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APPROXIMATE COMPUTING BASED LOW-POWER FPGA DESIGN FOR BIG DATA
ANALYTICS IN CLOUD ENVIRONMENTS

MURALI DOVA ∗AND ANURADHA M SANDI †

Abstract. As cloud computing continues to evolve, the demand for scalable and energy-efficient infrastructure to handle
extensive applications becomes paramount. Traditional transistor scaling and microprocessor design methods no longer suffice to
meet the growing scale of cloud usage. This research explores the potential of approximate computing (AC) as an innovative solution
to these challenges, particularly in high-demand computational settings. AC, known for its ability to make controlled accuracy
trade-offs, is identified as a key strategy for improving both the performance and energy efficiency of cloud infrastructure, with
a focus on low-power Field-Programmable Gate Array (FPGA) designs. This paper introduces novel methodologies that harness
the strengths of AC, emphasizing its application in neural-based and machine-learning techniques for energy-efficient solutions. By
targeting the performance of AC, especially in varied application domains and complex data mining scenarios, we propose two
groundbreaking approaches that significantly enhance computational speed and reduce energy consumption. Our empirical analysis
demonstrates notable improvements over existing techniques, highlighting the effectiveness of AC in optimizing cloud infrastructure.
The proposed model on FPGA through cloud computing attains substantial elevation rates by 89 % and energy reduction by 122
%, which had been good outcomes. This study not only confirms the benefits of integrating AC with low-power FPGA designs for
cloud environments but also sets a new benchmark for future research in achieving more sustainable and efficient cloud computing
via VLSI FGPA design analysis solutions.
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1. Introduction. The role of cloud computing infrastructure has emerged as a transformative force, re-
shaping the way computational resources are provisioned and utilized across diverse domains. This paradigm
shift has been driven by the need for scalable, flexible, and cost-effective solutions to accommodate the ex-
ponential growth of data and the increasing complexity of applications. Cloud computing offers a dynamic
environment where organizations can access a vast pool of virtualized resources, enabling them to scale up
or down as demands fluctuate, all while reducing the burdens of managing and maintaining physical hard-
ware.However, the efficacy of cloud computing infrastructure, while remarkable, is not without its challenges.
One of the foremost challenges lies in the ever-increasing computational demands that stem from a myriad
of applications, spanning from data analytics and machine learning to real-time communication and complex
simulations. Traditionally, transistor scaling and microprocessor design have been the cornerstones of perfor-
mance improvements. Yet, as Moore’s Law faces diminishing returns and the power consumption of processors
continues to rise, these approaches are reaching their limits in delivering the required computational power to
match the scale of cloud usage.

This inherent disparity between computational demand and conventional performance improvement meth-
ods necessitates a departure from established norms. It is here that the concept of approximate computing
(AC) emerges as a compelling and unconventional approach. At its core, approximate computing posits that in
certain applications, a certain level of accuracy can be relaxed without significantly compromising the overall
quality of results. By judiciously introducing controlled inaccuracies at specific points in computations, it be-
comes possible to unlock remarkable gains in terms of both performance and energy efficiency.The allure of AC
lies in its alignment with the ethos of cloud computing - optimizing resource utilization and minimizing energy
consumption. As cloud infrastructure aims to cater to diverse workloads from various clients, the ability to
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strike a balance between accuracy and efficiency becomes paramount. For instance, in scenarios where millisec-
onds matter less than throughput or where exhaustive accuracy is not required, AC becomes a potent tool for
enhancing the overall efficiency of cloud-based applications.Moreover, AC’s applicability is further accentuated
when coupled with low-power computing architectures like Field-Programmable Gate Arrays (FPGAs). FPGAs
provide an ideal platform for AC experiments, as their programmable nature allows for customized hardware
configurations that can leverage approximate computations effectively. The synergy between AC and FPGAs
holds the promise of enabling efficient and highly customizable computing solutions tailored to the specific
needs of cloud-based services.

Approximate Computing (AC) emerges as a transformative solution for cloud computing, enabling scal-
able, energy-efficient, and adaptable infrastructure by intentionally incorporating inaccuracies to enhance per-
formance without critically impacting result quality. This approach not only aligns with sustainability and
cost-efficiency goals but also fosters the development of custom, low-power computing solutions like FPGAs,
addressing the limitations of traditional computing and advancing the fields of data science and AI.

In light of these dynamics, this paper embarks on exploring the potential of AC in the context of cloud
computing infrastructure. Through a combination of theoretical insights and practical implementations, this
research aims to elucidate how the integration of approximate computing strategies can reshape the efficiency
landscape of cloud-based applications. By investigating innovative methodologies that harness AC’s power while
mitigating its limitations, this study endeavors to provide a nuanced understanding of the symbiotic relationship
between approximate computing and cloud infrastructure, fostering a new era of optimized computational
resource utilizationFuture hardware will be unreliable if it is dependent on inexact computations in the context
of big data and data analytics, or high scale RMS applications. Software that takes use of future hardware is
needed at the same time. There will be changes to the underlying abstractions we’ve been living with for a
long time. While computer prices have decreased by half in the past two years, it is necessary to go beyond
Gordon E. Moore’s law, which claims that ”the number of transistors on a microchip doubles about every
two years.” This law falls short when it comes to meeting current and future demands as well as scaling up.
Approximate computing (AC) and the investigation of low-power FPGA circuits are the solutions to the problem.
Semiconductor companies encounter difficulties in developing software with a dependable hardware layer of
10nm. Soft errors are becoming more prevalent as a result of variables such as a decrease in processor lifespan
and an increase in variability (SER). Resilient models of computing rather than deterministic hardware models
will be essential in the future. In the presence of imprecise software and hardware components, approximate
computing offers the opportunity to design acceptable systems. Future calculations will be greatly impacted
by two key considerations: cost and energy. The importance of a quality-performance tradeoff cannot be
overstated. As a result, the system’s performance can be enhanced by sacrificing accuracy.

Literature shows that there have been some recent efforts to implement AC. In addition, they contain a
probabilistic transformation compiler from MIT and an AC-based runtime from MSR, SAGE, etc., Blink DB is
the database that incorporates the AC from MIT, as well as several processor designs using ANNs from MSR
and other institutions. Rice provides probabilistic CMOS, whereas Purdue provides AC components, to name
a few. Neuronal approximation computing phenomena were the subject of this research, since it has become a
useful tool in the present era of data science and artificial intelligence (AI). RMS applications can be accelerated
by neural transformation of algorithms. The proposed hardware design in this study aims to diversify approxi-
mation computing methodologies for diverse benchmark applications, leading to the development of low-power
FPGA devices that can fully leverage AC. . To name only a few: Jmeint (3D gaming), Inverseektj (robotics),
JPEG encoder, Sobel (image processing), Black-Scholes (financial analysis), and K-Means (signal processing)
(machine learning). Classifier topology, approximation topology, test and training data, as well as the field or
domain are all diverse in the datasets. Several benchmark applications of domain heterogeneity and different
mining algorithms are used in this work to leverage the invocation performance of approximation computing.
The proposed solutions outperform current best practices in terms of speed and energy efficiency, according
to an empirical investigation. Our article makes several distinct contributions to the field, encompassing the
following key advancements:

• We introduce two novel architectural frameworks aimed at enhancing the utilization of approximate
computing (AC) by integrating multiple classifiers and employing diverse approximation techniques.
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These architectures offer innovative avenues to harness the potential of AC for optimizing computational
processes.

• Our work encompasses the design of a hardware architecture that facilitates the integration of multiple
approximation methods within a CPU-based environment. This architecture is thoughtfully crafted to
accommodate the execution of diverse approximations, thereby contributing to the effective implemen-
tation of AC strategies.

• To validate the effectiveness of our proposed methodologies, we construct a functional prototype that
enables us to rigorously evaluate their performance. Through meticulous experimentation and analy-
sis, we present comprehensive comparative results against established state-of-the-art techniques, thus
offering insights into the tangible benefits of our novel approaches.

The rest of the paper is arranged in this manner. Accordingly, Section 2 focuses on the most recent
developments in approximate computation. Design materials and procedures that increase energy efficiency
with acceptable precision are discussed in Section 3. Results from studies involving eight different benchmarks
are presented in Section 4. Section 5 wraps up the report and suggests further research avenues.

2. Related Work. This section reviews literature on approximate computing and also the possible designs
based on them. Venkataramani, S. et al. [1] focused on problems with technology scaling in future to meet the
needs of computing. They investigated the utility of AC and the need for using it with innovative methods.
Zhang et al. [2] proposed an AC framework and its advantages for Artificial Neural Networks (ANNs) with
an optimization procedure for energy efficiency. However, there are many challenges of AC as explored by
Agrawal et al. [3]. Apart from challenges with respect to proper usage, AC also provides many opportunities
in terms of scalability and energy efficiency in large scale computing paradigms. Shafique et al. [4] on the
other hand studied cross-layer AC. They explored logic and architecture layer to fill gaps for optimization.
Divya et al. [5] proposed approximate computing based system with statistical guarantees in managing quality
trade-offs. Li et al. [6] considered AC as a low power technique and proposed approximate circuits to exploit
AC approaches. They used AC-aware scheduling for reaping its benefits. They intend to propose methods for
control-intensive and data-intensive use cases. Different techniques of approximate computing can be found in
Mittal, S. [7] . They include precision and scaling, loop perforation, load value approximation, memorization,
data sampling and voltage scaling to mention few. Xu et al. [8] proposed AC method to achieve quality
trade-off control which is similar to the work in Moreau, T., Sampson, A., &Ceze, L. [9] opined that AC
techniques make mobile systems more efficient. As mobile computing devices have low resources, AC is found
suitable for them. Wang et al. [10] presented an FPGA architecture where AC plays crucial role in energy
saving. In pattern recognition that is machine learning based, AC is found to improve performance. Boikos
and Bouganis [11] explored low-power robotics with the SLAM algorithm on FPGA design. Jafari et al. [12]
proposed an embedded deep convolutional neural network (CNN) for scalability and low power consumption.
Mametjanov et al. [13] proposed a methodology for auto tuning FPGA design to achieve better performance
and power reduction. It was based on machine learning technique to identify parameters for tuning. In future,
they intended to apply it for larger designs. Licciardo et al. [14] used a novel radix-3 partitioning method
for better floating point operations. Wirthlin, M. [15] explored high-reliability systems made up of FPGA
designs that exploit programmability. Ortega-Zamorano et al. [16] used backpropagation method on FPGA
design for efficiency of microcontrollers. The algorithm belongs to machine learning with neural networks. It
could reduce memory usage and also power consumption.Lei Zhang.[17] studied the FPGA designs based on
te usage of ANN models. A three layer ANN is used to achieve desired results in performance in terms of
memory usage and power consumption. Zhang et al. [18] proposed a scheme based on FPGA. It is named as
Quasi-Centralized Direct Model Predictive Control (QC-DMPC) which controls dc-link voltage. Lu et al. [19]
explored the execution of deep learning algorithms on FPGA designs faster. With FPGA design the complexity
of the algorithms is reduced besides improving energy saving. Arram et al. [20] proposed methodology for
improving FPGA designs that exploit configurability and thus accelerate short read alignment. Wang et al.
[21] proposed an FPGA based real-time high quality stereo vision system which is found to be scalable and
energy efficient for image processing applications Esmaeilzadeh, H et.al[22] NeuroPIM unveils an innovative
processing-in-memory architecture that utilizes a neural network as a versatile accelerator, designed based on
the insight that neural networks can approximate certain or entire program outputs in real-world applications.
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This architecture melds the versatility of general-purpose processors with the high performance of specialized
accelerators, demonstrating up to 41% faster performance than processor-based neural network accelerators
and up to eight times the speed of standard general-purpose processors Kalangi, R. R [23]. The deployment of
compute-intensive applications in fields such as Artificial Intelligence (AI) and Digital Signal Processing (DSP)
presents a significant challenge, compelling the computing systems community to investigate novel design
methodologies Saikumar, K. et.al [24]. Approximate Computing has emerged as a promising solution, offering
a way to adjust the quality of results during system design to enhance energy efficiency or performance Durga,
B. K et.al [25].

3. Materials and Methods. We proposed two architectures to exploit AC based on iterative training
approach. It results in a hardware design that supports neural approach for approximate computing in CPU
setting (In future we intend to improve it for GPU).

3.1. Baseline Architecture. In presence of multiple approximations there are many opportunities that
can lead to efficiency without losing accuracy. However, it is challenging to have optimal invocations provided
heterogeneity of RMS applications for which AC is applied. When there is huge training data in such appli-
cations, classifier predicts the data that is safe for AC in the current iteration and other data to subsequent
iterations. The clustering of “safe to approximate” samples lead to probability of invoking approximators.
Given an RMS application, we use iterative training and discover safe to approximate samples. The iterations
are tracked to monitor such discovery in each iteration.

The baseline architecture for training has pairs of approximators and classifiers. They divide input space
into two clusters namely safe to approximate cluster and unsafe to approximate cluster. The first pair uses
original data as input. The pair contains approximator 1 and classifier 1. The training process is iterative
nature which results in identification of data samples that are safe to approximate and data which is not
converged goes to the next iteration. Ultimately the final unsafe to approximate data only enters into CPU
for exact computing process. Based on the prediction of classifier 1, it determines whether the input data can
be approximated or not. If yes, the data is given to approximator 1 else it is given to classifier 2. This way,
the moves on to all classifier and approximator pairs. The data rejected by all classifiers is finally executed
by CPU with precise computations. In the baseline approach, it is time consuming process to speed up with
approximate computing invocations.

3.2. Extended Architecture. This architecture is meticulously crafted to cater to the dynamic demands
of modern applications, particularly those characterized by their error-tolerant nature, such as Recognition,
Mining, and Search (RMS) applications.At its core, the architecture is engineered to accommodate diverse
approximation methods, enabling the processing unit to seamlessly switch between different techniques based
on the specific task and its associated requirements. This adaptability ensures that the processing unit can
effectively exploit the benefits of approximation while maintaining a high degree of performance efficiency. By
employing a modular and flexible design approach, the architecture empowers applications to achieve a finely
tuned balance between computational accuracy and performance gains.

Furthermore, the proposed hardware architecture is geared towards optimizing energy utilization and com-
putational throughput. It achieves this through strategic resource allocation and dynamic selection of approxi-
mation techniques, thereby capitalizing on the inherent trade-offs between accuracy and efficiency. This holistic
approach not only enhances the overall performance of RMS applications but also aligns with the growing em-
phasis on energy-efficient computing solutions.More efficient architecture is designed to leverage performance. It
overcomes limitations of the baseline model. Confidence is said to be suitable approximator. Thus multinomial
classifier provides input samples to suitable approximator and finally divides input space into n+1 partitions.
The second data allocation method is parallel in nature. In this case, all inputs samples are assigned to all
approximators in parallel. Approximators compete in the process and produce fit input samples as many as
possible. Due to randomness in the training samples, each approximator may produce bias in distribution.
In other words, each approximator may exhibit different local minima. Every approximator in this approach
tests input sample and produces an approximation error. Based on the lowest approximation error, a babel
is assigned to the sample. With all the labels generate, the multinomial classifier gets trained and produces a
knowledge model used for testing data further.
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Fig. 3.1: Proposed hardware architecture for processing unit

The original data is subjected to multi-class classifier that produces safe to approximate data to different
approximators. In the process the two data allocation models are employed empirically and the resultant data
samples are given to appropriate approximator. The data samples that are not suitable for any approximator
are given to CPU for exact computations. The extended model aims to improve approximator invocation per-
formance as much as possible. The architecture’s unique selling point lies in its capacity to seamlessly integrate
with low-power FPGA designs, a synergy that underscores its adaptability and suitability for contemporary
computing paradigms. By uniting the capabilities of FPGA technology with the advantages of approximate
computing, the architecture opens up avenues for improved energy efficiency, reduced power consumption, and
elevated performance across a diverse range of applications.

The above figure 3.1 clearly explains about proposed architecture of design. This FPGA design can give
accurate scalable computation in adverse at data available scenarios.

3.3. Proposed Hardware Design. FPGAs can facilitate the verification of various VLSI design func-
tionalities before fabrication by allowing implemented designs to be imported into the FPGA for testing. This
analysis enhances hardware scalability and reduces manufacturing costs. Identifying any bugs in the design
during the simulation stage can mitigate issues early on, saving on manufacturing expenses. In this manner
improve the scalability of FPGA and its design process.As the extended architecture has multiple approxima-
tions, a neural processing unit (NPU) based hardware is designed in CPU setting (not targeted for GPU). The
hardware design facilitates switch for various approximators and improves parallelism. As shown in Figure 3.1,
the hardware architecture has identical tiles (computing resources). In each tile, there are many processing
elements (PEs). An internal bus connects cache and input/output FIFOs. PE is meant for computing outcome
of one neuron at a given time. This is as part of the neural network while performing inference task. Data
scheduling between input FIFOs and PEs is carried out by bus scheduler. The bus scheduler also performs
scheduling of weights associated with neural network between cache and specific PE. The structure of PE used
in the hardware architecture has its own modus operandi in terms of functionality. It is graphically illustrated
in Figure 3.2.

The PE has different components such as weight buffer fetch unit, W register, I register MAC and Sigmoid.
The Fetch unit is meant for reading weights from the address (specific) associated with the weight buffer and
sends the same to the W register which is shown in Figure 3.2. Input FIFO sends data to the I register where it
is stored. When values arrive at registers, arithmetic computations are carried out. An activation unit such as
Sigmoid will activate the result. Finally, the result is sent to the output buffer.so, FIFO instead of parallel in
parallel out and other parallel procedures for providing delay for arithmetic computations were proposed. Based
on the availability of resources and neural networks, classifiers and approximators are dynamically allocated. A
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Fig. 3.2: Structure of PE used in the hardware architecture

controller is used to receive results from the classifier and give the required control signal to the approximator.
As shown in Figure 3.1, in the initialization phase weights of classifiers are loaded. In the first stage, data
comes from input FIFO to each PE. In stage 2, the PE computers the outcome of a neuron, and the result
is sent to output FIFO. In the third stage, the result is sent to the controller from output FIFO. In stage 4
approximator is invoked by the controller only if the data is found to be safe to approximate, otherwise, the
CPU is invoked for exact computations. In stage 5, input data is given to PEs present in the approximator
for required computations. Then in stage 6, the results are sent to output FIFO. There is a need for a weight
switch among approximators in the proposed design. Thus there are three scenarios supported. First, the
weight buffer is capable of storing all weights associated with all approximators. In this case, the cache is not
used for loading weights. Second, the weight buffer has less capacity and cannot accommodate the weights of
all approximations.

3.4. Mathematical computations. in this section, brief notes on FPGA handling computations were
explained. The error approximation, energy normalization, and power consumption are major elements of VLSI
design. These parameters have been explained through the below Scalable computations. Approximation Error
(AE):

AE = [ExactResult−ApproximateResult] (3.1)

The above equation 3.1 clearly explains approximation error, if this error was less then say that the design
provides fast scalable computations.

MAE =
∑

_i = 1n ∥ExactResult_i−ApproximateResults_i∥ (3.2)

Equation 3.2 clearly explains the Mean Absolute Error (MAE) parameter, indicating the error rate at high-speed
operations.

NormalizedEnergyReduction(%) = (Base− Power)− (educed− power)/(Base− Power) (3.3)

In this case, a cache has been used to get Normalized power which is shown in eq 3.3. The weight buffer
can store weights of only one approximation in the function. In this case, the cache is needed. Thus the
proposed hardware architecture is capable of supporting all scenarios that may be experienced by an NPU
(neural processing unit) design. It is achieved by adding a controller that switches approximators. Once data
comes out of computations, its movement between steps remains the same.
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Fig. 4.1: Invocation performance across benchmarks

4. Results and Discussion. Experiments are made with 8 benchmark applications to which the proposed
architectures are applied for approximate computing. The proposed methods are compared with two state-of-
the-art architectures found in earlier studies. Multilayer perceptron (MLP) with backpropagation (BP) is used
for all approximators and classifiers. Eight benchmark applications as mentioned in the Section 1 are used for
empirical study. The models are evaluated using Root Mean Square Error (RMSE) and invocation of classifiers.
The notion of error bound is used that is nothing but quality needs for the output. When the error bound is
lower, higher in quality.

In this experiment, input vectors of 16, 32, and 64 bits were utilized. These input vectors were dynamically
retrieved from a cloud server. The proposed design underwent verification using these test vectors, allowing for
a comprehensive assessment of both its functionality and performance. The results showed that the proposed
architecture showed better performance over the state of the art and error bound is well under threshold.

As presented in Figure 4.1, the benchmark applications used for approximate computing are provided in
horizontal axis. The vertical axis shows the invocation percentage. More in invocation percentage indicates
more performance a given architecture. The two proposed architectures are compared with the architectures
in past models. With Jmeint (3D gaming) application, the two proposed methods achieved 100% invocation
while methods of statistical guarantees and approximate computing showed 92% and 89% respectively. The
proposed methods showed improvement in the case of all benchmarks except FFT (signal processing) application.
Therefore, FFT is considered not suitable for approximate computing. Sobel (image processing), black-scholes
(financial analysis) and K-Means (machine learning) applications exhibited improved invocation % for the
proposed methods.

As presented in Figure 4.2, normalized approximation error about error bound is shown in the vertical
axis while the horizontal axis shows all the benchmark applications used for approximate computing. The
normalized error of the proposed methods is less when compared with the methods in [5] and [8] in the case
of the Jmeint and JPEG encoder. In the case of the Inversektj application, the proposed methods outperform
the method in [5]. The serial and adaptive methods showed better performance over all other methods in the
case of the Sobel application. Concerning the FFT application, all four methods showed the same performance.
Concerning K-Means the proposed parallel architecture showed better performance over all other methods
which is shown in figure 4.1.

As shown in Figure 4.3, the error bound is shown in the horizontal axis and the vertical axis shows invocation
(%). This experiment is made with the Black-Sholes benchmark application. As the error bound is low, the
invocation percentage is less. As the error bound is increased from 0.025 to 0.1 gradually, the invocation
percentage is increased steadily. In all error bounds, the proposed two methods outperformed the state of the
art except in case of 0.1 error bound where the method in [8] showed better performance overall. But the
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Fig. 4.2: Normalized error analysis for different benchmarks of approximate computing

Fig. 4.3: Invocation percentage varying error bound (Black-Sholes benchmark)

Fig. 4.4: Normalized speedup (with reference to Method in [5])

proposed methods showed better invocation performance over the method in [5]. From this experiment, it is
understood that the proposed methods outperformed existing ones with higher invocation percentages that is
much desired in approximate computing use cases.

As presented in Figure 4.4, the speedup normalized concerning method in [5] is proposed in the vertical
axis while the horizontal axis shows the benchmark applications used in empirical study. The speedup of the
proposed methods is increased in the case of all benchmarks except FFT. It is understandable as FFT is found
not suitable for approximate computing earlier without improvement in invocation percentage. In the case of
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Fig. 4.5: Energy reduction performance comparison (normalized to Method in [5])

Sobel application, the proposed parallel method outperformed all other methods. Concerning Inversektj and
JPEG encoder applications, the serial and adaptive methods showed higher speedup.

As presented in Figure 4.5, the normalized energy reduction for the method of statistical computing is shown
in the vertical axis. The horizontal axis shows the benchmark applications. Energy efficiency achieved at the
cost of loss of quality (acceptable) is the important proposition or hypothesis tested in this paper. Accordingly,
energy reduction is achieved in the empirical study. More energy efficiency is achieved with higher invocation
% of approximate computing. The proposed invocation-driven architectures led to higher energy savings. With
the proposed methods, energy reduction is more when compared with methods like earlier computing techniques.
Energy reduction is higher in all the benchmarks except in the case of the FFT application where the proposed
methods could not achieve higher reduction in energy consumption. Higher energy reduction is achieved by
the proposed parallel architecture in the case of the Jmeint application. From the results, it is understood
that the proposed architectures showed better performance over the state of the art in [5] and [8] in case of
invocation performance, speed up and energy saving. Thus, the hypothesis “performance improvement at the
cost of an acceptable reduction in quality” has significance and relevance to present and also future hardware
architectures.

5. Conclusion and Future Scope. In this research, two innovative architectural paradigms strategi-
cally designed to harness the potential of benchmark applications marked by both the cloud domain and FPGA
VLSI platform towards heterogeneity. The objective is to organize the significant enhancements in terms of
speedup and energy efficiency, thereby exploiting the potential of low-power FPGA designs in tandem with
approximate computing. The study delves into the invocation performance of different approximate computing
techniques, thoughtfully employed across a spectrum of mining (RMS) tasks. Through rigorous evaluation
involving diverse benchmark applications, our proposed architectures stand out as powerful contenders. Em-
pirical findings highlight their superiority over two existing methods. For instance, with the K-Means machine
learning benchmark, the existing methods demonstrated 51% and 50% invocation performance, whereas our
proposed serial and adaptive, as well as parallel methods showcased substantially elevated rates of 89% and
88%, respectively. Similarly, the proposed methods exhibited a striking 122% reduction in normalized en-
ergy consumption, overshadowing the 100% achieved by existing methods for the K-Means benchmark. This
compelling evidence underscores the pronounced performance augmentation offered by our architectural inno-
vations, as evidenced through noteworthy improvements in both speedup and energy reduction over existing
state-of-the-art techniques.

Moreover this research trajectory aligns with an aspiration to further refine the architectural design by in-
troducing dynamic search operations aimed at automatically identifying the most energy-efficient approximate
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design while adhering to predefined quality constraints. This forward-looking pursuit holds the potential to
revolutionize the landscape of approximate computing, ushering in enhanced energy efficiency without com-
promising on quality benchmarks. By relentlessly pushing the boundaries of innovation, we envision a future
where the synergy between architectural ingenuity and intelligent optimization drives unprecedented advances
in the domains of cloud-based RMS applications and low-power FPGA designs.
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