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COMPLEX EVENT INFORMATION MINING AND PROCESSING FOR MASSIVE
AEROSPACE BIG DATA

LIN LI∗AND LIBIN JIA†

Abstract. This paper intends to analyze the existing problems of remote sensing data from the perspectives of space remote
sensing information data capacity and data types. Then, a framework for rapidly analyzing and processing space remote sensing
information is constructed. Then, LSTM is used to realize the fault diagnosis of remote sensing data continuity, discrete sample
mixing and strong correlation of sample variation. LSTM conducts a multimodal analysis of remote-control commands, which
is applied to modeling. The multi-stage LSTM prediction model is established and integrated efficiently to improve its adaptive
ability in complex space environments. In this way, the anomaly recognition of remote sensing information is realized. Experiments
show that the algorithm can improve the anomaly detection rate of remote sensing data. Experiments show that the algorithm is
feasible. It can provide reliable data interpretation function for space remote sensing information control system.
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1. Introduction. With the development and function of spacecraft, its development cycle is shorter and
shorter, and the number of launches is increasing. Simply relying on conventional reliability engineering tech-
nology has been unable to meet the needs of data processing and analysis. Most of the current satellites are
realized by ground-based telemetry. While working in orbit, the ground tone center needs to collect and pro-
cess the remote sensing data of the satellite in orbit. In this way, the automatic judgment and early warning
of the status monitoring parameters of the orbiting satellite can be realized. The obtained remote sensing
data are saved in the database for subsequent analysis. The detection of anomalous phenomena in satellite
remote sensing signals is one of the research hotspots in the world. The existing remote sensing monitoring
technology can be summarized into three categories: statistical direction, distance direction and error direction.
Most traditional statistical studies assume that the sample satisfies a specific distribution pattern. The data
that does not conform to the distribution or the statistical characteristics that are not consistent are labeled
as anomalies. And these samples are often difficult to describe by pre-set distributions. At this point, the
relative positions between multiple samples are measured, and the samples close to them are found and labeled.
Literature [1] uses density-based, supplemented by ranging technology for high-precision time series anomaly
detection. Literature [2] studies the similarity measure based on the temporal features of remote sensing to
eliminate the influence of correlation among parameters. This enables non-synchronous measurement.

An extended short-term memory network (LSTM) is a typical recurrent neural network. This method
can infer and predict based on historical data while maintaining the advantages of traditional recurrent neural
networks. Therefore, the anomaly recognition of time series data has become the focus of current research.
In reference [3], National Aeronautics and Space Administration (NASA) integrated nonlinear modeling and
automatic extraction characteristics of LSTM and constructed the LSTM model with remote control commands
and remote sensing information as inputs. In this way, remote sensing information can be labeled efficiently.

However, the existing LSTM modeling methods have some problems, such as high overall prediction devia-
tion and more variation, and their ability to identify situation and aggregation anomalies needs to be improved
[4]. Therefore, this project intends to study the new satellite remote sensing data anomaly detection technology
based on LSTM. The clustering idea is used to explore the differences among high dimensional remote-control
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Fig. 2.1: Anomaly detection method of telemetry data with integrated LSTM prediction model.

commands efficiently. The LSTM prediction model is constructed for each control mode, and the prediction
error threshold is integrated to improve the prediction performance of remote sensing data.

2. Using LSTM integrated forecasting technology to detect space remote sensing data anoma-
lies . When the spacecraft is working in orbit, the difference in the mode characteristics of the telemetry signal
under the action of multiple remote-control commands is not considered [5]. This affects the ability to de-
tect remote sensing parameters. This paper will combine LSTM for data processing and divide the workflow
into three levels: 1) mining control commands, 2) Model training of multiple LSTMS, and 3) Telemetry data
anomaly detection model. The anomaly detection method flow of remote sensing data integrated with the
LSTM prediction model is shown in Figure 2.1 (the picture is quoted in Sensors 2022, 22(8), 2886).

2.1. Control guide pattern discovery. First, the algorithm preprocesses the learning process of LSTM.
Then, it is classified by clustering based on the time sequence segmentation of fixed units [6]. In this way, the
preprocessing of training samples and the discovery of the control mode of remote operation are realized.

2.1.1. Training data preprocessing. The training set D at time t can be viewed as the set of m
dimensional vectors, dt = {dt1, dt2, L, dtm}. Here
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Then the paper reconstructs D.B′ is decomposed into multiple submatrices D∗

n containing continuous-time
vectors [7]. Each submatrix contains ct times of telemetry data and global remote-control commands, whose
reconstructed input D′ is expressed as:
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2.1.2. Excavation of remote-control mode. A spacecraft remote control method based on real-time
monitoring is proposed to solve the incoordination problem in spacecraft remote control [8]. The total data
in the sub-training set should not be too small to avoid overfitting and underfitting. Two examples of cluster
classes are given, and the clustering method according to the dominant mode is illustrated. For example, remote
command R∗

n is extracted from each submatrix D∗
n of B′ to obtain the corresponding control command matrix

R∗ of D′ :
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R∗ series of control mode characteristic vector ∥R∗∥2 is obtained by C2 norm operation on a submatrix.
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Reorder the numeric values in the control graphics feature vector ∥R∗∥2. Taking the middle value of ∥R∗∥2
as the threshold, the control command set is divided into two categories in the order similar to the control
commands.

2.2. Multi-stage LSTM model training. The modal analysis of remote-control commands is carried
out, and they are grouped into two sub-training groups. LSTM predicts it. The reconstructed training matrix
D is used as input in the forecast of telemetry data [9]. The telemetry data for the next point in time is
forecast based on the telemetry data for ct times contained in each submatrix D∗

n and the corresponding global
remote-control command. Assuming t = ct, its prediction steps are:
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f̂n+t+1 is the predicted value at the point n+ t+1 in time. In constructing the prediction model, the absolute
error function (MAE) is the loss function of the LSTM prediction model:

MAE(f, f̂) =

∑n
i=1

∣∣∣fi − f̂i

∣∣∣
n

n is the total number of all expected values. fi is the i actual value. This project intends to adopt the LSTM
prediction method based on Adam to enhance the sensitivity and accuracy of different control modes through
repeated learning [10]. This article sets a specific number of memory modules in each hidden layer as part of the
LSTM model to avoid overmatching. LSTM prediction models α and β were obtained after all the sub-training
sets were trained.

2.3. Anomaly detection mode of remote sensing data. LSTM was used to train α and β prediction
models to obtain two different sequences. Then, the two prediction sequences are weighted and integrated to
form the final prediction sequence [11]. The test data is reassembled using a training set B′ as an example.
LSTM was used to recombine the remote sensing data of α and β, and two sets of remote sensing data
prediction sequences α, f̂α =
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were obtained. Finally, the
weighted matrix F̂ is used to integrate the models and obtain the final forecast sequence.
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Fig. 3.1: Remote sensing data processing flow.

D∗
t is the input to time t, and the corresponding remote control command matrix R∗

t obtains the prediction
value f̂ t+ct+1

α of time t+ ct + 1 through the prediction mode D. The prediction value f̂ t+ct+1
β is also obtained

from the prediction model β of R∗
t to t+ ct + 1. If the corresponding norm C2 ∥R∗∥2 of R∗

t is the training set
α, then:
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If R∗
t corresponds to C2 norm ∥R∗∥2 belongs to training set β :
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β

Gets the remote-control command matrix associated with the current forecast. Dynamically adjust the
weights. Finally, A series of prediction sequence F̂ is obtained.

3. Space remote sensing cloud processing technology. Remote sensing cloud technology aims to
extract new information from massive data. Then, the data is analyzed, reasoned and processed. The Remote
sensing data processing process is shown in Figure 3.1 (the image is quoted in Remote sensing, 2017, 10(1):
46). Data preprocessing includes three parts: ”data depth processing,” ”orthographic correction” and ”image
fusion and conversion.” Remote sensing data processing is a typical data-intensive computation. This puts
forward higher requirements for data processing methods. In the existing cluster system, task division, task
processing and network communication are hardware-based. At the same time, data-intensive computation
requires freedom from traditional hardware programming patterns. This allows the application to be described
using higher-level semantics [12]. Remote sensing cloud technology integrates the relevant technologies in remote
sensing data processing into the cloud to realize the storage, processing and transmission of remote sensing data.
With the advent of big data, massive remote sensing data has exceeded the existing storage and computing
capabilities. Remote sensing cloud computing can provide storage and analysis tools for remote sensing big
data. Cloud computing platform administrators use the cloud storage and computing functions provided by the
Internet to users. Cloud computing services include Infrastructure as a Service (IaaS), Platform as a Service
(PaaS), Software as a Service (SaaS), and business intelligence. Amazon’s EC2 is a type of IaaS. Google and
Microsoft are PaaS. IaaS is the cornerstone of future IT industry development. The deployment of network
and cloud computing and the storage and processing of massive data will promote the development of IaaS.
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Fig. 3.2: Cloud service pyramid model.

Fig. 3.3: Hadoop ecosystem architecture.

PaaS is considered the ”operating system” of the future IT industry. SaaS plays a role in communicating with
customers. The three service levels can also be re-split. Each tier contains many kinds of businesses, forming a
cone pattern similar to the cloud computing services in Figure 3.2. Hadoop is the most popular large-scale data
analysis platform based on the Map Reduce framework. Its core idea is the large-scale, data-intensive, parallel
application based on the MapReduce framework. Data storage and processing are realized using the Hadoop
distributed file system and Map Reduce programming model. The Hadoop ecosystem is shown in Figure 3.3.
The typical cloud model can be divided into three levels: the low-level programming model, the base-valued
programming model, and the generic parallel programming model. The underlying programming mode mainly
includes OpenMP mode and Message Passing Interface (MPI) mode. Map Reduce, introduced by Google, is a
typical Key-Value programming model. It uses the idea of divide and rule. The complex problem is divided into
several subproblems by recursion until the subproblem can be solved directly. Standard parallel programming
includes standard class libraries such as STL and QUAFF.

Among them, Hadoop-GIS is a platform for processing, retrieving and acquiring massive spatial data. ESRI
Hadoop is a tool developed specifically for the Hadoop process. Spatial Hadoop uses Map Reduce mode to
construct indexes for building spatial data. TTA REEG uses the Map Reduce system based on Spatial Hadoop,
whose core is to process the data in OpenStreetMap. CG Hadoop extends Map Reduce to support polygon,
boundary, convex set analysis, farthest point, nearest point and other geometric operations [13]. The space



Complex Event Information Mining and Processing for Massive Aerospace Big Data 2545

Fig. 3.4: Remote sensing extensive data processing system based on cloud computing.

Table 4.1: Data parameters.

SMAP MSL Total
Total number of abnormal sequences 72 38 109
Total number of abnormal sequences 66 55 61

Context exception total 40 49 43
Total number of telemetry channels 57 28 49

Total telemetry data detected 447641 69489 517129

remote sensing extensive data processing system based on cloud computing technology is shown in Figure 3.4.
The system consists of a remote sensing data acquisition system, a remote sensing data processing system, an
extensive data analysis system and a cloud computing system. After the data is preprocessed, the collected
data is transmitted to the earth’s surface through the downlink, and the remote sensing data processing system
is used to store, manage and serve the remote sensing data. Filter data based on availability and distribute
processing requests to individual servers using load balancing. After mathematical and logical processing, the
result of processing is produced. The paper can focus, edit, analyze, and decide on the data by analyzing the
data.

4. System inspection. The confirmation data used in this paper comes from the ISA Report published
by NASA, which includes the SMAP and MSL spacecraft models. By comparing with radial neural network
(RBF), the detection effect of remote sensing anomaly detection algorithm based on LSTM on point and context
is studied.

4.1. Experimental data. The observation data and corresponding remote-control commands of each
channel of SMAP and MSL 12 subsystems are used for training and testing. Among these samples, 72 (66.06%)
belonged to SMAP and 38 (33.94%) belonged to MSL. Each set contains a different amount of telemetry data
and 24 sets of remote commands [14]. The total number of telemetry values for each set is 300-4000. The
specific number of training data, the total number of abnormal sequences, the total number of test channels
and the total number of test data are shown in Table 4.1.
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Table 4.2: Inspection and comparison of space telemetry anomaly data integrated with LSTM.

RBF Integrated LSTM
SMAP Point anomaly Detection rate 88 99

False alarm rate 10 37
Context exception Detection rate 80 92

False alarm rate 41 56
MSL Point anomaly Detection rate 71 71

False alarm rate 12 12
Context exception Detection rate 68 79

False alarm rate 0 12
Total Point anomaly Detection rate 74 81

False alarm rate 11 34
Context exception Detection rate 75 84

False alarm rate 32 49

4.2. Space telemetry anomaly data inspection integrated with LSTM. Specific test data are
shown in Table 4.2. It can be seen from the data in Table 4.2 that compared with the RBF network, the overall
anomaly detection rate of the algorithm has increased from 74% to 81%, and the overall anomaly detection
rate has increased from 75% to 84%. The algorithm in this paper can make the detection rate of single-point
exceptions in SMAP reach more than 95%, while the context exception is stable at about 88%. MSL’s single-
point anomaly detection rate is about 73%, and the context anomaly is basically stable at about 74%. The
single-point anomaly detection rate of Class 2 satellites is about 81%, and the context anomaly detection rate
is about 84%. The results show that the point set and the content discovery have greatly improved.

5. Conclusion. A cloud computing platform for space remote sensing information is constructed. A
new technique for anomaly detection of LSTM satellite remote sensing data is proposed. The technology is
restricted by multiple control modes of remote command, which leads to the degradation of its overall forecasting
performance. Multiple LSTM models are established, and the predicted values of each sub-model are weighted
and integrated. An exception recognition method based on a dynamic threshold is established. The target can
be identified effectively by analyzing the deviation between the data and the actual data.
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