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APPLICATION OF BIM TECHNOLOGY IN STRUCTURAL DESIGN OF
PREFABRICATED BUILDING BASED ON BIG DATA SIMULATION MODELING

ANALYSIS
LILI XU∗, LIN WANG, AND MINMIN ZHU

Abstract. Aiming at the complex steel bar layout problem in prefabricated building, this research proposes a structural design
method of prefabricated building based on big data simulation modeling building information modeling technology. It includes
the reinforcement arrangement model based on agent path planning, the intelligent reinforcement arrangement of frame based on
artificial potential field method and path optimization, and the modeling of Building information modeling. When analyzing the
reinforcement arrangement effect of beam column joints in Prefabricated building, the calculation time of top corner joints is the
shortest, 76.8 seconds, while that of middle layer joints is the longest, 141.7 seconds. In direction Y and direction X, differential
evolution has the longest calculation time, 27s and 26.57s respectively, while particle swarm optimization algorithm has the shortest
calculation time, 2.84s and 3.02s respectively. The algorithm designed through research is significantly superior to other algorithms
in terms of computational time. In general, through building information modeling technology and big data simulation modeling,
this study realized the collision free layout of rebar in beam column joints of prefabricated building. This improves the speed and
efficiency of deepening design, and provides a new solution for structural design of prefabricated building.
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1. Introduction. Computer technology has led to the widespread application of Big data (BD) intelligent
algorithm technology in various industries such as industry and agriculture, resulting in improved industry
efficiency and the construction industry benefiting from this. The traditional engineering construction model
usually involves the design and construction of buildings being independently completed by different units.
The design party formulates a design plan to guide the construction party in carrying out construction [1, 2, 3].
Construction drawings are one of the important ways to present design proposals. As the main communication
medium during the construction process, their precision directly affects the quality, speed, and cost of actual
construction. Therefore, the deep integration of architectural design with digital technology and intelligent
methods is of great significance for promoting the high-quality development of intelligent construction [4, 5, 6].
However, due to increasingly stringent design cycle requirements, engineers often do not have enough time to
consider the details of the solution. In addition, excessive manual input is difficult to ensure corresponding
output improvement, resulting in a low level of design deepening. Especially evident in reinforced concrete
structures, the design and construction of steel bars are closely related to the overall quality of the project [7, 8, 9].
Prefabricated building (PB) steel bar designs mostly only provide reinforcement schemes. Engineers consider
multiple factors based on the calculation results of the steel bars and manually complete the reinforcement work,
which has the problems of large calculation amount, time-consuming, and prone to errors. Therefore, intelligent
design system based on BD is essential. The study first introduced the research purpose and conducted a
literature review. Secondly, a PB structure strategy based on BD simulation modeling and BIM technology
was designed. Then, data testing was conducted on the designed strategy. Finally, a conclusion was drawn.

2. Related works. In recent years, research on PB has been deepening year by year. Xiao Y’s team
explored the application of Building Information Modeling (BIM) technology in PB design and its compari-
son with traditional design methods, as well as the effectiveness verification of BIM collaborative design. A
conceptual model for PCP collaborative design was established in the study, and the accuracy of BIM models
at different design stages was determined. The effectiveness of the BIM based building collaborative design
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method has been verified in examples [10]. Wasim M’s team has comprehensively updated the integrated design,
manufacturing, and assembly methods, and commented on their applications in the manufacturing and prefabri-
cation fields. The writing of the comments followed slight modifications to the review of the preferred reporting
system and the meta-analysis guidelines. There is a practical comparative relationship between prefabrication
and manufacturing [11]. Wasim M uses an example of a volumetric steel structure to explore the integration
of structural design and manufacturing assembly design (DfMA). DfMA principle can significantly improve the
design efficiency of volumetric steel structures, enhance safety, sustainability, and production efficiency, while
reducing costs and time [13]. Lee PC’s team used MediaWiki to connect knowledge items with relevant BIM
components, thereby expanding the knowledge ontology embedded in BIM. The proposed knowledge sharing
platform and learning community model embedded in BIM have a positive impact on learning outcomes [13].
El Abidi K M A’s team has revised the general motivations and limitations of PB in the construction industry.
Research has found that the adaptability of PB is mainly influenced by factors such as labor shortage, labor
costs, housing demand, construction process efficiency, climate conditions, and reducing waste materials and
energy consumption. Although PB has inherent advantages in economy, environment, and social welfare, its ap-
plication rate in the global construction industry is relatively low [14]. BIM technology application is gradually
becoming more widespread. Matniyazov Z E’s team studied the potential of BIM technology in solving modern
design and construction industry problems. Their article carefully analyzed the problems and shortcomings
of modern design technology in Uzbekistan, and further elaborated on the reasons for these problems through
examples. After in-depth study, professionals will be able to understand why our economy needs new tech-
nologies [15]. Abdulmutalibovich K A’s team conducted a detailed study of these competency characteristics
and emphasized the effectiveness of the widespread application of modern information technology in enhancing
architects’ professional abilities. In addition, the advantages of fully developed professionals in solving complex
problems were emphasized [16]. Xiao Y’s team studied and compared BIM collaborative design with traditional
design methods to promote the application of BIM in PB design. Based on the requirements of BIM technology
IDM, a conceptual model of PCP collaborative design was established. The BIM based building collaborative
design method has been validated in practice for its effectiveness [10]. Martins S S aims to explore the challenges
faced by the application of integrated technology in 4D BIM in Brazil, a developing country, and verify them
through Case study. He demonstrated the feasibility and challenges of using BIM technology to enhance com-
munication between teams and stakeholders through visual presentation at different stages of construction [18].
In summary, the potential of BIM technology in solving modern design and construction industry problems, as
well as its effectiveness in enhancing architects’ professional abilities, has also been confirmed. However, BIM
technology application in PB still faces many challenges. Therefore, this study will analyze BIM technology
application in PB structure design based on BD simulation modeling, to improve the design efficiency and
quality of PB.

3. PB Structure Design Based on BD Simulation Modeling and Analysis BIM Technology.
This study aims to establish a reinforcement layout model based on intelligent agent (IA) path planning to
achieve collision free arrangement of reinforcement in beam column nodes. And the original high-dimensional
optimization task is decomposed into multiple low-dimensional optimization subtasks using a step-by-step opti-
mization method that combines Artistic Potential Field (APF) and path planning. Finally, through secondary
development of Revit software, a framework automatic deepening design plugin is created to improve the speed
and efficiency of deepening design.

3.1. Intelligent Arrangement of Steel Bars in PB Beam Column Nodes Based on APF. In
concrete beam column components, the main reinforcement generally includes two forms: longitudinal rein-
forcement and transverse reinforcement. When arranging steel bars, reserving space for hoops arrangement
can avoid collisions between longitudinal bars and hoops. To achieve collision free layout of steel bars in beam
column nodes, a steel bar layout model based on IA path planning will be established in the research. IA
generally refers to any device or system that can autonomously perform complex tasks and can interact with
humans through intelligent sensing devices. The IA path-planning-based rebar placement model is a method
to optimize rebar placement using intelligent algorithms. In this model, the intelligent body represents an
entity with autonomous decision-making capability, which is able to make decisions based on environmental
information and its own state. Path planning is the core function of the intelligent body, which is used to
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Fig. 3.1: Potential field model and artificial potential field model

determine its moving trajectory in the construction space. In order to ensure the accuracy and aesthetics of
the rebar arrangement, the path obtained from the search is smoothed. After completing the path smoothing,
the decision quality of the intelligent body is evaluated. The performance of the intelligent body is adjusted
according to the evaluation results for more accurate path planning in subsequent construction. According to
the optimized path, the intelligent body performs the placement of the steel bars. In this process, the intelligent
body can dynamically adjust the scheduling program according to the actual situation to ensure the smooth
progress of the construction process. In the process of steel bar arrangement, the deviation between the actual
trajectory of the intelligent body and the planned path is monitored by the real-time monitoring system, and
the path planning strategy of the intelligent body is adjusted in a timely manner if a large deviation is found
in order to ensure the construction accuracy and safety. Through the above steps, the rebar placement model
based on intelligent body path planning can realize the optimization of rebar placement, improve construction
efficiency, and reduce the risk of manual intervention. In this model, beam column node is defined as the
three-dimensional workspace of IA, and a local coordinate system is established with the bottom left corner of
the column angle as the origin. X and Y axes are parallel to transverse and longitudinal beams, and Z axis is
parallel to the vertical columns. For corner or edge nodes, after the reinforcement arrangement is completed,
it is necessary to arrange the longitudinal reinforcement hooks of beam. In this process, a new IA needs to be
placed at the end of the corresponding steel bar to ensure that the hook part of the steel bar does not collide
with other steel bars.

APF is a path planning method based on the concepts of electric potential and electric field forces in
physics, which guides IAs movement by establishing a virtual force field in the environment. APF has many
advantages, such as simple computation, simple environmental modeling, and fast planning speed. Figure 3.1
shows the electric potential field model and the artificial potential field model.

One advantage of using APF for path planning is its simple calculation and implementation, making it easy
to establish a mathematical model of the virtual potential energy field. According to the characteristics of the
path planning task of IA, it is possible to choose to establish a Cartesian coordinate system in space or plane.
In the reinforcement layout problem, the artificial potential field method can be used to guide the robot how
to place the reinforcement. There are many specific parameters of the artificial potential field method. The
potential field function defines the potential energy at each position in the environment. In general, the target
location has a lower potential energy, while the obstacle or inaccessible area has a higher potential energy. The
repulsive force coefficient determines the amount of repulsive force experienced by the robot. A larger repulsion
coefficient will cause the robot to move away from the obstacle, while a smaller coefficient will make it easier
for the robot to approach the obstacle. The coefficient of gravity determines the amount of attraction the robot
receives. A larger gravitational coefficient will cause the robot to approach the target position faster, while a
smaller coefficient will cause the robot to move more slowly. In some cases, obstacles or target locations in
the environment may change as the robot moves. Therefore, it may be necessary to dynamically adjust the
parameters of the potential field function to ensure that the robot can adapt to these changes. The application
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of artificial potential field method to reinforcement layout problem is as follows. When laying out rebar, you
can set the target point to where the rebar should be placed. For example, if you need to place a steel bar
between two concrete walls, you can set the target point at the midpoint of the two walls. For rebar layout
problems, repulsion functions can be defined to avoid collisions between rebar and walls or other rebar. For
example, if a rebar is near a wall or another rebar, the repulsive force at that location can be increased, leading
the robot to adjust its path. The gravity function is used to attract the rebar to move towards the target
point. In this case, the target point is usually the intended location of the rebar. The speed and direction of
rebar movement can be controlled by adjusting the parameters of gravity function. Equation 3.1 is to establish
gravitational field Ua(X) based on agent and target point’s distance.

Ua(X) =
1

2
kρ2(X,Xg) (3.1)

In equation 3.1, k is the gravitational coefficient. X and Xg are IA and target point’s position vectors,
respectively. ρ(X,Xg) is IA and target point’s distance. The farther agent is away from target point, the
more gravitational energy will increase. On the contrary, it decreases. When the agent reaches target point,
gravitational energy is usually 0. The gravity received by agent has a negative gradient relationship with
gravitational field, so the gravity in formula 3.2 can be obtained by taking the derivative of gravitational field
with respect to this distance

Fa(X) = −∇(Ua) = −k(X −Xg) (3.2)

Equation 3.3 represents a repulsive field function of obstacles based on IA and target point’s distance.

Ur(X) =

 1
2η
(

1
ρ(X,Xr)

− 1
ρ0

)2
, 0 ≤ ρ(X,Xr) ≤ ρ0

0, ρ(X,Xr) > ρ0
(3.3)

In equation 3.3, η is a repulsion coefficient, Xr is obstacle’s position vector, ρ(X,Xr) is IA and obstacle’s
distance, and ρ0 is obstacle’s influence range. The repulsion force and repulsion field received by IA also exhibit
a negative gradient relationship. The repulsive force in equation 3.4 can be obtained by taking the derivative
of repulsive force field with respect to distance.

Fr(X) = −∇(Ur) =

{
η
(

1
ρ(X,Xr)

− 1
ρ0

)
1

(ρ2(X,Xr))
∂ρ(X,Xr)

∂X , 0 ≤ ρ(X,Xr) ≤ ρ0

0, ρ(X,Xr) > ρ0
(3.4)

When there are multiple obstacles in the mobile environment, IA is in the total potential field of the
superposition of gravitational potential field and multiple repulsive potential fields. Equation 3.5 calculates the
total potential field.

U(X) = Ua(X) +

m∑
i=1

U i
r(x) (3.5)

In equation 3.5, m is obstacles number. The path planning of traditional APF has some limitations, which
result in agent being unable to reach the target point in certain situations, leading to task failure. To solve
the problem of unreachable target points near obstacles, the form of repulsive potential function is optimized
by introducing the square of gent and target point’s distance as a product term in repulsive potential function.
The improved repulsive potential function ensures that target point is always the global minimum point of total
potential energy field in equation 3.6.

U ′
r(X) =

 1
2η
(

1
ρ(X,Xr)

− 1
ρ0

)2
ρ2(X,Xg), 0 ≤ ρ(X,Xr) ≤ ρ0

0, ρ(X,Xr) > ρ0
(3.6)
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Fig. 3.2: 2D mobile environment

According to the value requirements of introducing the product term and graphic characteristics of Gaussian
function, a deformed Gaussian function G(X) is introduced as repulsion potential function’s product term.
Introducing G(X) as original repulsive potential function’s product term, a new repulsive potential function in
equation 3.7 is obtained.

U ′′
r (X) =


1
2η
(

1
ρ(X,Xr)

− 1
ρ0

)2(
1− e

−
(

ρ2(X,Xg)

R2

))
, 0 ≤ ρ(X,Xr) ≤ ρ0

0, ρ(X,Xr) > ρ0

(3.7)

In equation 3.7, R is a radius of IA. Introducing G(X) can effectively improve the distortion problem of total
potential energy field far from target point. However. In some cases, the total potential field near target point
may exhibit local minimum points. In this case, IA may stop or oscillate repeatedly, unable to ultimately reach
the target point, as shown in Figure 3.2.

To eliminate the local minimum point of total potential energy field caused by obstacles near target point,
this study will further reduce its value near target point by improving , and ensure that the value away
from target point approaches 1. Therefore, a parameter β is introduced into G(X) , and a new form of
Gaussian function G1(X) is proposed. The improved repulsive potential function in equation (8) is proposed
by introducing G1(X) as a product term of repulsive potential function.

Ur1(X) =


1
2η
(

1
ρ(X,Xr)

− 1
ρ0

)2(
1− e

−
(

ρ2(X,Xg)

βR2

))
, 0 ≤ ρ(X,Xr) ≤ ρ0

0, ρ(X,Xr) > ρ0

(3.8)

By adjusting parameter β , the improved total potential energy field does not have a local minimum point near
target point.

4. Intelligent Layout and BIM Modeling of Frame Reinforcement Based on APF and Path
Optimization. APF is mainly aimed at solving the reactivity of IAs in mobile environments, making it difficult
to optimize the mobile path. In the case of a large and densely distributed number of obstacles, IA may be
affected by multiple obstacles at the same time, and may easily fall into local minimum points and stop moving,
resulting in the inability to complete path planning. Therefore, when dealing with the problem of steel bar
layout in complex environments, an intelligent steel bar layout model should be used to construct the mobile
environment of IA, and a global optimization model for path planning should be established.

Global optimization of path planning is an important concept, especially in complex construction environ-
ments such as steel bar layout problems. The parameters of global path planning can be adjusted according to
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the specific application and requirements to achieve the best performance. A global path is the complete path
from the start to the end. The cost function is used to evaluate each possible path. In the case of reinforcement
layout issues, this may include considering factors such as construction difficulty, time, material use, etc. In
many practical applications, the environment is dynamically changing. Path planning requires the ability to
identify and avoid obstacles. In a rebar layout, this may include walls, other rebar, or other physical barriers.
The update frequency of global path planning determines the response speed of the planner to environmental
changes. Faster update frequency means faster response, but it can also lead to unnecessary computational
burden. The application of global optimization of path planning to reinforcement layout problem is as follows.
In rebar layout, global path planning is used to determine the best rebar laying sequence and path. The optimal
construction path is selected by considering a variety of factors, such as avoiding collisions with other steel bars
and maximizing the efficiency of material use.

The task of global optimization in path planning is for an IA to find a collision free shortest moving
path given a starting point and target point. The mobile path is represented by location points coordinates
passed by IA, and entire mobile path is formed by connecting adjacent path points through a straight line.
Assuming that there are a total D intermediate path points in the moving path of IA, except for the starting
point and target point. The starting point coordinate of IA is ps = (x0, y0, z0),, target point coordinate is
pG = (x(D+1), y(D+1), z(D+1)) , the -th intermediate path point coordinate is pi = (xi, yi, zi) , the path is
represented as p = (p0, p1, , pD, p(D+1)) , and ui = (u(i, 1), u(i, 2), u(i, 3)) = (xi−x(i−1), yi−y(i−1), zi−z(i−1))
represents the vector between adjacent two path points. Equation (9) represents each path point’s coordinates.

xi = x0 +
∑i

j=0 uj,1

yi = y0 +
∑i

j=0 uj,2

zi = z0 +
∑i

j=0 uj,3

(4.1)

In order to reduce the search space and improve optimization efficiency, the step size of each movement of IA
is limited to Lo , and equation 4.2 is adjacent two points’ distance.

L0 =
√

u2
i,1 + u2

i,2 + u2
i,3 (4.2)

When arranging steel bars, steel bars bending usually occurs in lines rather than arcs. Therefore, in path
planning, IA’s movement direction is limited and can only move in directions parallel to three coordinate axes.
This restriction ensures that two adjacent moving vectors are either perpendicular to each other or collinear to
meet the specific constraint conditions in equation 4.3.

ui,1ui,2 = 0

ui,1ui,3 = 0

ui,2ui,3 = 0

(4.3)

Assuming there are S intermediate path points in the moving path of IA, the binary variable dimension of
the global path optimization solution is 3 ∗ (D + 1) . Figure 4 is an example of a global path optimization
model solution using 15 dimensional binary encoding. There are 4 intermediate path points between starting
and target points, and IA has made a total of 5 movements, moving once in positive direction. Then IA moves
in positive direction, positive direction, negative direction, and finally moves in positive direction. Figure 4.1
shows the direction and order of IA’s movement along the path.

For a moving path with d intermediate path points, it contains d + 1 moving vectors. The length of the
overall path of an IA can be calculated by adding all motion vectors’ lengths. To minimize agent’s path length,
an objective function l for global optimization of path planning in equation 4.4 is established.

minL =

D+1∑
i=1

√
u2
i,1 + u2

i,2, u
2
i,3 (4.4)
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Fig. 4.1: Example of an agent path using binary encoding

When IAs moving, constraints such as collision and blockage of steel bars need to be considered. Considering
the impact of constraint conditions on path planning results, a penalty function in equation 4.5 was established.

Ppo =

{
+∞, violation of constraints
1, others

(4.5)

Penalty function is introduced into the path length and a fitness function for global optimization of path
planning in equation 4.6 is constructed

minFg = Ppo · L (4.6)

To ensure intelligent layout of steel bars’ stability and efficiency, a step-by-step optimization method for path
planning is studied. This method decomposes the original high-dimensional optimization task into multiple
low-dimensional optimization subtasks, which can reduce optimization time and improve optimization success
rate.

In the step-by-step optimization subtask, the position of sub target point cannot be predetermined, so sub
path length cannot be used as path optimization model’s objective function. To solve this problem, an objective
function d in equation 4.7 can be established for each subtask by minimizing the distance between end point
pjT and target point pG .

min d =

√
(xj

T − xG)2 + (yjT − yG)2 + (zjT − zG)2 (4.7)

In this model, the constraints on steel collision and blockage are still considered, and a penalty function is
introduced to establish a fitness function in equation 4.8.

minFd = Ppo · d (4.8)

When obstacles are densely distributed, IA may encounter more types of obstacle forms, making it difficult to
break away from local minimum points in Figure 4.2.

In Figure 4.3, placing two obstacles between IA and the target point generates two repulsive forces. When
an IA moves to a certain point, repulsive force’s magnitude is equal to gravitational force, causing agent to
fall into a local minimum point. At the local minimum point formed by multiple obstacles, changing repulsive
force’s direction makes it difficult for agent to escape local minimum point.

APF can quickly calculate the next path point of the agent, but it is easily affected by the distribution
of obstacles and may fall into local minimum points, leading to task failure. Path optimization methods can
find the optimal path to ensure that agent reaches target point, but due to variable dimensions influence,
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Fig. 4.2: The Local Minimum Problem of Artificial Potential Field Method in Complex Environments

Fig. 4.3: The Path Planning Process of Hybrid Intelligent Method

optimization efficiency and quality may decrease. A hybrid intelligent method was proposed by combining
the characteristics of APF and path optimization. Figure 4.3 shows a path planning of IAs based on hybrid
intelligence methods [19, 20, 21].

Through secondary development of Revit software, a framework automatic deepening design plugin can be
created to improve the speed and efficiency of deepening design. Revit secondary development is mainly carried
out through application program interfaces, and external plugins are developed to extend Revit functionality.
The plugin creates a class library project using Visual Studio software, writes code in C # language, and
debugs this program to achieve intended functionality. Plugins can establish channels for transmitting data
during design phase, create BIM models based on deepening design solutions, and automatically generate
instances of elements such as beams, columns, and steel bars, thereby breaking the traditional mode of manual
modeling. Figure 6 shows a deepening design process of PB framework.

5. Analysis on the Effect of Reinforcement Arrangement in PB Beams and Columns. This
study conducted an effect analysis on the reinforcement arrangement of PB beam column joints. In the exper-
iment, the calculation time of different types of nodes, the number of APF planning times, and the average
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Fig. 4.4: Detailed design process of Prefabricated building frame

(a) Calculation Time
(b) Number of planning times using ar-
tificial potential field method

(c) Average calculation time using arti-
ficial potential field method

Fig. 5.1: Comparison of different node layout times

calculation time of APF were analyzed. The above analysis can reflect the differences in the difficulty of
steel bar layout and computational complexity among different types of nodes. And a comparative analysis
was conducted on the calculation time and path length of edge node beam reinforcement, middle node beam
reinforcement, and corner node beam reinforcement in different directions.

5.1. Reinforcement Arrangement Effect Analysis of APF Prefabricated Building Beam Col-
umn Nodes. In this study, an improved APF was used to analyze the intelligent arrangement of steel bars
in six different types of reinforced concrete beam column joints. These six types of nodes are: top corner, top
edge, top middle, middle layer corner, middle layer edge, and middle layer middle nodes. Figure 5.1 shows the
comparison of different nodes arrangement times.

Firstly, the calculation time of different types of nodes was compared and analyzed. The calculation time
for the top corner node is the shortest, at 76.8 seconds, while the calculation time for the middle layer node is the
longest, at 141.7 seconds. This may be because the structural complexity and difficulty of steel reinforcement
arrangement of nodes in the middle layer are higher than other types of nodes, resulting in longer calculation
time. Secondly, APF planning times for each type of node was compared. Among them, the planning times
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(a) Path Planning Task (b) Path Panning Results

Fig. 5.2: 3D workspace of IAs

for the top layer corner nodes and the middle layer corner nodes are relatively low, with 44 and 43 times
respectively. The nodes in the top layer and middle layer have more planning times, with 66 and 69 times
respectively. This indicates that when using APF for steel reinforcement layout, the arrangement of middle
nodes is more difficult and requires more planning times. In addition, the average calculation time for APF is
relatively short, at 1.6 seconds and 2.1 seconds, respectively. Figure 8 shows the IA 3D workspace.

This study validated the feasibility of APF using a three-dimensional moving space as an example. To
improve space utilization and ensure the safety of path planning, the impact range of obstacles is set to 1mm.
Under this setting, IA successfully moved from the starting point to the target point under the guidance of
APF, and the entire process took only 1.1 seconds. APF can effectively solve the problem of unreachable target
points near obstacles.

5.2. Reinforcement Arrangement Effect Analysis in APF Prefabricated Building Framework.
In 3D space, the calculation of the optimal path for IA is a challenging task, involving many factors such as
spatial discretization, obstacle setting, selection of starting and target points, step size setting, and number of
path points. In this example, the size of IA’s moving space is a 1200mm × 1200mm × 600mm rectangular
cuboid, and the space is discretized into a 1mm cube. Discretization makes the path planning problem can be
accurately measured and solved. In this model, a steel bar located in Z direction is set as an obstacle, with the
coordinates of its upper and lower position points being (600600600) and (600600, 0), respectively. Figure 5.3a
shows the IA optimization path.

The starting point and target point coordinates of IA are (0, 600, 200) and (1200, 600, 200) respectively,
with a step size of 20mm, and the middle points number in path is 70. These settings specify the movement
range and stride fineness of IA, as well as path complexity. The algorithm designed through research can
calculate a concise optimal path, which is effective. Figure 10 shows the algorithm calculation time.

From Figure 5.4, the scale and time consumption, iteration and time consumption are all proportional,
withPSO algorithm taking the least time. Table 5.1 shows the calculation time and path length of edge node
beam reinforcement for the research and design method.

In Table 5.1, DE algorithm has the longest calculation time in direction Y, which is 27 seconds. In
contrast, PSO only takes 2.84 seconds, while NFO takes 8.58 seconds. This indicates that PSO has the highest
computational efficiency. In direction X, DE algorithm requires 26.57 seconds, PSO requires 3.02 seconds, and
NFO requires 8.63 seconds. PSO still has the highest computational efficiency. Through comparative analysis,
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(a) 3D Workspace of intelligent Agents (b) Optimal Path for Intelligent Agents

Fig. 5.3: Intelligent agent optimization path

Table 5.1: Calculation time and path length of edge node beam reinforcement

Direction Position number Length(mm) Computing time(s)
DE PSO NFO DE PSO NFO

Direction Y

1 1300 1300 1300 3.35 0.32 1.07
2 1350 1350 1350 3.33 0.37 1.12
3 1350 1350 1350 3.47 0.41 1.04
4 1350 1350 1350 3.35 0.32 1.14
5 1350 1350 1350 3.35 0.37 1.09
6 1300 1300 1300 3.35 0.37 1.05
7 1300 1300 1300 3.47 0.35 1.03
8 1300 1300 1300 3.33 0.33 1.04

Total 10600 10600 10600 27 2.84 8.58

DirectionX

1 1370 1370 1370 3.42 0.39 1.08
2 1370 1370 1370 3.25 0.42 1.08
3 1370 1370 1370 3.34 0.33 1.08
4 1300 1300 1300 3.32 0.41 1.11
5 1300 1300 1300 3.32 0.43 1.05
6 1300 1300 1300 3.32 0.39 1.04
7 1300 1300 1300 3.29 0.32 1.05
8 1370 1370 1370 3.31 0.33 1.14

Total 10680 10680 10680 26.57 3.02 8.63

although the performance of the three algorithms in path length is the same, PSO is significantly better than
DE and NFO algorithms in computational time. Table 5.2 shows the calculation time and path length of steel
bars in the middle node beam.

In direction Y, total calculation time of DE algorithm is 26.85 seconds, while the calculation time of PSO
and NFO algorithms is 2.71 seconds and 6.72 seconds, respectively. Similarly, in direction X, total calculation
time of DE algorithm is 24.53 seconds, while the calculation time of PSO and NFO algorithms is 2.66 seconds
and 6.79 seconds, respectively. The calculation time of PSO is the shortest among all algorithms. Table 5.3
shows the calculation time and path length of corner node beam reinforcement.

In terms of path length, the path lengths of DE, PSO, and NFO algorithms remain consistent in both
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(a) NFO(N) (b) PSO(N) (c) DE(N)

(d) NFO(iteration) (e) PSO(iteration) (f) DE(iteration)

Fig. 5.4: Algorithm time comparison

Table 5.2: Calculation time and path length of steel bars in middle node beams

Direction Position number Length(mm) Computing time(s)
DE PSO NFO DE PSO NFO

DirectionY

1 1300 1300 1300 3.32 0.32 0.84
2 1350 1350 1350 3.36 0.33 0.92
3 1350 1350 1350 3.37 0.37 0.79
4 1350 1350 1350 3.39 0.33 0.83
5 1350 1350 1350 3.34 0.31 0.82
6 1300 1300 1300 3.41 0.36 0.85
7 1300 1300 1300 3.33 0.37 0.85
8 1300 1300 1300 3.33 0.32 0.82

Total 10600 10600 10600 26.85 2.71 6.72

DirectionX

1 1370 1370 1370 3.07 0.33 0.83
2 1370 1370 1370 3.05 0.37 0.84
3 1370 1370 1370 3.09 0.36 0.84
4 1300 1300 1300 3.12 0.31 0.82
5 1300 1300 1300 3.11 0.33 0.83
6 1300 1300 1300 3.02 0.33 0.85
7 1300 1300 1300 3.02 0.31 0.91
8 1370 1370 1370 3.05 0.32 0.87

Total 10680 10680 10680 24.53 2.66 6.79
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Table 5.3: Calculation time and path length of corner node beam reinforcement

Direction Position number Length(mm) Computing time(s)
DE PSO NFO DE PSO NFO

DirectionY

1 1300 1300 1300 3.32 0.41 1.12
2 1350 1350 1350 3.38 0.39 1.07
3 1350 1350 1350 3.37 0.39 1.09
4 1350 1350 1350 3.35 0.37 1.09
5 1350 1350 1350 3.32 0.32 1.09
6 1300 1300 1300 3.31 0.33 1.07
7 1300 1300 1300 3.32 0.32 1.08
8 1300 1300 1300 3.35 0.39 1.11

Total 10600 10600 10600 26.72 2.92 8.72

DirectionX

1 1370 1370 1370 3.31 0.31 1.06
2 1370 1370 1370 3.35 0.33 1.02
3 1370 1370 1370 3.32 0.37 1.06
4 1300 1300 1300 3.31 0.33 1.07
5 1300 1300 1300 3.36 0.33 1.07
6 1300 1300 1300 3.35 0.32 1.07
7 1300 1300 1300 3.35 0.35 1.09
8 1370 1370 1370 3.32 0.35 1.08

Total 10680 10680 10680 26.67 2.69 8.52

directions Y and X. Specifically, the path length in direction Y is 1300mm or 1350mm, totaling 10600mm. The
path length in direction X is 1300mm or 1370mm, totaling 10680mm. This indicates that three algorithms’
performance in path optimization is equivalent, and they can complete the arrangement of corner node beam
reinforcement within the same path length. However, these three algorithms exhibit significant differences in
computational time. Both in direction Y and direction X, the calculation time of DE is the longest, reaching
26.72 seconds and 26.67 seconds. The calculation time of PSO is the shortest, only 2.92 seconds and 2.69
seconds. The calculation time of NFO is located in the middle, which is 8.72 seconds and 8.52 seconds,
respectively. This indicates that under the same task, PSO has the highest computational efficiency, DE has
the lowest computational efficiency, and NFO has a computational efficiency between these two.

6. Conclusion. This study conducts in-depth research on the collision free arrangement of steel bars
in PB beam column joints by introducing BIM technology and combining BD simulation modeling analysis.
Specifically, this study first proposes a reinforcement layout model based on IA path planning, and further
proposes a framework reinforcement intelligent layout and BIM modeling method by combining APF and path
optimization methods. The calculation time for the top corner node is the shortest, only 76.8 seconds, while
the calculation time for the middle layer node is the longest, up to 141.7 seconds. Meanwhile, research has
also found that different algorithms may have different efficiency when solving the same problem. Although
the performance of DE, PSO, and NFO algorithms is consistent in terms of path length, PSO is significantly
better than DE and NFO algorithms in terms of computational time. For example, for the edge node beam
reinforcement in direction Y, the calculation time of PSO is only 2.84 seconds, while the calculation time of DE
and NFO algorithms is 27 seconds and 8.58 seconds, respectively. This study achieved collision free arrangement
of steel bars in PB beam column nodes, improving the speed and efficiency of deepening design.
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