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TASK-DEPENDENT SLICING WITH CONVOLUTIONAL NETWORK MODEL FOR
HISTOPATHOLOGICAL IMAGE ANALYSIS

N HARI BABU∗AND VAMSIDHAR ENIREDDY†

Abstract. Due to its high rates of both mortality and morbidity, cancer stands as the primary cause of death globally. The
examination of histopathological images plays a crucial role in the early prediction of cancer, relying on manual practices for each
individual affected. However, this phase is prone to errors, time-consuming, and doesn’t facilitate early-stage decision-making for
pathologists. Despite significant advancements in computer-aided image processing, the analysis of histopathological morphology
remains challenging due to the intricate nature of these images. Moreover, limited annotations restrict sample analysis. This
work focuses on developing efficient deep-learning methods to analyze histopathological images by considering both global and
local features. It involves the analysis of image patches and features to address issues related to image annotations. A unique
task-specific slicing model, integrated with the convolutional network model (ts-CNN) is proposed. This framework aims to conduct
patch-level feature examination and combine multiple samples to achieve the necessary outcomes for classification. The envisioned
model aims to rectify inefficiencies present in various existing approaches. Using MATLAB 2020a, the proposed model was employed
to classify cancer-based histopathological images, demonstrating superior predictive performance. It assisted pathologists in early
cancer prediction with an accuracy of 98.2 % and aided in decision-making processes, offering promising results.
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1. Introduction. Breast cancer (BC) is a highly prevalent form of cancer globally and is recognized as
a significant contributor to mortality rates among women [1]. Histopathology images are the standard for
diagnosing breast cancer [2]. Expert pathologists have previously employed powerful microscopes to examine
tissue samples to diagnose tumours in cancer patients. Although this method is often used in clinical settings,
it cannot be scaled up to clinical and translational research studies requiring many tissue specimens. It is
a complex, time-consuming activity that requires expertise and is impacted by human characteristics like
exhaustion and attention span. On the other hand, modern digital microscopy equipment can quickly take
images of high-resolution tissue samples [3]. The implementation of computer-aided diagnosis (CAD) holds
promise in enhancing tumour diagnosis and alleviating the workload of pathologists. BC histopathologic imaging
analysis has drawn a lot of interest [4]. The automated differentiation of tumours into benign or malignant
types utilizing sizable, openly accessible annotated datasets is the application of this technology that exhibits
the most potential. Traditionally, relevant information from histopathology images has been extracted using
techniques for feature extraction [5]. Several textural components that have been manually created, such
as the Local Phase Quantization (LPQ), Grey-Level Co-Occurrence Matrix (GLCM), Local Binary Patterns
(LBP), and Completed LBP (CLBP), have been utilized to distinguish between malignant and benign tumours.
Jiang et al. [6] go into great detail about these characteristics. Sharma et al. [7] used Random Forest and
Support Vector Machine (SVM), two well-liked classifiers to reach classification accuracy of 80 % to 85 %.
Convolution neural networks (CNNs) have recently attained cutting-edge performance in image classification.
Histopathology image processing in breast cancer research has employed classification methods that rely on
data analysis. In their study, [8] employed the AlexNet deep learning model to distinguish between benign
and malignant breast tumours based on pathology images. Compared to what was accomplished using a
conventional machine learning algorithm, the categorization was 6 % better. With a recognition accuracy of 83
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%, [9] classified breast pathology images without regard to magnification.
Shortly after, other papers recommended how CNNs could be enhanced for even greater accuracy. DeCAF

characteristics, for instance, were employed by [10] to identify breast cancer with a 90 % accuracy rate. Breast
cancer histopathology image categorization could be made more precise by utilizing the BiCNN model, which is
a deep convolutional neural network, according to [11]. Up to 97 % classification accuracy was produced by this
model. A multi-classification technique for identifying breast cancer was created and has a similar accuracy
of 93.2 % on a vast dataset. Convolutional neural networks (CNNs) outperformed feature-based classifiers
built up manually in a study by Zhu et al. [12]. For binary classification, the CNNs attained accuracy rates
ranging from 96.15 % to 98.33 %, while for multi-class classification, they achieved rates between 83.31 %
and 88.23 %. The MuDeRN framework, developed by Mozejko et al. [13], has demonstrated high accuracy
in classifying breast histopathology images, achieving correct classification rates of up to 98.52 % in binary
classification. Additionally, convolutional neural networks (CNNs) have been successfully employed in various
tasks, including identifying breast cancer mitosis and detecting metastases [14].

Deep learning has made remarkable advancements in image recognition; however, its implementation in
the medical sector is limited due to its dependence on large-scale training datasets. Guo et al. [15] have
highlighted the lack of substantial, annotated, and publicly available datasets as a significant obstacle to
advancing novel histopathological image analysis tools. There has yet to be much research that aims to alleviate
the load of annotating. Our earlier study [15] aimed to reduce the annotation required for histopathology image
classification by applying deep domain adaptation to extract strong, domain-specific characteristics. As a result,
a classification model of this type that was trained on a source domain with all labels present can be applied
immediately to a target domain. The classification performance was still constrained for clinical applications,
and an entirely supplementary dataset was necessary [15]. The suggested approach uses active learning, which
doesn’t need an additional dataset, to reduce complex manual labelling.

In this study, we anticipate a deep learning system to reduce expenses related to annotation for classifying
breast cancer histopathology images. Our approach will assist pathologists in labelling data. The model is
initially given a minimal dataset, which it proactively learns by choosing the unlabeled data to be categorized
through a learning approach. The actively selected examples are used to refine this deep model gradually.
The proposed task-dependent slicing model is integrated with the convolutional network model (ts-CNN) and
operates two distinct techniques. The first method updates the model by picking samples for labelling those
with the highest level features based on the provided examples. This approach to inquiry is frequently used in
active learning and is regarded as a best practice. The classification strategy aims to enhance confidence by
concurrently considering samples exhibiting high confidence and feature mapping. The idea indicates that new
supervision should be included in addition to the categorization model’s current rules. This study examines
the effectiveness of slicing-based methods for BC histopathology image collections. We then analyze and draw
conclusions based on comparing these different approaches. Our findings indicate that the slicing strategy
can significantly reduce annotation costs for binary classification of BC histopathology images, achieving a
reduction of up to 67 %. Similarly, the slicing-based technique demonstrates a potential decrease in annotation
costs by up to 60 %. The proposed model helps the physicians to take decision during tough times and act as
a Clinical Decision Support System (CDSS). It functions as the human machine interface system to deal with
the emergency situation to treat the patients.

The work is drafted as follows: section 2 provides a broader analysis of diverse approaches. The methodology
is elaborated in section 3. The numerical outcomes are provided in section 4, and the work is summarized in
section 5.

2. Related works. The prognosis is improved, and the patient survival rate is increased to 50 % due to
early and precise identification. Correctly classifying each cancer stage is necessary to diagnose BrC [16]. In
contrast to previous BrC testing methods, different medical imaging is frequently employed to analyze BrC
effectively [17]. Breast cancer (BrC) is commonly detected through various medical imaging techniques such as
sonograms, MRIs, histopathology images, mammography, and magnetic resonance imaging (MRI). For a precise
BrC diagnosis, a pathologist’s expertise and topic knowledge are needed. Without them, misdiagnosis happens
frequently, especially when BrC is still in its early phases [17]. The early detection of BrC is vital, though. A
lot of computer-aided diagnosis (CAD) tools are employed by doctors to help them detect breast cancer early
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on in mammograms. It is a simple approach for early BrC diagnosis that is quick, dependable, and economical
[19]. The accuracy of BrC identification has increased by more than 20 % thanks to CAD developments during
the past ten years. The mortality rate is reduced from 30 % to 70 % thanks to this method, which aids doctors
and radiologists in identifying anomalies utilizing various imaging modalities [20].

By merging data from several domains, including pathology, radiology, pharmacology, cardiology, genomics,
and cancer, deep learning (DL) based CAD systems have exhibited substantial breakthroughs [20] in the medical
field. For the diagnosis and prognosis of illnesses, including cancer, DL has become a well-known machine
learning-based technique. Since machine learning-based technologies for cancer detection have been continuously
improving in recent years, it has become clear that DL is adequate in both cancer prognosis and prediction
[20]. Deep learning (DL) has demonstrated superior diagnostic accuracy in breast cancer imaging compared
to mammograms, ultrasounds, and digital breast tomosynthesis (DBT). This increased accuracy has led to the
adoption of DL in clinical breast cancer (BrC) treatment [21]. Numerous studies on using deep learning in BrC
have been published recently. These studies highlight the effectiveness of deep-learning algorithms in addressing
the challenges and intricacies associated with automated BrC diagnosis. BrC classification has been the subject
of numerous review studies, but few of them have been able to offer unambiguous guidance for future researchers
[22]. Although these papers provided an excellent literature review on BrC, they could have covered more topics
related to deep learning. The existing literature on BrC has predominantly concentrated on traditional machine
learning (ML) methods and generic artificial neural networks (ANNs), with an emphasis on feature extraction
for diagnostic purposes [23]. However, more attention should be given to newer deep learning architectures
such as extreme learning machines (ELMs) and generative adversarial networks (GANs) in the context of
BrC diagnostics. Additionally, previous review papers have yet to comprehensively evaluate the strengths and
weaknesses of earlier studies [24], resulting in a lack of clarity in their analysis of deep learning-based techniques.
This paper presents a comprehensive examination of recent advancements in the categorization of breast cancer
(BrC) images through the utilization of deep learning in computer-aided diagnosis (CAD) [25]. The analysis
encompasses six distinct perspectives: the model architecture employed for diagnosis, the datasets utilized,
image pre-processing techniques, the strategy employed for breast cancer imaging, the metrics employed for
evaluating performance, and potential avenues for future research. These perspectives are used to address the
study’s limitations [26].

The goal values are adjusted using back-propagation, an unsupervised learning technique, via auto-encoder.
The input, decoding, and hidden layers are the three layers that make up a neural network. Using an auto-
encoder, the input is transformed into the hidden layer. The decoder then reconstructs the input from hidden
layer’s starting point. There are four main kinds of auto-encoders: the contractive auto-encoder (CAE), the
variational AE, the sparse AE and the denoising AE [27]. A denoising version of the stacked auto-encoder is
the stacked denoising AE. Using AE, we benefit from data’s reduced dimensionality. Hyper-parameter tuning,
processing time, data and model validation are all required for auto=encoder training. Although auto-encoder
and principle component analyses (PCA) are relatively similar, PCA is less versatile than an auto-encoder. An
auto-encoder can carry out both linear and non-linear transformations, whereas PCA is limited to performing
solely linear transformations [28].

Given the significance of the convolutional neural network (CNN) in classifying breast cancer, it is impera-
tive to examine this computational model comprehensively. In earlier works, CNNs were more frequently used
to create a reliable cancer classification model. CNNs function well with images and are used with several imag-
ing modalities. To train a CNN, however, a lot of images are required. With a small number of images, good
performance is challenging to accomplish. Furthermore, because labelled datasets in medical imaging are expen-
sive to generate, finding appropriate training data is difficult. CNN, however, has a lot of benefits. A ConvNet
needs substantially less pre-processing than other classification techniques. A single CNN architecture combines
feature extraction and classification as a whole. Finally, it is immune to local geometric distortions and visual
noise. To facilitate the extraction of essential features from medical images and subsequently conduct breast
cancer classification, researchers have employed convolutional neural networks (CNNs) [28]. Histolopathologic
image analysis plays a pivotal role in cancer diagnosis, wherein histopathologists visually scrutinize cell shapes
and tissue distributions to assess irregularities. Their evaluation involves determining whether specific tissue
regions exhibit signs of cancer and gauging the degree of malignancy present in these areas. The proposed
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Fig. 3.1: Block diagram

model helps in predicting the cancer using CDSS, i.e. human machine interface system effectively.

3. Methodology. Fig 3.1 depicts the block of the anticipated model where the samples are taken BreakHis
dataset where pre-processing performed to normalize the samples. The features are extracted and fed to the
classifier (ts-CNN) where the performance is evaluated with various metrics like accuracy, precision, recall and
so on. The convolutional network model (ts-CNN) is merged with the task-dependent slicing model. This
study describes a technique for categorizing histological images of breast cancer employing only global labels.
In this approach, transfer learning trains a pre-existing network to extract patch features. The novelty of the
proposed model is its efficiency to access the classification accuracy using the task-based slicing model. The
convolutional network is designed to differentiate the cancer images based on the class labels. The proposed
model establishes better testing outcomes from the slicing model. It is more significant as the proposed model
has to differentiate the image malignancy and benign regions to offer better medical prediction. Owing to the
constraint accessibility of labelled histological breast cancer images, it is necessary to perform task-slicing. The
image-level labels used to label the datasets allow for the application of MIL to choose the discriminative patch
features. A combination of positive and negative examples is selected to generate an image-level feature. As
seen in Fig 3.1, the proposed approach is broken down into four key elements. The necessary feature at the
patch level was extracted in the first step. These patch-level features are combined to describe the image-level
feature comprehensively. The final whole slide image (WSI) feature is created by selecting the discriminative
characteristics at the end. Finally, abnormal and standard images of breast cancer histology are distinguished.
Here, a breast histological image with tumours or cancer is used to signify an aberrant histopathological image.

3.1. Feature extraction with ResNet50. Even though a CNN is capable of classifying images on its
own, it is unfeasible to use CNN to identify histopathology images with more than 100,000*100,000 pixels
directly. The histopathology images, however, will lose too much information if they are resized to fit on
a CNN. Given these considerations, the histological image of breast cancer is divided into smaller sections,
referred to as patches, and subsequently magnified to a resolution of (224* 224) pixels. Additionally, patches
with a background area percentage of more than 50 % are eliminated. The complex features of breast cancer
histology images are difficult for both shallow and deep networks to handle. The complex clinical variables
found in breast cancer histopathology images cannot be learned or matched by a deep neural network. We have
chosen to use ResNet, a neural network architecture that facilitates training and generates good results. This is
due to the lack of training data in histology and the benefits of residual learning through shortcut connections.
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Fig. 3.2: Task-independent slicing CNN

ResNet-50 is used to process every patch taken from a whole histopathological image of breast cancer. The
ResNet-50 model is initially trained using ImageNet dataset consists of 3.2 million high-resolution images. The
last convolution layer provides the attributes of the patches. These attributes, referred to as P, are consistently
represented as 2048*1 matrix. The fixed size of the input patches in the CNN which are always (224*224)
pixels.

Aggregating local features extracted from patch-level feature vectors generates an image-level feature vector.
This approach has been found to enhance the accuracy of classifying breast cancer histopathology images when
relying solely on global labels. Max pooling, p-norm pooling, mean pooling and other popular methods can all
be used to conduct local feature aggregation. Selecting the maximum pixel value within patch as representative
value for feature aggregation is commonly called ”max pooling” in the context of feature aggregation. In
contrast, mean pooling calculates the aggregated feature value by determining the average pixel value within a
patch. On the other hand, P-norm pooling retains valuable information from the patches while condensing the
signal obtained from multiple patches. P-norm pooling was used in this experiment to identify the aggregated
feature vectors. The following is an example of an aggregated feature:

fp(v) = (
1

N

N∑
i=1

vpj )
1
N (3.1)

The present investigation also employed the feature vector of the ith patch, represented as vpi and the
overall count of patches in the histopathological image denoted as N. Here, P=3 was used in the investigation,
specifically 3-norm pooling.

4. Feature selection. This study obtained image-level feature descriptors using the multiple features
learning technique, which resembles previous works. This technique was used to extract more discriminative
features while minimizing the presence of redundant or irrelevant features for classification. Instead of using
image-level features readily derived from patch-level features, limited set of meticulously chosen and represen-
tative characteristics were employed to classify breast cancer pathology images. Histological images of breast
cancer can be quickly and inexpensively described. The selected characteristic is derived from the combined
features rather than the labels assigned to the patches to differentiate between the affected and healthy breast
tissue sections. Here, the histological image of the breast tissue is viewed as a bag containing numerous ex-
amples, particularly the patches that have been removed from it. A patch is considered a negative instance of
breast cancer detection if it has no breast cancer tissue. A patch incorporating breast malignant tissue, on the
other hand, is thought to be a positive instance. At least one positive occurrence in a histopathological picture
indicates an abnormal condition, while the absence of any positive instances suggests a normal state. Using this
approach, we selected specific features from the instances and arranged them to derive the image-level feature.
It was established how many top or bottom aspects of the cases were chosen as K. Since the available breast
histological training images for breast cancer histopathology comprise typical regions and complex clinical fea-
tures, the final features were selected by choosing the top and bottom K pixels. The histopathological image’s
feature vector, designated as fp(v), was initially sorted according to the pixels. The sorted vector is presented
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in the following written form:

fsort = (v‘1, v
‘
2, ...., v

‘
p) (4.1)

In this method, the dimensions of the vector fv
p are represented by P = 2048. The image-level vector fdiff is

created by combining top-K and bottom-K pixels of the sorted f as stated in Eq. (4.1). This approach effectively
utilizes both the top regions, which indicate positive cases related to cancer and bottom regions which show
negative instances related to cancer.

5. Classification using ts-CNN. In breast histopathology image classification, image-level features are
obtained through a series of steps, including selection, feature extraction, and patch extraction. By selecting K
highest and lowest pixels from sorted vectors where the input feature vectors for classifier are generated. These
vectors are then transformed into image-level characteristics with dimensions of 2*K, as illustrated in Fig 3.2.
In our study, we employed a multilayer perceptron as the ultimate classifier to investigate the interplay between
the upper and lower pixel values more comprehensively, despite the satisfactory performance of a standalone
CNN classifier. Fig 3.2 shows the multilayer perceptron’s architectural layout. Our research used a multilayer
perceptron with two ultimately linked layers and 200 and 100 neurons each. ReLU was used as the activation
function. A two-neuron output layer was used to determine if the input breast histopathological images were
normal or abnormal to binary classify breast cancer histological images.

6. Network training. In our experiments, we used substantial regularization and data augmentation to
avoid over-fitting caused by insufficient training photos. In the initial layers of the multilayer perceptron, we
applied L2-regularization and dropout at rates of 0.5. The suggested architecture runs more effectively with
the default Adam optimizer despite recent improvements in optimizers to increase the effectiveness of deep
networks. In this study, the Adam optimizer was employed to minimize the binary cross-entropy loss, utilizing
a batch size 24 and a learning rate of 0.001. The classification model was developed using the MATLAB 2020a
framework, which is an open-source platform. A learning model was constructed to enhance the accuracy of
classifying breast histopathology image data, each with distinct weights. The projected outcome for a histology
image was determined by averaging predictions generated by E models with E set to 10. The proposed ts-CNN
is trained in 70 % samples where the prediction accuracy with these samples are higher, i.e. 98.2 % where the
testing is done with remaining 30 % samples. The training process consumes 1000s which is optimal compared
to other approaches.

7. Numerical results and discussion.
7.1. Dataset acquisition. BreaKHis, a sizable, publicly accessible, and annotated dataset that includes

histopathology images of breast cancer (BC), was used to evaluate the proposed system. This dataset encom-
passes 7,909 microscopic images, including 24 images of benign tissue and 58 images of malignant tissue. The P
& D laboratory in Brazil collected images from 82 patients. Each patient has many histopathological images col-
lected and given the same labels as the patients. Breast tissue biopsy slides that have undergone a conventional
fixation, dehydration, embedding, and trimming technique are used to create image samples. Hematoxylin and
eosin (H & E) staining introduces colour to the slides. In particular, (40X,100X,200X,and 400X) are prominent
magnifications used to capture many of the images in the collection. These magnifications are equivalent to
the corresponding objective lens magnifications of 4X,10X,20X,and 40X. The four magnifications’ respective
effective pixel sizes are 0.49µm, 0.2µm, 0.1µm, and 0.05µm. 2,480 normal images and 5,429 malignant ones are
included in the collection. Each image has been encoded using three channel RGB format with 8bit depth for
every channel and measures 700 by 460 pixels in size. The PNG file format is used to store all images. The
images are labelled by pathologists with labels like benign and malignant.

7.2. Execution. The MATLAB 2020a framework is used to put the suggested method into practice. The
ts-CNN architecture is the foundation of the deep model; a pre-trained network was trained on the provided
dataset. The server has an NVIDIA GeForce GTX 1080Ti GPU and Intel 3.6 GHz CPU. BreaKHis dataset
is divided into two different sets: a testing set called B _test and a training sample pool called B _pool.
These sets do not overlap. Before training, it is ensured that the malignant and benign samples in the Btest
are balanced. Then, B _pool receives the remaining samples. Rotational and symmetric data augmentation
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Table 7.1: Statistical distribution

Factors Benign Malignant Total
4X 625 1370 1995

100X 644 1437 2081
200X 623 1390 2013
400X 588 1232 1820

Samples 024 0058 0082

techniques are employed in the training samples to balance imbalance malignant and benign samples in B
_pool. The parameters for B _pool and B _test are the same as in [30], with B _pool/B _test remaining at
70 %/30 %. Table 7.1 displays the distribution of augmented datasets. The task-dependent slicing model with
the convolutional network model (ts-CNN) architecture was selected for our research due to its advantageous
combination of network depth and convergence speed. Before inputting the images into the neural network,
they are resized to a dimension of 227*227 pixels. The convolutional neural network’s W parameters are
updated using the Adam optimizer. When the network is trained, the learning rate is 105. The average of five
experiments produced the findings provided in this study. The parameters W are estimated using the samples
and matching labels (training set) in data-driven methods known as ts-CNN. The parameters are then utilized
to categorize testing data after training. The parameters are adjusted even more precisely if more data is
generated.

7.3. Metrics. The suggested methods are assessed on a pair of levels. An image is initially classified
as ”benign” or ”malignant” using a binary classification technique at image level. The classification accuracy
serves as validation measure because the distribution of categories at the image level is balanced. According to
this definition, this accuracy:

Accuracy =
Nc

Nim
(image− level) (7.1)

When classifying images, the variables Nc and Nim represent the total classified images (correctly) and
total images (dataset), respectively.

Subsequently, patient-level classification, evaluates the precision of recognizing images for each distinct
patient. The factors Np, Np

im and Np
c govern this assessment. The three numbers Np, Np

im and Np
c represent

the total count of pictures successfully categorized for patients p. Np indicates the overall number of patients.

Accuracy =

∑Np

i=1
Np

c

Np
im

Np
(Patient level) (7.2)

The parameter selection approach’s efficacy was assessed by examining its classification performance on the
validation dataset. Breast cancer histological image categorization was done on dataset to measure method’s
accuracy. The accuracy was assessed by contrasting the actual and expected breast histopathology images.
To evaluate the effectiveness of the method’s categorization, several performance metrics like true negatives
(TN), false negatives (FN), true positives (TP), and false positives (FP), were calculated. By calculating
the percentage of accurately predicted abnormal breast histopathological images among all of the predicted
abnormal breast histological images, the model’s accuracy was also measured. The recall, or actual positive
rate, was calculated by partitioning number of precisely predicted abnormal breast histology images by total
abnormal breast histological images. The receiver operating characteristic (ROC) curve was utilized (See Fig
7.8) as evaluation metric when breast histology images changed. ROC curve is commonly recommended for
evaluating results obtained through medical image processing. Additionally, using MATLAB 2020a, the F1-
score, which ranges from 0 to 1, was calculated for the binary categorization of breast cancer histology images.
Instead of preferring one over the other, the assessment tool used in this study is made to give equal weight
to both precision and recall. The F1-score is more sensitive to unbalanced data than the Area under the
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ROC curve (AUC). Eq. (7.3) to Eq. (7.9) are used to calculate the F1-score, recall, precision, and accuracy,
respectively [15].

recall =
TP

TP + FN
(7.3)

precision =
TP + TN

TP + FP
(7.4)

precision =
TP + TN

TP + TN + FP + FN
(7.5)

F1− score =
2 ∗ precision ∗ recall
precision+ recall

(7.6)

K =
Pobserved − Pchance

1− Pchance
(7.7)

MSE =
1

m

m∑
i=1

(xi − xî)
2 (7.8)

RMSE = (

√√√√ m∑
i=1

1

m
(xî − xi)

2 (7.9)

7.4. Validation. This study utilizes breast histopathology images for categorization. The authors used
transfer learning to extract patch characteristics from the images, and multiple-feature learning was used to
provide image-level features. The decision of positive and negative examples directly affects the image-level
feature, affecting the classification results. A validation dataset comprising 70 breast histopathology images
was used to assess the impact of various K values on categorization. According to the findings, accuracy and
the F1-score initially rise and subsequently fall as the K value increases from 5 to 200. When K is set to 10,
the suggested technique achieves an F1-score of 0.86 and an accuracy of 0.86. Notably, the approach operates
best with K equal to 100, producing an F1-score of 0.99 and an accuracy of 0.986. Compared to the results
obtained when K is set to 10, these values show 13 % and 12.6 % improvements, respectively. When K is
increased to 200, there is 26 % and 17.4 % reduction in the F1-score and accuracy of the classification findings,
respectively (See Fig 7.6). These results imply that the image-level feature vector, comprising the top 100
and bottom 100 pixels of the aggregated features, best represents the histopathological image’s characteristics
(See Fig. 7.1 and 7.5). Table 7.1 to Table 7.4 shows the experimental outcomes of the anticipated model.
The advantage of the proposed model over the existing research is its efficiency to access the classification
accuracy using the task-based slicing model. The convolutional network is designed to differentiate the cancer
images based on the class labels which are generally a complex task encountered by the existing approaches.
The proposed model establishes better testing outcomes from the slicing model. It is more significant as the
proposed model has to differentiate the image malignancy and benign regions to offer better medical prediction.
Therefore, the anticipated models’ performance is compared and evaluated for accuracy and performance with
other approaches to project its significances.

Detailed representations of the previously mentioned results are shown in sub-images to highlight how
varying values of K lead to various categorization outcomes. For K values of 10, 100, and 200, the ROC curves
in Fig 7.8 show considerable changes in the classification outcomes. Our tested method consistently generates
classification scores above 0.85 when only a limited number of top and bottom pixels are extracted from the
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Table 7.2: Comparison of annotation cost

Accuracy ( %) Image State ( %) 40X 40X 100X 100X 200X 200X 400X 400X
Image level Active Acc AC Acc AC Acc AC Acc AC
Image level Std 89 400 91 250 92 450 90 350
Image level Active 88 400 91.7 300 91 550 89 500
Image level Pre-trained 87 700 91 750 91 750 90 750
Patient level Std 91 350 93 300 93 400 92 350
Patient level Active 90 400 92 400 92 400 92 450
Patient level Pre-trained 91 700 92 750 93 750 92 600

Table 7.3: P-value computation

p-value Magnification Magnification Magnification Magnification
P-Value 00040X 00100X 0200X 00400X

Image-level based 00.017 00.003 0.003 0.0014
Patient-level based 0.0012 0.0001 0.005 0.0008

aggregated feature vector, such as K=10. The classification performance declines with a more significant K
number, such as K=200, with an accuracy of 0.819, recall of 0.83, and precision of 0.69. The complexity of
clinical characteristics and the size of histological images of breast tissue account for the changes brought on by
K values. The final output’s image-level feature displays various features in both standard and diseased breast
tissue based on the selected K values. Identifying abnormal tissue characteristics is only partially attainable
when the K value is low. On the other hand, if the K value is too high, too many features associated with
normal tissue may be present in the image-level attributes of diseased tissues. Consequently, selecting the
appropriate K value is crucial for correctly classifying breast cancer histology images using only global labels.
For the following discussion, where we assess the classification performance on the testing dataset, we selected
a K value of 100, considering both the classification performance and the network’s training expenses.

8. Experimental outcomes. All images above were subjected to pre-processing before being utilized as
input for the model. Based on the resulting output, the convolution layers’ parameters were established during
the training phase. Furthermore, these parameters remained unchanged during the validation process but were
tested against the model using a test image to determine their accuracy and potential need for adjustment. The
maximum average accuracy achieved through this approach over 100 epochs was 97.49 %. Weighted accuracy,
which refers to the average true positive rate attained for each class, was used to adjust for the unbalanced
dataset. Fig 7.6 displays the variations in accuracy between the test and train datasets during training. The
results for λ = 0.02 are shown. The ROC curve is a crucial tool for evaluating the classifier’s performance on the
test dataset. This graph compares the sensitivity (rate of true positives) and specificity ( % of false positives)
for various threshold values of the parameter. Each point on the ROC plot represents a mix of false-positive
and true-positive rate values for a particular threshold. In this scenario, the malignancy of benign tumours,
the Area Under the Curve (AUC), shows how effectively the classifier can distinguish between diseased and
normal classes. The task-dependent slicing model is integrated with the convolutional network model (ts-CNN),
as seen in Fig 7.8 ROC curve. The TPR and FPR of the anticipated model is provided in Fig 7.8 where the
positive predictions are higher compared to false positive. This shows the efficiency of the proposed model. Our
suggested model distinguished between benign and malignant lesions with a valid AUC of 98.3 %. To evaluate
its performance in differentiating between various sub-classes of lesions, as classified by Boman and Volminger.
This work applied our suggested approach to comparable lesion images. The proposed model’s computational
specifications are listed below.

ROC curves illustrating the ts-CNN performance are shown in Fig 7.8. The ts-CNN model, trained to
incorporate a novel regularizer, is evaluated on varying numbers of images for each case. Specifically, Fig 7.8
showcases the ROC curve from analyzing 33 melanoma images and 97 nevi images. Fig 7.8 illustrates the
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Table 7.4: Performance Metrics Comparison

Metrics ts-CNN nl-SVM IC-CSO CNN BiLSTM DNN CapsNet
Accuracy 98.2 97.5 95.7 94.3 94.8 91.8 93.4
Precision 98.5 97.2 95.6 94.5 94.5 90.5 92.2

F1-measure 98.3 97.4 95.5 93.7 92.2 90.4 91.9
Recall 98.1 97.2 95.5 94.9 0093 0091 91.6
Kappa 97.5 96.9 95.2 91.5 90.5 0081 83.7

Specificity 98.6 97.5 95.1 93.9 94.5 0091 91.6

Table 7.5: Error Metrics Comparison

Metrics ts-CNN nl-SVM IC-CSO CNN BiLSTM DNN CapsNet
MAP 00.032 00.045 00.055 0.1915 0.201 0.286 0.2635
MAE 0.0019 0.0025 0.0030 0.0365 0.042 0.082 0.0696
RMSE 0.0021 0.0026 0.0032 00.035 0.043 0.083 00.070

ROC curve from examining 65 basal and squamous cell carcinoma images and 70 seborrheic keratosis images.
The ROC curve resulting from the evaluation of 33 melanoma images and 97 seborrheic keratosis images is
displayed in Fig 7.8. Lastly, it exhibits the ROC curve from analyzing 20 melanoma and 20 solar lentigo
images. The AUC for each test in the above cases is shown in Table 7.1. Regarding the Area under the receiver
operating characteristic curve (AUC-ROC), our ts-CNN with a unique regularizer outperformed the presented
technique. We discovered that the AUC-ROC of nevus was 6.5 % higher than melanoma’s. The AUC-ROC
increased by 1.6 % in seborrheic keratosis, much like basal and squamous cell carcinoma. Our classifier compared
seborrheic keratosis and melanoma well, increasing AUC-ROC by 1.13 %. AUC-ROC for classifying melanoma
against solar lentigo was also achieved, and it was 86.35 %, outperforming prior values reported by 3.35 %.
This research study hypothesized that using ts-CNN would result in more accurate categorization of binary
comparisons between seborrheic keratosis and basal and squamous cell carcinoma, and nevus and melanoma,
compared to other techniques. According to [25], three-way classification accuracy with a standard deviation
of 0.9 % was 72.1 %. According to [28], the maximum accuracy ever found in literature is 93.64 %. However,
our suggested method outperformed these figures published by previous authors, with a maximum average
accuracy of 97.49 %. Although we experimented with various regularizer values, including λ0.2, 0.02, and0.002,
the accuracy that produced the best results was λ0.02 with a precision of 97.49 %. Table 7.3 contrasts our work
with many other methodologies. The proposed model outperforms the current models, according to our findings.
Due to the intricate variations in the appearance of histopathologic images, automated classification through
images poses a significant challenge. To tackle this and achieve precise differentiation among the minutely
detailed object categories, the proposed ts-CNN model have been employed. This study introduces a novel
prediction model designed to classify images as either benign or malignant using a unique slicing technique.
It serves as a binary classifier, distinguishing between these two categories of images. The proposed model
demonstrated an impressive average accuracy of 98.2 %, showcasing its superiority over current state-of-the-
art methods. The ts-CNN performance, measured in terms of ROC with the integrated novel task-slicing
technique, was evaluated across various scenarios. The AUC achieved for differentiating nevus from melanoma
lesions, seborrheic keratosis from basal cell carcinoma lesions, seborrheic keratosis from melanoma lesions,
and solar lentigo from melanoma lesions respectively. These outcomes indicate that our proposed learning
model surpasses existing algorithms and can serve as a valuable tool to aid medical practitioners in accurately
classifying diverse types of cancer.

Malignant cells found in breast tissue are used to diagnose breast cancer, which affects one in eight women
worldwide. Using a variety of methods, histopathology images captured under a microscope are the foundation
of modern medical image processing. These days, processing pathological tools and medical images requires
machine learning. Cancer cell detection by hand is time-consuming and prone to human mistake. As a result,
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Fig. 7.1: Accuracy comparison (Image level)

Fig. 7.2: Accuracy comparison (Patient level)

compared to manual systems, computer-aided mechanisms are used to get more accurate results. Medical
imaging is a field that heavily utilizes deep learning, particularly via CNNs. With this method, features are
extracted using CNN and then classified through a fully connected network. Its use in the medical industry is
beneficial because it doesn’t require any prior knowledge in the discipline. We trained a convolutional neural
network in this study, and the result was an amazing prediction accuracy of up to 94.6 %. In this work, a
CNN model called HIC-net is presented. Its purpose is to automatically identify malignant spots in whole-
slide histopathological images (WSI). HIC-net’s innovative architecture divides the WSI into distinct planes in
order to use window-based classification. Our method includes an efficient WSI pre-processing step to improve
predictability and speed up training.

Researchers can learn a great deal about cancer from the examination of histopathological images, but
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Fig. 7.3: Annotation cost comparison (Image level)

Fig. 7.4: Annotation cost comparison (Patient level)

the inherent difficulties with these images frequently make the analysis process take longer. In this work, a
strong solution to the problem of classifying histopathology images is presented. To counteract the impact of
background disrupting variables and reduce the complexity of histopathology pictures, a unique pre-processing
procedure has been used. Both pathologists and machine learning algorithms face major problems when it
comes to the analysis of histological images. Pathologists frequently dedicate hours to examining a single
whole-slide tissue sample. Even if machine learning algorithms provide results more quickly, many of them
have difficulty performing at the required level. This is frequently ascribed to the high image quality and the
existence of distracting elements.

This work adopts a unique strategy in comparison to the literature currently in publication, where CNN
architecture has shown impressive success and quickness in classification when compared to other methods.
Rather of using a generic CNN architecture, a specific architecture that is specifically designed to fit the texture
of histopathology images has been created. First layer of CNN architecture is a special preprocessing step based
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Fig. 7.5: P-value comparison

Fig. 7.6: Performance metrics comparison

Fig. 7.7: Error rate comparison
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Fig. 7.8: ROC comparison

Fig. 7.9: Classification error

on the effect of H & E stained components and cell behavior. First, the high-resolution histopathology pictures
should be normalized. Then, they should be segmented into smaller pieces in a particular order. Before being
supplied into the network as the CNN input, every image fragment is subjected to the suggested medical image
preprocessing procedure.

Due to its perceived lack of transparency in decision-making, deep learning is often criticized and labeled
as a ”black box.” Even if it’s known that humans don’t always make perfect ”white box” selections, there is
always a desire to know why decisions are made. It’s possible that this curiosity will spark fresh research in
the subject of pathology. Although obtaining total transparency is still a difficulty, various research projects
have looked for answers. One method to solve this problem has been investigated: collaborative learning that
integrates diagnostic information and diseased visuals with attention mechanisms. An increasing number of
people are interested in analyzing digital histopathology pictures because of the expanding repository, especially
in the field of computer-aided diagnosis using machine learning techniques. Digital pathological pictures and
related tasks provide special obstacles despite the possible advantages. We explore the use of machine learning
techniques in the examination of digitally diseased photos in this mini-review. We also point out particular
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problems that come with this kind of study and suggest possible fixes.

9. Constraints. Different investigators employ various regularization techniques. Regularization proce-
dures that are frequently used include lasso regularizations and ridge regression. However, they have some
shortcomings, such as the fact that they could be more effective when the dimensionality is substantially high,
and the number of instances is limited. Similar to this, our regularization approach has several drawbacks,
which are listed below 1) Neither feature selection nor feature reduction are permitted; 2) Choosing an appro-
priate value for λ is challenging since it is a continuous number, and selecting a single suitable value by trying
a million times would be computationally expensive and time-consuming.

10. Conclusion. The primary goal of this study is to lessen the load of extensive annotation needed
for precise image categorization in this field. Additionally, the study demonstrates a method to enhance the
effectiveness of a limited number of annotations without relying solely on deep learning models. It is essential to
highlight that the proposed active learning model can be integrated with several machine learning approaches,
including deep and non-deep learning models. To optimize the efficiency of our research for this assignment, we
employed a methodology known as ts-CNN. According to experimental findings, using a sizable collection of BC
histopathology images using a confidence-boosting technique leads to a considerable reduction in annotation
costs compared to a random selection. Furthermore, when paired with a slicing technique that boosts confidence,
the deep learning framework outperforms existing approaches in terms of performance, accuracy with 98.2 %,
and annotation costs. Thus, by employing this strategy, the costs of annotating medical applications can be
significantly decreased, and the applications’ capacity to react to real-world medical conditions can be improved.
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