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THE RECOGNITION OF AEROBICS MOVEMENTS USING BONE DATA COMBINED
WITH ST-GCN

HUAHUA YANG∗, YANSHENG ZHAO†, AND LI XIA ‡

Abstract. To solve the aerobics action recognition and promote the gradual intelligence and standardization of aerobics
teaching and evaluation, a network model based on spatial temporal graph convolution and combined with attention mechanism
was proposed. This model improved the extraction efficiency of spatiotemporal features and channel features by introducing
spatiotemporal graph and channel attention mechanisms, respectively, thereby improving the accuracy of action recognition. And
a time extension module was introduced into each basic module, and additional features between adjacent vertices were extracted
by extending the time graph between frames. These experiments confirmed that this model exhibited high accuracy in identifying
aerobics movements. The recognition accuracy of basic actions was above 93.6%, and the recognition accuracy of two actions had
reached 98.4% and 98.6% respectively. For advanced actions, the recognition accuracy of the model had slightly decreased, but
the average value was still above 95%. The accuracy of difficult motion recognition had also achieved good results, reaching a
maximum of 94.5%. These data indicate that this model can achieve high accuracy in handling action recognition tasks of different
difficulty levels, and can identify aerobics movements of different difficulty levels.
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1. Introduction. The evolution of computer vision and artificial intelligence has made action recognition
increasingly important in various application scenarios. Aerobics, as a highly technical and artistic sports event,
has extremely high requirements for the accuracy of movements [1-3]. The development of aerobics education
has made great progress with the combination of computer learning and artificial intelligence technology. The
movement recognition of aerobics provides effective help for accurate learning of aerobics and time love you.
In addition, the motion recognition for aerobics has broad application prospects in education, sports rehabili-
tation, and personal fitness [4-5]. However, due to the complexity and diversity of aerobics movements, there
are still many difficulties in using computers to achieve high-precision recognition of these movements. There
is time dimension information in the aerobics movement, and the movement recognition needs to extract both
spatial and temporal features. The lack of feature information will reduce the efficiency of the aerobics move-
ment recognition. ST-GCN can extract spatial and temporal features at the same time, record joint motion
information more completely, reduce the input of redundant information, and improve the efficiency of model
recognition. Effective aerobics movement recognition can improve the irregular movement and improve the
efficiency of teaching and training. Therefore, researching an efficient and accurate method for identifying
aerobics movements has strong practical significance and scientific value. The research combines bone data
and existing Spatial Temporal-Graph Convolutional Network (ST-GCN) to improve action recognition by in-
troducing Attention Mechanism (AM), Time Extension Module (TEM), and multi-stream integration. Graph
Attention Network(GAT) is introduced on the basis of ST-GCN to improve the poor flexibility of GCN. In order
to strengthen the optimization of time graph, a time extension mode TEM is introduced creatively on the basis
of this model. The model simply and effectively extracts the relevant features of multiple adjacent joints in
human motion, which further improves the accuracy of the model. The aim is to achieve accurate recognition of
aerobics actions and hope to provide valuable reference and inspiration for related fields, promoting intelligence

∗Department of physical education, Guangzhou City University of Technology, Guangzhou, 510800, China (yangyuehua_2008@
163.com)

†The school of Humanities and Social Sciences, Guangzhou Civil Aviation College, Guangzhou, 510800, China (zhaoyansheng@
gcac.edu.cn)

‡College of Sports Training, Guangzhou Sports University, Guangzhou, 510500, China (13822273846@163.com)

2838



The Recognition of Aerobics Movements Using Bone Data Combined with ST-GCN 2839

and automation in aerobics teaching, training, and other aspects. The article first summarized the current re-
search status of action recognition both domestically and internationally. Secondly, the improvement measures
for ST-GCN were presented in detail. The third section described the results obtained from model validation
through experiments. Finally, a comprehensive summary of this study was conducted, and the shortcomings
and future prospects were proposed.

2. Related works. Early action recognition methods for bone data used manual feature extraction to
model spatiotemporal correlations, without considering the internal connections between human joints. Deep
learning effectively solved this problem. At present, there are three main methods in the human skeleton
motion recognition: Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), and GCN [6-7].
Muhammad K et al. proposed an AM based on Bidirectional Long-Short Term Memory (BiLSTM) to address
the visual performance issues of existing motion recognition techniques in video frames during the training
phase, and combined it with an expanded CNN. The recognition rates of this method on UCF11, UCF motion,
and J-HMDB datasets reached 98.3%, 99.1%, and 80.2%, respectively [8]. Yang H et al. proposed a Space-Time
Attention CNN that integrated temporal and spatial AM into a unified convolutional network, and mining time
fragments through temporal attention mechanism. The non-moving regions are then focused through training
by averaging the auxiliary classification losses of the pooling layer. The accuracy of the proposed model on
UCF-101 dataset and HMDB-51 is 95.8% and 71.5%, respectively, and the performance is relatively advanced
[9]. Zhang X et al. integrated spatial and temporal neighboring edges to represent an edge in a human skeleton
graph, and designed a graph edge CNN. Experiments on the Kinetics and NTU-RGB+D datasets confirmed
that the graph edge convolution effectively captures moving features, and CNN’s graph edge was superior to
other advanced existing bone-based action recognition methods [10].

In RNN-based methods, human skeleton data are treated as a series of vectors, which help to better
explore the temporal correlations between human skeleton data. Avola D et al. proposed a novel method
for motion recognition in video sequences by combining 2D bone data and dual branch stacked LSTM. This
method used 2D bones reconstructed from RGB video streams and used 3D-CNN to process missing bone data.
The comparison on the UT Kinect and NTU-RGB+D datasets confirmed that the accuracy of this method was
completely equivalent to that of works based on 3D bones [11]. Xu S et al. integrated GCN into LSTM, utilized
skeletal body structure information and enhanced multi-level co-occurrence feature learning, and used parallel
LSTM to model the temporal dynamics of aggregated features for action recognition. The proposed model has
obvious superiority on NTU RGB+D 60/120 data set and NTU RGB+D 60/120 data set [12]. Zhu A et al.
proposed an end-to-end bidirectional LSTM-CNN and employed a layered spatiotemporal dependency model
to explore the rich spatiotemporal information in bone data. In the fusion framework of CNN and LSTM, bone
data were constructed from a dependency model and used as input to the proposed network. Its effectiveness
had been verified on different datasets [13].

Human skeleton data exists in the form of graphs, and using topology maps is more suitable for expressing
skeleton data. Shi L et al. proposed a novel multi-stream attention enhancement adaptive GCN. This structure
could be learned in an end-to-end manner based on input data. In addition, a multi-stream framework including
moving data had shown significant improvements in recognition accuracy [14]. Zhang Z et al. proposed a novel
structure feature fusion adaptive GCN model, which could effectively fuse the topological structure of bone
maps and joint features. Experiments on different datasets had confirmed that the improved GCN outperformed
existing state-of-the-art methods, with an average accuracy improvement of over 0.6% [15]. Tsai M F and Chen
C H proposed a new training way for emotion recognizing, which used bone detecting way to obtain bone points’
changing degree and used nearest neighbor algorithms for classifying speed. Compared with the basic method,
the ST-GCN technology that considered changes could enhance recognizing accuracy by over 50% [16].

Based on relevant research both domestically and internationally, GCN has become a hot topic for human
skeleton motion recognition due to its excellent performance in graph data with topological structures. Among
them, ST-GCN is a groundbreaking research work that successfully applies GCN to human skeleton motion
recognition tasks. However, ST-GCN still has drawbacks such as inflexible weight allocation and failure to
distinguish redundant information. Therefore, based on bone data and combined with GCN, the study aims to
use computer technology to achieve higher precision action recognition and apply it to the intelligent teaching
of aerobics.
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Fig. 3.1: The structure of an action recognition model with ST-GCN and AM

3. The recognition and improvement of aerobics movements using bone data combined with
ST-GCN. On the basis of analyzing the existing defects of ST-GCN and combining the characteristics of bone
data, an improved action recognition model is proposed. Firstly, for the weight allocation in GCN, GAT is used
to improve the original GCN, and a Channel Attention Module (CAM) is added to focus on more important
channel information. Although GAT can extract spatiotemporal features, it is easy to overlook the optimization
of inter frame time maps. Therefore, the study further introduces TEM and proposes an integrated framework
using multi-stream networks to fuse information to improve the accuracy of action recognition.

3.1. An action recognition model based on ST-GCN combined with AM. The composition of
human bones and joints can naturally form a topological map. GCN has excellent performance in processing
graph structured data, therefore it is widely used in action recognition based on human skeleton. However, for
human motion data, the human motion skeleton map is composed of time series, and the time information covers
the spatial characteristics at each time node and the temporal characteristics between frames [17]. Therefore,
how to cleverly use graph convolution to extract spatiotemporal features in human motion has become a research
focus of skeleton-based action recognizing way. A spatiotemporal graph attention model based on ST-GCN
combined with AM is proposed to improve GCN’S poor flexibility and action recognizing accuracy in Figure 3.1.

From Figure 3.1, the improved spatiotemporal graph attention model constructs a human skeleton spa-
tiotemporal graph using human skeleton data, and then introduces GAT [18] and multi-head graph AM on
the basis of ST-GCN to enhance model’s performance. In addition, to further improve its accuracy, CAM
is introduced to make the model concerned with more important channel information. The basic unit of the
Spatiotemporal Graph Attention Model (SGAM) consists of three parts: firstly, the spatial graph attention
module, secondly, CAM, and finally, the time convolution module with a kernel size of 9. The spatial graph
attention module utilizes Graph Attention Network (GAT) to partially replace the original GCN to improve
recognition rate. The proposed spatial graph attention module includes a GAT layer that can better extract
spatiotemporal layer features, as well as a set of batch regularization layers and a set of ReLU activation function
layers. Then there is CAM, which uses AM for channels with different semantic features, making the network
more focused on more important channel characteristics, thereby reducing redundant features. And each unit
contains a residual module. ST-GCN applies graph convolution to the spatiotemporal graph structure, and
Figure 2 shows the overall processing flow.

From Figure 3.1, ST-GCN first extracts the skeleton sequence of actions from the input video using a
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Fig. 3.2: Flow chart for action recognition with ST-GCN

Fig. 3.3: The spatiotemporal structure of human skeleton and its sampling function

pose estimation algorithm, and constructs a spatiotemporal map of the human skeleton based on the skeleton
sequence. Then, the joint coordinates of the human body are interconnected as input to ST-GCN, and mul-
tiple graph convolution modules are used to automatically extract spatiotemporal features [19]. Each module
consists of GCN and TCN. Finally, the results of action classification are obtained through a SoftMax classi-
fier. When constructing a spatiotemporal map of human skeleton, its spatiotemporal sequence is connected
into a spatiotemporal map G = (V,E) according to the given rules. V represents the set of joint points in a
spatiotemporal graph. E represents a set of edges. The set of joint points includes the natural joint points
of the human body on each frame, denoted as V = {vti |t = 1, 2, · · · , T, i = 1, 2, · · · , N }. T is the amount of
frames in a continuous video. N is the amount of human joint points at a certain frame. The set of edges is
composed of two subsets: spatial edge ES = {vtivtj |(i, j) ∈ H } and temporal edge EF =

{
vtiv(t+1)i

}
. H is a

set of naturally connected human joints. In the spatial graph attention module, formula (3.1) is the sampling
function p (vtj , vti) of the graph structure.{

B (vtj) = {vtj |d (vtj , vti) ≤ D}
p (vtj , vti) = vtj

(3.1)

In formula (3.1), B (vtj) is the set of neighboring pixels in the graph. d (vtj , vti) is the shortest distance
between vtj and vti. D is the distance threshold. Figure 3 shows human skeleton’s spatiotemporal structure
and the neighborhood sampling area with a distance of 1 from the human skeleton.

To obtain the attention coefficient of the spatial graph, the feature dimension of the central node and its
surrounding neighboring nodes is first improved. For the central node vti and its neighboring node vtj within
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Fig. 3.4: The calculation of attention coefficients in spatial maps

a certain frame t, a weight matrix W is introduced to achieve shared linear transformation of the nodes, to
obtain higher dimensional features. Formula (3.2) is a node linear transformation.{

zti = Wfin (vti)
ztj = Wfin (vtj)

(3.2)

In formula (3.2), fin (vti) ∈ RC and fin (vtj) ∈ RC represent the input feature vectors of two nodes,
respectively. The transformed vectors zti and ztj are concatenated to obtain a new dimension vector, and the
attention value etij of the center node i on node j is calculated in frame t in formula (3.3).

etij = LeakR
(
a⃗T [zti ∥ztj ]

)
, j ∈ B (vti) (3.3)

In formula (3.3), LeakR (•) is the activation function. a represents a single-layer feedforward neural network.
Formula (3.4) is the attention coefficient αtij of each neighboring node towards the central node vti.

αtij =
exp

(
LeakR

(
a⃗T [zti ∥ztj ]

))∑
k∈B(vti)

exp (LeakR (⃗aT [zti ∥ztj ]))
(3.4)

Figure 3.4 shows the calculation of attention coefficient in spatial maps.
According to the attention coefficient, the final output fout (vti) of the central node in the single head graph

AM can be obtained in formula (3.5). ∑
j∈B(vti)

αtijWfin (p (vtj , vti))

 = σ

 ∑
j∈B(vti)

atijztj

 (3.5)

In formula (3.5), σ is the activation function. The same weight when calculating the output of a single
graph’s attention is not conducive to the learning ability. Therefore, this study used multi-head spatial graph
attention to assign different attention coefficients and weights to different features. Then, the calculated features
of fout (vti) =

∥∥∥Kk=1σ
(∑

j∈B(vti)
aktijz

k
tj

)
independent AMs are concatenated to obtain the final output of each

node in formula (3.6).

fout (vti) =

∥∥∥∥∥∥Kk=1σ

 ∑
j∈B(vti)

aktijz
k
tj

 (3.6)

By extending the model from the spatial domain to the temporal domain through a dataset composed
of different frames of the same joint point, the final set of neighborhood nodes B∗ (vti) for vti is obtained in
formula (3.7).

B∗ (vti) → {vqj |d (vtj , vti) ≤ K, |q − t| ≤ ⌊Γ/2⌋} (3.7)
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Fig. 3.5: Comparison of spatiotemporal graph connection methods

In formula (3.7), Γ controls the size of the convolution kernel in the time domain. CAM is introduced after
the attention module of the spatial map, and the final output f∗

out (vti) is obtained in formula (3.8).

f∗
out (vti) = fout (vti) · sc (3.8)

3.2. ST-GCN-GAT action recognition based on multi-stream extension improvement. GAT
can extract spatiotemporal features, but it focuses more on representing a more suitable spatial map within
frames, which can easily overlook the optimization of inter frame time maps. Therefore, the study introduces
a TEM into the model, which expands the time graph by adding connections to adjacent multiple vertices
based on inter frame and additional feature extraction. In previous recognition models, most only used joint
point data of the human skeleton. Aerobics movements are continuous movements that combine multiple parts.
Therefore, to fully utilize bone data, enhance the expression ability and recognition accuracy of the model, a
multi-stream network integrated framework model is proposed, in which each network uses the same structure to
fuse multiple types of information. Ordinary time convolution can only extract the information of neighboring
nodes in the same frame, and cannot extract the information of the same related node and its neighboring
nodes between frames. Figure 3.5 shows the connections of the traditional spatiotemporal map [20] and the
improved TEM spatiotemporal map.

In Figure 3.5 (b), TEM adds edges to vertices corresponding to the same joint and adds edges to vertices
corresponding to multiple adjacent joints between frames, and calculates convolution based on the same multiple
vertices between frames. TEM is used to extract inter frame features, as it is added between the spatial attention
layer and temporal convolution to expand temporal dimension’s sampling area. For the temporal convolution
outputting of TEM, formula (3.9) is the f∗

out (vti) of the i-th vertex vi in space at time t.

fout (vti) = σ

 ∑
v(t−1)j∈BT (vti)

αi,jWfin (vt−1,j)

 (3.9)

In formula (3.9), αi,j represents the attention coefficient between nodes j and i. BT (vti) represents the
inter frame sampling area of vti in formula (3.10).

BT (vti) =
{
v(t−1)j

∣∣d (v(t−1)j , v(t−1)i

)
≤ DT

}
(3.10)

In formula (3.10), DT is the maximum length of inter frame sampling. After introducing the SGAM and
CAM mechanisms, TEM is introduced to expand time dimension’s sampling area and extract the temporal
changes of multiple joints in motion. However, the entire network does not fully utilize the skeleton time
sequence diagram constructed from human bone data. Therefore, the study proposes to use the same structure
to process all data streams in a multi-stream structure, integrating joint and bone information along with
motion information into one framework. Figure 6 shows a multi-stream network.
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Fig. 3.6: The structure of multi-stream networks

From Figure 3.5, there are four types of branches in the multi-stream network, which are inputted into
four streams. The final result is obtained by adding four streams’ SoftMax scores. Each human skeleton has
a center of gravity point, so the source joint point vi,t = (xi,t, yi,t, zi,t) in a pair of adjacent joint points is
defined as the node closer to the skeleton’s center of gravity, and the other node is defined as the target node
vj,t = (xj,t, yj,t, zj,t). The vector from the source joint point to the target joint point can represent the length
and direction of the bone between two joint points, i.e., the vector bi,j,t of bone in formula (3.11).

bi,j,t = (xj,t − xi,t, yj,t − yi,t, zj,t − zi,t) (3.11)

Because the skeleton graph is an acyclic data structure, there will eventually be an extra root node without
assigning bones. Assigning an empty bone to the root node can design the bone and joint into the same graph
and network. Previous studies have confirmed that optical flow fields are suitable for human motion recognition
based on RGB videos. Therefore, the study defines the joint coordinate difference between consecutive frames
as joint motion information, while the bone coordinate difference is defined as bone motion information. Given
the connection vi,t = (xi,t, yi,t, zi,t) of frame t and the same joint point vi,t+1 = (xi,t+1, yi,t+1, zi,t+1) in frame
t+ 1, then formula (3.12) shows the motion information mi,t,t+1 between them.

mi,t,t+1 = (xi,t+1 − xi,t, yi,t+1 − yi,t, zi,t+1 − zi,t) (3.12)

The basic Pseudo code for the model is shown in the figure 3.7.

4. Performance analysis of aerobics movement recognition using bone data combined with
ST-GCN. To verify the action recognition ability of this proposed model, multiple tests were conducted on
two public datasets and a self-made aerobics action dataset. They included action recognition effect verification
based on ST-GCN combined with AM, TEM effect verification, and multi-stream network effect verification.

4.1. Action recognition effect based on ST-GCN combined with AM. Two common datasets
used in this study were NTU-RGB+D and Kinetic. NTU-RGB+D was collected by the Kinect V2 depth sensor
using three different camera angles, containing a total of 56880 video samples for 60 types of actions. The
standards for dividing training and testing sets using NTU-RGB+D included Cross-Subject and Cross-View.
These actions were performed by 40 people, and a total of 25 skeleton points were collected in the datasets.
Kinetics contained the actions of 400 categories of characters, each with at least 400 video clips, each lasting
approximately 10 seconds. In order to obtain bone data from Kinetics, the captured raw video is cropped and
the frame rate converted. A demonstration by a professional aerobics’ teacher was used to shoot and produce
sample videos, completing the aerobics dataset. The self-made dataset contained 1800 sample videos, divided
into a training set and a testing set in an 8:2 ratio. The spatial dimension features started from 3, and the
output feature dimensions for the first three layers, middle three layers, and last three layers were 64, 128,
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Fig. 3.7: The basic Pseudo code of the model

Table 4.1: Laboratory hardware and software environment setup

Hardware and software configuration Version model
CPU Intel(R)Core i7-9700K
GPU GTX 1060
Operating system Ubuntu 16.04.6
RAM 16G
Display memory 6G
Development editor Pycharm
frameworks Pycaffe
Python version 2.7

and 256, respectively. After processing through basic units, dropout features were randomly selected with a
probability of 0.5. The learning rate was 0.01, multiplied by 0.1 for every 10 epochs, and the batchsize was set
to 64. Laboratory environment Settings are shown in Table 1.

The value range of K in multi-head attention was [2, 9]. ST-GCN was combined with GAT to construct
a recognition model, and the influence of K in multi-head attention was verified on NTU-RGB+D. Figure 8
showed the top-1 results obtained.
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Fig. 4.1: The effect of K on the validation of multiple head attention in NTU-RGB+D

Fig. 4.2: Training curves of different models on datasets

In Figure 4.1, for multi-head AM, the accuracy of this model gradually increased with the increase of K.
But before K = 4, the performance of this model was not as good as the benchmark ST-GCN. From Figure
8 (a), after K equaled 2, the accuracy first gradually improved, then reached the highest recognition rate of
83.6% when K equaled 5, and then gradually decreased. This indicated that selecting an appropriate K in
multi-head attention might improve this recognition model’s accuracy, which was consistent with the results
obtained by dividing the training set according to Cross-View standard. Therefore, K = 5 was set in subsequent
experiments. Figure 4.2 showed the training curves of the model in NTU-RGB+D and Kinect.

From Figure 4.2, although all four models tended to stabilize around 60 rounds, the accuracy of ST-GCN
with the introduction of SGAM and CAM was higher than that of other models in 80 rounds of training.
The study selected Lie Group, Feature Encoding (Feature Enc), Hierarchical-RNN (H-RNN) based method,
Deep LSTM, Part-Aware LSTM (PA-LSTM), Temporal Convolution (Temp-Conv), Clip CNN + Muti-task
learning (C-CNN+M), ST-GCN, Deep Progressive Reinforcement Learning + GCNN (DPRL+GCNN), and
AM-STGCN, Actional-Structural GCN (AS-GCN) to conduct comparative experiments in Figure 4.3.

From Figure 4.3 (a), models such as Temp-Conv, ST-GCN, DPRL+GCNN achieved scores of over 80% on
NTU-RGB+D, especially AS-GCN, which achieved scores of 86.8% and 94.2% on Cross-Sub and Cross-View
indicators. ST-GCN, which introduced SGAM and CAM, also performed quite well on these two indicators, with
scores of 84.2% and 91.9%. Although it was slightly lower than AS-GCN, the difference was not significant.
These experiments confirmed that although the introduction of attention modules could effectively improve
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Fig. 4.3: Comparative experimental results on two datasets

Fig. 4.4: Verification of the optimization effect of TEM

model performance, focusing solely on the relationship between physical adjacent joint points on the skeleton
graph was flawed.

4.2. ST-GCN-GAT action recognition effect based on multi-stream extension improvement.
The configuration and evaluation indicators of the optimization validation experiment for TEM and multi-
stream networks were the same as before. To verify the improvement effect of TEM on the model, ablation exper-
iments were conducted on two datasets in Figure 11. ”Ours” in Figure 4.4 represented ST-GCN+SGAM+CAM.

From Figure 4.4 (a), after introducing TEM, the recognition accuracy in Cross-Sub and Cross-View forms
had been improved to 85.4% and 93.6%, respectively. In Figure 4.4 (b), before introducing TEM, the top-1 and
top-5 accuracy of ST-GCN+SGAM+CAM were 33.8% and 55.7%, respectively. However, after introducing
TEM, the scores of these indicators increased to 34.3% and 56.1%. Although the improvement was relatively
small, it still indicated that TEM had a certain optimization effect on this model. Figure 4.5 showed a compar-
ative experiment of multi-stream networks on NTU-RGB+D. J represented joint morphology, B represented
bone morphology, J-M represented joint motion flow morphology, and B-M represented bone motion flow
morphology. The ”Ours” here represents ST-GCN+SGAM+CAM+TEM.

From Figure 4.5, the accuracy of the model that only showed joint and bone morphology was similar, with
84.9%, 85.4%, and 93.0%, 92.6%, respectively. Considering the morphology of joints and bones simultaneously,
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Fig. 4.5: Results of multiteam network comparison experiment on NTU-RGB+D

Fig. 4.6: Comparative experimental results of optimized models

the model’s effectiveness would be improved, with accuracy rates of 86.2% and 93.5%. After the introduction
of multi-stream networks, the accuracy of this model was further improved, reaching 86.8% and 93.9%. This
indicated that using a multi-stream network would help improve the model performance. Then, the optimized
model was compared with several more advanced methods on NTU-RGB+D and Kinect in Figure 4.6.

From Figure 4.6 (a), the model further optimized using TEM and multi-stream network achieved recogni-
tion accuracy of 88.8% and 94.9% under Cross-Sub and Cross-View standards, respectively, achieving better
performance than AS-GCN. In Figure 4.6 (b), in Kinect, the improved model had the highest accuracy of top-1
and top-5 among all models, with 35.5% and 57.4%, respectively. This indicated that the optimization effect of
this model was very significant, and the optimization strategy could effectively improve the accuracy of model
prediction. Multiple models are verified on self-built data sets, and the results obtained are shown in Table 4.2.

As shown in Table 4.2, the model proposed in this study has absolute advantages in accuracy, accuracy,
recall and F1-score indicators. The recall rate and F1-score of the model proposed in this study were 89.9%
and 91.0%, respectively, with high aerobics action recognition ability. H-RNN model, on the other hand, has
poor performance and can not accurately identify aerobics movements. Finally, comparative experiments were
conducted on a self-made aerobics dataset to verify the model effectiveness in identifying aerobics movements
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Table 4.2: The results of index validation of multiple models

Model Accuracy% Precision% Recall rate% F1-score%
Mult-Ours 91.8 94.8 89.9 91.0
AS-GCN 90.6 92.5 89.1 90.5

AM-STGCN 86.7 89.0 84.7 89.4
H-RNN 82.1 86.4 81.2 86.6

STA-LSTM 85.4 88.7 83.5 88.9

Table 4.3: The recognition results on a self-made aerobics dataset

Action classification Action number Accuracy/%

Basic Actions

A1 97.3
A2 95.7
A3 93.6
A4 98.4
A5 98.6

Advanced Actions

B1 95.4
B2 97.6
B3 93.2
B4 94.5
B5 96.2
B6 95.7

Difficult actions

C1 93.2
C2 90.3
C3 91.4
C4 92.8
C5 94.5

in Table 4.3.
In Table 4.3, the improved model had good recognition performance for various movements in the aerobics

dataset, with an accuracy rate of over 90%. For the basic action part, the recognition accuracy of all five
actions was above 93.6%, among which the A4 and A5 actions had the highest recognition accuracy of 98.4%
and 98.6%, respectively. For advanced actions, the recognition accuracy of this model had slightly decreased,
but the average value was still above 95%. For Difficult actions, although the average recognition accuracy
had slightly decreased, the recognition accuracy of C5 actions still reached 94.5%, and the lowest C2 had
an accuracy of 90.3%. On the whole, the recognition accuracy of basic movements is high, and the average
recognition accuracy decreases gradually with the increase of movement difficulty. Difficult actions often have
multiple node data and change rapidly in a short time, and the model can not quickly extract all of them.
These data indicated that when identifying difficult aerobics movements, the recognition accuracy of the model
could still be maintained at a high level.

5. Conclusion. To achieve accurate recognition of aerobics movements, an improved motion recognition
model was proposed by combining bone data and ST-GCN. This model enhanced the extraction of spatiotem-
poral and channel features by utilizing SGAM and CAM mechanisms, thereby improving action recognizing
accuracy. In response to the optimization of inter frame time maps and the sufficient utilization of skeleton
information, a TEM was introduced into each basic module, and a multi-stream network containing node infor-
mation, skeleton information, and their motion information was proposed. This enabled the model to extract
information from neighboring nodes between frames and extended the time map on the basis of additional
feature extraction. The testing on the self-made aerobics’ dataset confirmed that the recognition accuracy of
the model for basic movements was above 93.6%. Even in the face of difficult action recognition, the accuracy
of this model was excellent, such as the recognition accuracy of C5 actions still reaching 94.5%, with the low-
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est C2 being 90.3%. These experiments confirmed that the model had achieved high accuracy in processing
basic, advanced, and difficult motion recognition, which helped to promote the development and application of
aerobics motion recognition. However, the study only considered motion recognition in single person aerobics.
Further optimization can be made for recognition in interactive scenarios between humans and objects. The
average accuracy of the model has decreased when it recognizes difficult movements. The subsequent research
can improve the average accuracy of the model for difficult movements of aerobics. In addition, the developed
model can identify aerobics movements more accurately, and subsequent work can generalize the model and
apply it to more scenarios, such as the specific challenges of aerobic exercise.
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