RICP algorithm, the proposed algorithm has a slight
decrease in registration error when matching point clouds with 25dB and 35dB noise; However, due to the RICP
algorithm falling into a local optimal solution at 30dB, the registration time is extremely short. Compared to
the NICP algorithm, the proposed algorithm has a slight decrease in registration accuracy for noise point clouds
of 25dB and 35dB; For the 30dB noise point cloud, it decreased by one order of magnitude, and as the noise
increased, the efficiency of the algorithm proposed in the study increased by an average of 10.1%; Compared to
the MR-KICP algorithm, the proposed algorithm has a longer registration time but smaller registration error.
The registration time of the classic ICP algorithm is extremely short, as it falls into a local optimal solution,
resulting in significant registration errors.

Table 4.2 is the data obtained by scanning the water bottle (Bottle, 21469) data and the solid 3D scanning of
a Chinese guardian lions’ statue (Lion, 53841) from different perspectives, and compares the registration effect
of the physical data. This table shows that for Bottom point cloud data with smaller points, the proposed
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Table 4.1: Point cloud registration results of Bunny model

Algorithm Registration times/s Registration error/ (10-4) mm
25dB 30dB 35dB 25dB 30dB 35dB

Propose 117.262 88.364 36.393 0.161 0.106 0.058
RICP 114.265 11.966 30.151 0.163 2.309 0.060
NICP 118.097 92.580 56.932 0.164 1.139 0.059

MR-KICP 41.982 38.521 30.337 7.640 6.608 5.308
ICP 0.302 0.380 0.454 64.892 61.980 65.883

Table 4.2: Comparison of physical point cloud registration

Algorithm Registration times/s Registration error/ (10-4) mm
Bottle Lion Bottle Lion

Propose 7.501 66.332 4.338×10-2 2.293
NICP 9.572 5.045 4.558×10-2 11.876

MR-KICP 25.531 116.423 3.789 357.612
ICP 1.284 10.697 1.212×104 205.213

algorithm reduces registration error by 2 orders of magnitude and registration time by 71.2% compared to MR-
KICP; Compared with the NICP method, the registration error has been reduced by 50% and the registration
time has been shortened by 21.4%. For Lion point cloud data with larger points, the proposed algorithm reduces
registration error by 2 orders of magnitude and registration time by 40.6% compared to MR-KICP. Overall, the
algorithm proposed in the study outperforms other algorithms in terms of registration efficiency and accuracy.

4.2. Registration results and analysis. Figure 4.3 shows the comparison results between the original
ICP algorithm and the improved ICP algorithm. Figure 4.3a shows that the improved ICP algorithm requires
less time to complete accurate registration; Figure 4.3b shows that there is almost no difference in registration
error between the two algorithms after registration. Overall, the iteration speeds of the two algorithms are
similar, but the horizontal axis indicates that the improved ICP algorithm achieved accurate registration with
fewer iterations. So, the improved ICP algorithm reduces the number of iterations while ensuring registration
accuracy, thereby improving the efficiency of registration.

To demonstrate the necessity of constructing MSM, this study compared MSM with Normal vector (NV)
matrix, Curvature (CU) matrix, point density (PD) matrix, and descriptors composed of pairwise combinations.
Figure 4.4 shows the test results under the Dragon model, and Figure 4.4a shows that the registration times
of the seven methods are not significantly different. The registration time for MSM is 28.87 seconds, the
registration time for CU is the shortest at 27.71 seconds, and the registration time for NV is the longest at
29.05 seconds. Figure 4.4b shows that the registration error of MSM is 0.285 * 10-5 m, which is the smallest
among several methods. The coarse registration error of CU is the largest, with a value of 5.256 * 10-5 m.
Overall, for more complex Dragon models, using only one sub scale matrix to describe feature points has
limited descriptive power, resulting in the highest registration error; After using two sub scale matrices, the
registration accuracy has significantly improved. Due to the use of three sub scales in MSM, the registration
error is the smallest.

Figure 4.5 shows the test results under the Bunny model; Figure 4.5a shows that the registration time for
MSM is 20.22 seconds, the registration time for PD is the shortest at 18.95 seconds, and the registration time
for NV+CU is the longest at 20.25 seconds. Figure 4.5b shows that the registration error of MSM is 0.089 *
10-5 m, which is the smallest among several methods. The coarse registration error of PD is the largest, with
a value of 0.214 * 10-5 m. Overall, MSM has the best descriptive ability, resulting in matching points that are
closest to geometric features.

To verify the higher registration efficiency and accuracy of the proposed registration method, the NDM-
KICP algorithm was compared with classical ICP algorithm, LPFH based KICP algorithm (LPFH KICP),
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(a) Registration Time Comparison (b) Comparison of Registration Error

Fig. 4.3: ICP algorithm comparison

(a) Coarse Registration Time Comparison (b) Coarse Registration Error

Fig. 4.4: Results of the descriptor experiment on the ground of the Dragon model

NCCP based bidirectional k-tree ICP algorithm (NCCP BKICP), Semidefinite Based Randomized Approach
(SBRA), and Sampling Consistency and Non-destructive Testing (SCNT) algorithm, Table 3 is the registration
data on the ground of the Bunny model. Table 3 shows that compared to the LPFH-KICP algorithm, the
NDM-KICP algorithm has an average reduction of 46.2% in relative rotation error and an average reduction
of 30.3% in registration time. Compared to the NCCP-BKICP algorithm, the average relative rotation error
is reduced by 44.5%, and the registration time is shortened by 60.2% on average. Compared to the SBRA
algorithm, the relative rotation error is reduced by an average of 1-2 orders of magnitude, and the registration
time is shortened by an average of 62.7%. Compared to the SCNT algorithm, the average relative rotation
error is reduced by 1-2 orders of magnitude, and the registration time is shortened by 93.3% on average.

Table 4.4 is the registration data on the ground of the Dragon model. Table 4 shows that compared to
the LPFH-KICP algorithm, the NDM-KICP algorithm has an average reduction of 11.3% in relative rotation
error and an average reduction of 12.6% in registration time. Compared to the NCCP-BKICP algorithm, the
relative rotation error has been reduced by an average of 16.1%, and the registration time has been shortened
by an average of 24.9%. Compared to the SBRA algorithm, the average relative rotation error is reduced by
33.2%, and the registration time is shortened by 24.7% on average. Compared to the SCNT algorithm, the
average relative rotation error is reduced by 2-3 orders of magnitude, and the registration time is shortened by
85.5% on average.

5. Conclusion. In response to the low level of automation and poor robustness of DS parameter models,
this study studied the application characteristics of DS, and then introduced the ICP algorithm and MSM
descriptor to improve the point cloud registration algorithm. A method for constructing DS parameter models
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(a) Coarse Registration Time Comparision (b) Coarse Registration Error

Fig. 4.5: Results of the descriptor experiment on the ground of the Bunny model

Table 4.3: Registration results of Bunny model

Index Algorithm Eliminate point cloud ratio (number of point clouds)
5% (34139) 10% (32360) 15% (30548) 20% (28765)

Relative rotation error

NDM-KICP 1.666×10-4 9.192×10-4 83641×10-4 7.265×10-4
SCNT 2.105×10-2 8.164×10-3 2.324×10-2 2.740×10-2
SBRA 3.724×10-2 5.106×10-3 7.104×10-2 3.679×10-2

NCCP-BKICP 1.670×10-4 9.278×10-4 1.490×10-3 2.146×10-3
LPFH-KICP 3.736×10-4 0.998×10-3 1.416×10-3 2.146×10-3

ICP 1.476 1.497 1.490 1.492

Registration time

NDM-KICP 15.800 16.352 14.886 13.719
SCNT 195.084 204.040 250.179 201.8964
SBRA 42.016 40.846 38.964 38.842

NCCP-BKICP 36.870 35.996 39.375 37.848
LPFH-KICP 22.075 22.227 21.748 21.297

ICP 1.985 1.682 1.739 1.703

Table 4.4: Registration results of Dragon model

Gaussian white noise ratio
Index Algorithm 0.1 r̄ 0.2 r̄ 0.3 r̄ 0.5 r̄

Relative
rotation error

NDM-KICP 1.305×10-5 4.00910-5 2.19910-5 1.126×10-4
SCNT 1.769×10-2 1.731×10-2 1.264×10-2 3.492×10-2
SBRA 1.958×10-5 4.689×10-5 5.475×10-5 1.593×10-4

NCCP-BKICP 1.308×10-5 4.551×10-5 2.542×10-5 1.397×10-4
LPFH-KICP 1.309×10-5 4.817×10-5 3.142×10-5 1.174×10-4

ICP 1.782 1.784 1.782 1.783

Registration
time

NDM-KICP 36.785 37.842 44.685 51.896
SCNT 300.735 301.984 307.692 305.512
SBRA 77.669 54.671 59.743 67.115

NCCP-BKICP 52.846 54.183 60.268 62.439
LPFH-KICP 44.786 45.816 49.558 53.371

ICP 4.645 4.679 4.762 5.413
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on the ground of the improved point cloud registration algorithm was proposed. The results show that under
the Bunny model, the number of feature points in CME is only 2146, and the coarse registration error is 0.925
* 10-6 m; As the noise increases, the efficiency of the algorithm proposed in the study increases by an average
of 10.1%; The registration time of MSM is 20.22 seconds, and the registration error of MSM is 0.089 * 10-5
meters; Compared to the LPFH-KICP algorithm, the NDM-KICP algorithm has an average reduction of 46.2%
in relative rotation error and 30.3% in registration time. Compared to the NCCP-BKICP algorithm, the NDM-
KICP algorithm has an average reduction of 44.5% in relative rotation error and 60.2% in registration time. In
the Dragon model, the number of feature points in CME is 2235, and the coarse registration time is only 26
seconds; The registration time of MSM is 28.87s, and the registration error is 0.285 * 10-5m; Compared to the
LPFH-KICP algorithm, the NDM-KICP algorithm has an average reduction of 11.3% in relative rotation error
and 12.6% in registration time. Compared to the NCCP-BKICP algorithm, the NDM-KICP algorithm has
an average reduction of 16.1% in relative rotation error and 24.9% in registration time. The digital sculpture
parameter model construction method based on improved point cloud registration algorithm proposed in this
paper has achieved good results, but some work still needs to be further improved in practical engineering
applications. Almost all the existing sculpture modeling methods assume that the background plane of the
sculpture is an ideal plane. In the future, it is necessary to study the digital sculpture modeling methods with
curved surface or non-convex plane as the background plane. It is also possible to explore a digital sculpture
modeling method that can produce optical illusion through light changes, shadow effects or forced perspective,
so as to better meet the needs of practical applications.
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