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INTERIOR SCENE COLORING DESIGN MODEL COMBINING IMPROVED K-MEANS
AND SAA

JIAHUI XU∗

Abstract. Due to technological progress and changes in people’s aesthetic standards, traditional design models need to be
constantly broken through, seeking more efficient and accurate design methods. Seeking effective design models to improve design
efficiency and prediction accuracy is an important task. Therefore, this study proposes an indoor scene coloring design model
that combines improved K-means clustering and simulated annealing algorithm for this important task. Based on the analysis of
indoor scene coloring, particle swarm optimization algorithm is used to optimize K-means clustering to achieve color classification.
Combined with simulated annealing algorithm, adaptive adjustment of lighting conditions is achieved to enhance the naturalness
and realism of coloring. These results confirmed that the proposed method had the highest average F-value, with an average F-value
of 92.524 and 143.601 on both datasets, respectively. The average ARI values were 0.361 and 0.897, respectively. The designed
algorithm performed the best and converged faster than other three. Therefore, the proposed method can effectively ensure the
consistency between the distribution of data objects after clustering and the actual situation. For indoor scene coloring design, it
has important practical significance and provides new possible paths for improving design efficiency and prediction accuracy.
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1. Introduction. In the current digital era, Indoor Scene Coloring Design (ISCD) plays a crucial role
in architectural design, film production, game development, and more [1]. With the rise of virtual reality
technology and consumers’ high requirements for visual experience, interior scene coloring design has become
more complex and the demand has increased [2]. The color design of indoor scenes can not only affect the visual
perception of viewers, but also to a certain extent affect their emotions and psychological states [3]. Traditional
ISCD usually requires designers to invest a lot of time and energy, and requires rich color knowledge and good
artistic aesthetics [4]. Studying an effective ISCD has important research value and practical significance, in
order to reduce the workload of designers, improve design efficiency and quality [5]. With the growth of visual
experience requirements, the demand for interior scene design also rises. The double pressure on designers is to
quickly master emerging tools and technologies and build on them to increase productivity without sacrificing
design aesthetics. This challenge has led to the need for an efficient interior scene coloring design model, which
aims to reduce the burden on designers and improve the efficiency and quality of the design, which has far-
reaching implications for research and practice. Based on this background, this study proposes an ISCD that
combines improved K-means Clustering Algorithm (K-means) with Simulated Annealing Algorithm (SAA).
The aim is to cluster colors using K-means to determine the main colors of scene, and then optimize colors
using SAA to achieve better visual effects. This study innovatively combines two color processing techniques,
taking into account both the distribution characteristics of colors and the visual effects of colors. In addition,
the model also considers the characteristics of indoor scenes and can effectively design colors for different scenes.
This design model not only provides a new ISCD method and new tools for designers, but also provides a new
research direction for color processing technology research. The article hopes to have an important impact
on interior design, movies, and games, and promote further development in these fields. The research will be
conducted in four parts. The first is an overview of indoor scene coloring analysis. Next is the study of indoor
scene coloring models that integrate Particle Swarm Optimization (PSO) to optimize K-means and SAA. The
third part is experimental verification. Finally, there is a summary and outlook on the research methods and
results of this study.
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2. Need of the Study. Interior scene coloring design is of great significance to enhance the aesthetic
sense of space and functional practicability. In the existing research, K-means algorithm is widely used in color
clustering because of its simplicity and efficiency, but it is sensitive to the initial cluster center and is easily
affected by local optimal solutions. In contrast, SAA shows great potential in optimization problems with its
global search capability, but the computational cost is high. Therefore, for interior scene color design, there
is a need to improve the combination of K-means algorithm and SAA, aiming to improve the accuracy and
efficiency of color clustering through hybrid algorithms, and provide a new color optimization tool for the field
of interior design. Research in this area aims to address the limitations encountered when applying existing
single algorithms to interior scene coloring design and explore the potential advantages of algorithm fusion for
design results and performance.

3. Objectives of the Study. A coloring design model of indoor scene based on improved K-means
algorithm and SAA is proposed. This paper aims to improve the selection mechanism of initial clustering
center of K-means algorithm, reduce its dependence on random initial value, and improve the stability and
accuracy of the algorithm. Secondly, SAA optimization process is introduced to overcome the limitation that
traditional K-means algorithm is easy to fall into local optimal, and to enhance the optimization ability of the
model in the global search space. Through the application of mixing algorithm, the color matching scheme of
indoor scene is optimized to achieve uniform and harmonious color distribution. Finally, it is expected that
the model can effectively improve the generation efficiency and quality of interior design color scheme, and
provide a scientific decision support tool for interior designers in the development of color scheme. Through
this research, we explore the application value and practical significance of algorithm mixing in the field of
interior design.

4. Related works. The core of indoor scene layout design is the synthesis of indoor home scenes, which
includes optimization of object selection, object placement, and style matching within the scene. Numerous
scholars have actively studied indoor spatial layout. A Fahim et al. were committed to finding suitable k-values
or improving the selection method of initial centers, using density-based strategies to obtain initial clusters.
This strategy did not require predicting the clusters, but calculated the average value of each cluster object and
used this information for k-means to improve the results quality. The preprocessing step adopted a density-
based noisy application spatial clustering method, which could converge the results to the global minimum and
improve the results quality [6].

Rezaee et al. explored a new k-means variant to cluster data through a bargaining game model. The
competition between cluster centers attracted as many similar targets or entities as possible to their respective
clusters. These experiments confirmed that it exhibited higher clustering accuracy based on eight evaluation
indicators such as f-measure, Dunn, and Rand index [7].

Hu et al. proposed a K-means based on slimy flight trajectory. These experiments confirmed that LK-
means had better search results and a more uniform distribution of cluster centroids, significantly improving
global search capabilities and big data processing capabilities [8].

Zhao et al. proposed an iterative difference de-blurring algorithm based on LCL. The keys were to remove
the contribution of OFL from the projection data, eliminate the blurring of IFL, and then use SAA to reconstruct
the corrected projection. These experiments confirmed that this algorithm could achieve PLO reconstruction of
LCL systems under extremely sparse sampling conditions and effectively reduce inter chip aliasing and blur [9].

M Ehsani et al. studied the multiple variables to predict the fracture failure of jointed plain concrete
pavement. Four feature selection methods were developed by combining Multi-objective PSO (MPSO) with
decomposition-based multi-objective evolutionary algorithm. These experiments confirmed that the model had
the best performance and could identify 17 input variables that affect faults [10].

Indoor spatial layout is a key part that reflects the details of indoor scenes and has been widely used in
various fields. In computer vision, indoor scene synthesis and layout design have overall color style compatibility.
Numerous scholars have actively studied indoor scene synthesis. S Guo et al. proposed a representative view
selection method using visual attention. A progressive method of integrating user preferences through eye
tracking was used to support innovation and make convergent thinking possible. The validation experiment
confirmed the effectiveness of this proposed view selection method, preference inference model, and innovation
support mechanism [11].
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Table 4.1: Symbol table

Symbol table
E1E2E3 Constraints on the target scene palette

λ�µ Balance the corresponding weights of the three energy terms
Ci Every furniture theme color
Cj The fourth color of the target scene palette
Pj The percentage of the corresponding color in the color palette extracted from the target scene
Nf The total number of furniture in the scene
Pi Furniture i category
Pj Furniture j category
mi Furniture i color
mj Furniture j color

C(Pi, Pj) The number of times furniture i and j simultaneously assign all colors in the color database
C(Pi, Pj ,mi,mj) The number of times furniture i and furniture j are simultaneously assigned to mi and mj colors

C(m,n) Furniture i has the number of specific colors n in the color database
C(n) The number of all available colors in the color database
T0 Initial temperature
i Current iterations
ρ Temperature drop for each iteration
xi Coordinates for each signal sample
N The number of samples of the signal
ω Inertia weight

c1c2 Learning factor
r1r2 Represents random numbers between

d(xjCi) The distance from particle xj to particle swarm centerCi

xiz The z component of the i sample point
xip The p component in the i th sample point

Park et al. proposed a framework based on object detection and so on to derive furniture pairing principles.
These experiments confirmed that images with high fidelity values matched existing style descriptions, proving
that this framework could be used for indoor style image retrieval [12].

Solah et al. proposed an automatic adjustment of the texture and color of virtual indoor scene objects to
match target emotions. Extracting features through deep learning could assist in the optimization process of
automatically coloring virtual scenes based on target emotions. This method was tested in four different indoor
scenarios and its effectiveness was demonstrated through user research and statistical analysis [13].

Ren et al. proposed a new digital lighting design framework that enabled users to automatically obtain
visually pleasing lighting layouts and indoor rendered images. These experiments confirmed that the framework
effectively learned guidelines and principles, and generated lighting designs that were superior to rule-based
baselines [14].

Xie et al. analyzed 284 complete questionnaires using a mixed effects model. Compared to the baseline,
biophilic design had improved people’s perception of the office, especially in designs with daylight and visibil-
ity. This made the perceived office space brighter, more comfortable, and spacious, superior to indoor plant
spaces [15].

In summary, this study delves into ISCD and provides a new perspective for understanding and solving
color selection issues in interior design. There may be some computational pressure when processing large-scale
data. Further optimization and adjustment may be required for specific types of indoor scenes. Therefore, the
study proposes an ISCD that combines improved K-means with SAA, aiming to improve the efficiency and
accuracy of processing complex color matching and distribution. The article aims to achieve more automated
and personalized scene color design, improve design efficiency and quality.
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Fig. 6.1: Interior design furniture category color data extraction

Fig. 6.2: Pre-processing of indoor scene coloring

5. Research Methadology. In the research methodology of indoor scene coloring design model, firstly,
the improved K-means algorithm is adopted for color classification, and the initial clustering center is optimized
by Particle Swarm Optimization (PSO) to enhance the stability and accuracy of the classification process. Then
SAA algorithm is used to adjust the classification results to simulate the color changes under natural light, so as
to improve the naturalness and realism of coloring. Through quantitative analysis of the visual effects of each
color category and illumination conditions, the index of the algorithm optimization process can be quantified.
Statistical methods such as cross-validation were used to evaluate the robustness of the model in order to ensure
the scientific and reliability of the research results.

6. An indoor scene coloring model that integrates improved K-means and SAA. Deepening
the analysis of indoor scene coloring can construct efficient and accurate coloring models. The indoor scene
coloring model that integrates improved K-means and SAA emerges in this context. This model consists of two
main parts. Firstly, the improved K-means is responsible for color classification, ensuring that various parts of
scene can be reasonably divided, thereby giving more accurate coloring. Secondly, SAA adjusts lighting based
on this to achieve a more natural and realistic visual effect. The fusion of these two algorithms aims to improve
the rendering effect of indoor scenes by optimizing and improving traditional coloring methods, providing the
possibility of achieving higher quality indoor scene coloring.

6.1. Indoor scene coloring analysis. Indoor scene coloring is widely used in the intersection of computer
graphics and computer vision, aiming to achieve accurate and natural color rendering of indoor scenes through
computer algorithms [16]. Currently, commonly used methods are color classification based on machine learning
and lighting adjustment based on physical models. However, these methods often require a large number of
computational resources, and their accuracy in processing complex scenes still needs to be improved [17].
Figure 6.1 shows the extraction of color data for interior design furniture categories.

Color data extraction in interior design is a composite study that integrates color theory, computer vision,
and furniture design. By using computer algorithms and data analysis techniques, color information can
be accurately extracted from different categories of furniture design, to conduct statistical analysis of the
application trend of furniture color. Figure 6.2 shows the preprocessing of indoor scene coloring.

The preprocessing operations for indoor scene coloring mainly include geometric structure analysis of the
scene, material feature recognition, and preliminary color classification. The application of preprocessing tech-
nology in interior scene coloring design involves advanced image analysis and color matching algorithm. Among
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Fig. 6.3: Interior scene coloring process

them, image analysis technology subdivides the indoor scene into manageable areas by detecting the geometric
structure of the space and object boundaries. At the same time, the color matching algorithm evaluates existing
colors and suggests color schemes, taking into account factors such as light conditions and material reflectivity.
These pre-processing steps provide the data foundation for the design model, enabling it to quickly identify
and adjust the color distribution in the scene, laying a solid foundation for the subsequent design phase. The
accuracy of preprocessing directly affects the effectiveness and performance of subsequent steps. By combining
deep learning technology with traditional computer vision algorithms, the accuracy and efficiency of prepro-
cessing can be improved. To ensure that the color combination of the entire indoor scene is compatible, energy
minimization is used to represent the constraint problem of color satisfaction, and the corresponding energy
function is constructed in equation 6.1.

E = E1 + λE2 + µE3 (6.1)

In equation 6.1, E1 , E2 , and E3 respectively represent constraints from the color palette of the target
scene. λ and µ represent the corresponding weights for balancing the three energy terms, with a value of 0.5.
For each furniture model in the scene, the difference between color theme and target color theme is calculated
in equation 6.2.

Mk =

5∑
i,j=1

Pj min ∥Ci −Cj∥2 (6.2)

In equation 6.2, Ci represents the theme color of each furniture. Cj represents the j-th color of target
scene’s color palette. ∥Ci −Cj∥2 represents the color difference value between two sets of colors obtained by
calculating the weighted Euclidean distance. Pj represents the percentage of corresponding colors in the color
palette extracted from the target scene, representing the tendency of each color. Deep learning can improve
the performance of each step. Figure 6.3 shows the indoor scene coloring process.

Indoor scene coloring usually includes key steps such as preprocessing, color classification, lighting ad-
justment, rendering, etc. [18]. Through preprocessing for scene analysis, geometric structures and object
boundaries can be determined. By using machine learning and other methods to identify the colors of various
objects, color classification can be achieved, providing a basis for subsequent rendering steps. Lighting adjust-
ment will simulate the lighting of the scene based on the physical model, further improving the realism of the
rendering effect. Equation 6.3 represents the energy term E1 .

E1 =

{
0 if Nf = 0∑Nf

k Mk if Nf ̸= 0
(6.3)

In equation 6.3, Nf represents the total furniture in the scene. The energy term E2 can evaluate the
rationality of the combination of two furniture colors in indoor scenes, aiming at measuring the correlation
between the problem color themes between the two furniture types, and its calculation is shown in equation 6.4.

E2 =

∑
i,j C(pi, pj ,mi,mj)

C(pi, pj)
(6.4)
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Fig. 6.4: SAA to solve the energy function flow of color allocation

In equation 6.4, pi and pj represent the category of furniture i, j . mi and mj represent the color of furniture
i, j . C(pi, pj ,mi,mj) represents the frequency at which furniture and are simultaneously assigned to colors
mi and mj . C(pi, pj) represents the frequency at which furniture i and j simultaneously allocate all colors in
the color database. Each furniture model selects the probability value of the corresponding color theme as the
measurement standard. A low probability value indicates that the color is rare. Equation (5) is its calculation.

E3 =
∑
i

C(i,n)

C(i)
(6.5)

In equation 6.5, C(m,n) represents the number of furniture i with a specific color n in the color database.
C(n) represents the number of all available colors for furniture i in the color database. This model improves
the accuracy and efficiency of design through efficient processing and global search capabilities, providing new
technical methods and reference basis for the field of indoor scene coloring.

6.2. An indoor scene coloring model that integrates PSO optimized K-means and SAA. PSO
optimized K-means is used for color classification, dividing complex indoor scenes into different color regions
to improve the accuracy of subsequent coloring. Combining SAA can achieve adaptive adjustment of lighting
conditions, further improving the naturalness and realism of coloring. However, due to the complexity of
indoor environments and the computational complexity of PSO and SAA, research has mainly focused on
optimizing algorithm performance. So, it can reduce the demand for computing resources and improve algorithm
applicability. Figure 6.4 shows the solution energy function of SAA for color allocation.

The energy function solving for color allocation is to use SAA to solve color allocation and achieve optimal
color allocation by minimizing the energy function [19]. SAA is based on simulating the human visual system
and adapting to different lighting environments to accurately reflect the true colors of the scene by adjusting
color allocation. SAA is used in this experiment to find the optimal color allocation result. In the -th iteration,
the probability of C ′

i being accepted as Ci+1 is represented by equation 6.6.

P(C′
i→Ci+1) = min

[
1, exp

(
− (E(C ′

i)− E(Ci))

(T0 − σT · i)

)]
(6.6)

In equation 6.6, T0 represents the initial temperature. i represents the current iteration. ρ represents
the temperature reduction value for each iteration. Clustering algorithm is an unsupervised learning method
that can divide all data objects into several clusters without relying on data labels. The schematic diagram of
K-means algorithm is shown in Figure 6.5.
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Fig. 6.5: Diagram of the K-means algorithm

K-means can partition a given dataset, making data points of the same category as similar as possible
and data points of different categories as different as possible [20, 21]. The basic process includes four stages:
initialization, clustering, update, and convergence. During initialization, the algorithm selects K data points
as the initial category center according to certain rules. Clustering is the process of assigning each data point
to the nearest category center. Update is to recalculate the center of each category based on the new category
allocation results. During the convergence phase, if the change in the category center is less than the set
threshold or reaches the preset number of iterations, the algorithm stops iteration. The clustering center point
is selected using mathematical methods. Equation 6.7 is this algorithm’s optimization function.

J =

√√√√ 1

N

N∑
i=1

(xi − µ)2 (6.7)

In equation 6.7, xi stands for each signal sample’s coordinate. µ stands for the cluster center point. N
represents the sample size of signal. PSO is used to optimize it. For PSO population, the optimal location
found can be recorded as the optimal location of PSO population, expressed by equation 6.8.

Gbest = (Pg1, Pg2, . . . , Pgd) (6.8)

In equation 6.8, g = 1, 2, . . . , n. In PSO, it is necessary to obtain the optimal individual position and the
optimal group position. Equation 6.9 represents the update of particle swarm velocity and position in PSO.{

v′id = ωvid + c1r1(pid − xid) + c2r2(pgd − xid)

x′
id = xid + vid

(6.9)

In equation 6.9, ω represents the inertia weight value. c1 and c2 represent learning factors. r1 and r2 repre-
sent random numbers between [0,1]. To obtain the optimal solution, the sum of squared errors in equation 6.10
is used as the fitness function.

f(x) =

k∑
i=1

∑
xj∈Ci

d(xj , Ci)
2 (6.10)

In equation 6.10, d(xj , Ci) represents the distance from particle xj to the swarm’s center Ci. If the objective
function is small, the algorithm performs well. The indoor scene coloring system combining PSO optimized K-
means with SAA is a new type of color rendering strategy [22]. This can achieve high-quality shading rendering
of indoor environments through precise color classification and adaptive adjustment of lighting conditions.
Figure 6.6 shows an indoor scene coloring system that integrates PSO optimized K-means and SAA.
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Fig. 6.6: The indoor scene coloring system by combining PSO optimized K-means with SAA

The K-means optimized by PSO is responsible for scene color classification, dividing complex indoor scenes
into areas with similar color characteristics [23, 24]. SAA adjusts color allocation based on lighting conditions
to achieve approximate simulation of the real environment [25]. The similarity between indoor samples is
measured using Euclidean distance, and a small distance indicates sample similarity. Equation 6.11 represents
the Euclidean distance between xi = (xi1, xi2, . . . , xim) and xj = (xj1, xj2, . . . , xjm).

d(xi, xj) =

√√√√ m∑
s=1

(xis − xjs)2 (6.11)

In equation 6.11, xi represents the m dimensional vector. To increase the degree of differentiation between
data attributes, equation 6.12 represents the weight values of data from different dimensions.

ωip =
xip

1
n

∑n
i=1 xip

(6.12)

In equation 6.12, xip represents the p-th component in the i-th sample point. xip represents the average
value of the p-th component of each sample point. This does not change the calculation of Euclidean distance
in K-means and increases the differentiation between data features. This system has to some extent improved
the effect of indoor scene coloring. It can still improve rendering quality when facing the complexity of the
environment and the computational complexity of algorithms.

7. Indoor scene coloring model testing integrating PSO optimized K-means and SAA. To verify
the reliability of ISCD and the effectiveness of the algorithm, an indoor scene synthesis system constructed by
mixing K-means and SAA was tested and analyzed. The article aimed to assist non-professional users in
efficiently completing interior design to meet the needs of layout and style. The hardware configurations
required for system operation were processor of Intel®Core™i5-9300h CPU @2.40GHZ, 8GB RAM, graphics
card of NVIDIA GeForce GTX1650 (4096MB graphics memory), and screen resolution of 1920*1080 (60Hz).
In terms of software, the system was based on Windows 10 Enterprise Edition, using the 3D rendering tool
Mitsuba to generate indoor panoramic images. The development tool was Visual Studio Code, and PyQt4 was
used to display the system’s graphical interface. Table 7.1 showed the experimental parameters.

Table 7.1 listed some indoor scene coloring model data for the exploration and analysis of this research
system. The experiment mainly tested the proposed SAA-PSO-K-means to obtain the parameters that could
achieve the best clustering effect. Then it compared and tested SAA with K-means, PSO-K-means, and SAA-
PSO-K-means on two text datasets. Several aspects such as clustering indicators, convergence, and stability
were analyzed to verify this proposed algorithm’s feasibility and effectiveness. Figure 7.1 showed the iterative
results of different algorithms on datasets DS1 and DS2.
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Table 7.1: Experimental environmental parameters

Parameter Specification

Hardware
Intel® Core™ i5-9300h CPU @2.40GHZ processor,
8GB RAM, NVIDIA GeForce GTX1650 graphics card (4096MB VRAM),
Screen resolution of 1920*1080 (60HZ)

Operating System Windows 10 Enterprise Edition
3D Rendering Tool Mitsuba for generating interior panorama
Development and GUI Tool Visual Studio Code with PyQt4 for graphical interface

(a) Iterative Results of Different Algorithms on DS1 Datasets (b) Iterative Results of Different Algorithms on DS2
Datasets

Fig. 7.1: Different algorithms’ iterative results on DS1 and DS2

In Figure 7.1, when iterating 30 times, SAA and K-means’s convergence curves on two datasets were steep
and rapidly tended towards lower stable values. Although they had the fastest convergence speed, their fitness
F-values were all low, as low as 91.68 and 143.64. The convergence of PSO-K-means was relatively smooth,
and the F-value steadily increased. The convergence curve of SAA-PSO-K-means was close and steep, but the
F-value after convergence was high, reaching 92.85 and 143.94. Therefore, these four algorithms could achieve
good F-values in the early stages of population evolution. In the 30-60 iterations, SAA and K-means continued
to slowly trend towards better F-values. However, PSO-K-means and SAA-PSO-K-means gradually stabilized
and almost completely stagnated near the highest F-value, with values of 92.58 and 143.93. After iterating
60 times, GAI-PSO began to stabilize, while other methods had converged completely. Therefore, SAA had
obvious advantages in high-dimensional text clustering, and could quickly converge to the approximate optimal
solution in the early population updating stage, demonstrating excellent optimization ability and operational
efficiency. Figure 8 showed the F-value boxplot of different algorithms on DS1 and DS2.

Figure 7.2 shows a boxplot of F-values calculated after 20 independent runs of four algorithms on four
datasets. The performance of SAA and K-means on the dataset was not stable. In Figure 7.2a, it ranged from
235.8 to 237.9, and in Figure 7.2b, it ranged from 249.8 to 252.2. Their F-values varied greatly and exhibited
significant fluctuations. Volatility might affect the reliability and prediction accuracy of algorithms. For PSO-
K-means and SAA-PSO-K-means, their performance on the four datasets was relatively stable, ranging from
239.3 to 239.4 in Figure 7.2a and 255.1 to 255.2 in Figure 7.2b. The smaller variance of its F-value verified
that the performance of these two algorithms was more stable and the optimization effect was more reliable.
Therefore, the proposed algorithm had a certain stability and optimization effect. Figure 9 showed different
algorithms’ ARI values on DS1 and DS2.

In Figure 7.3, on DS1, SAA-PSO-K-means displayed the most compact boxplot with the smallest variance
on the remaining three datasets. The range in Figure 7.2a was 0.66 to 0.665, and the range in Figure 7.2b was
0.85 to 0.856. The result distribution of SAA-PSO-K-means was relatively concentrated, with small fluctuations,
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(a) F-box plots of different algorithms on the DS1
dataset

(b) F-box plots of different algorithms on the
DS2 dataset

Fig. 7.2: F-value boxplots of different algorithms on DS1 and DS2

(a) ARI Box Graph of Different Algorithms on
DS1 Dataset

(b) ARI Box Graph of Different Algorithms on
DS2 Dataset

Fig. 7.3: Different algorithms’ ARI values on DS1 and DS2

and the stability of this algorithm was good. SAA-PSO-K-means not only performed well in clustering accuracy,
but also performed well in consistency between clustering results and real situations. Therefore, SAA-PSO-K-
means was a relatively stable and efficient method. They could provide consistent and accurate clustering
results in most cases, and had good adaptability to various types and sizes of datasets. Table 7.2 showed the
average values of F and ARI for different algorithms in DS1 and DS2.

In Table 7.2, the average F-values of SAA, K-means, PSO-K-means, and SAA-PSO-K-means on DS1 were
91.106, 92.241, 92.283, and 92.524, respectively. On DS2, they were 143.437, 143.216, 143.587, and 143.601,
respectively. Therefore, whether on DS1 or DS2, the average F-values of SAA-PSO-K-means were higher than
other three algorithms. In terms of average ARI values, they were 0.359, 0.374, 0.346, and 0.361 on DS1, and
0.942, 0.914, 0.931, and 0.897 on DS2, respectively. In DS1, SAA-PSO-K-means performed the best, while
in DS2, PSO-K-means performed better than other three. Therefore, SAA-PSO-K-means could achieve good
fitness F-values and obtain good external clustering indicators. It could effectively ensure the consistency
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Table 7.2: Different algorithms’ F-values on DS1 and DS2 datasets

Dataset/Algorithm SAA K-means PSO-K-means SAA-PSO-K-means
Average F

DS1 91.106 92.241 92.283 92.524
DS2 143.437 143.216 143.587 143.601

ARI average
DS1 0.359 0.364 0.346 0.371
DS2 0.902 0.914 0.931 0.897

(a) User satisfaction results for living room types (b) User satisfaction results for office area types

Fig. 7.4: User satisfaction results in different scenarios

between the distribution of data objects after clustering and the actual situation. To verify the effectiveness of
the scene coloring algorithm, this study randomly invited 20 users to conduct a user evaluation survey. The
spatial layout of living room types and office area types was provided, and some rendering scenes were presented
to each investigator. Figure 10 showed users’ satisfaction.

In Figure 7.4, the color beauty and richness of the scene are quantitatively evaluated. It is scored on a scale
of 0-100, with higher scores indicating greater user satisfaction with the scene. Under this scoring system, the
scene colored by the algorithm model gets a high evaluation. In Figure 7.4a, the satisfaction scores of the living
room, dining room, kitchen and bedroom after the algorithm color adjustment reached 96.34, 95.58, 93.14 and
97.26 respectively, and the average satisfaction score of the solution provided by the algorithm model was 95.58.
The average satisfaction score for hand-designed coloring schemes was 63.66. In Figure 7.4b, the satisfaction
scores of the living room, dining room, kitchen and bedroom are 94.89, 95.77, 97.14 and 96.38 respectively, and
the average user satisfaction of the algorithm model is further improved to 96.05. In the same scenario, the
user satisfaction of the designer’s solution was only 60.96 points. The effectiveness of the algorithm model in
coloring scheme design is verified [26, 27, 28], and its objective score is better than that of traditional design
methods, which shows the potential of the algorithm in improving user satisfaction in scene design.

8. Conclusion. Combining the efficiency of K-means with the global search ability of SAA can achieve
higher accuracy and faster speed in completing indoor scene coloring design. Effective ISCD can improve design
efficiency and prediction accuracy. Based on this background, this study proposed an ISCD that combined
improved K-means with SAA. By combining improved K-means with SAA, the application effects of four
algorithms in ISCD were compared and analyzed. These experiments confirmed that when iterating 30 times,
the convergence curves of SAA and K-means were steep, but the fitness F-values were both low. Relatively
speaking, the convergence of PSO-K-means and SAA-PSO-K-means was relatively smooth, but the F-value after
convergence was higher. In the 30-60 iterations, SAA and K-means continued to slowly trend towards better
F-values, while PSO-K-means and SAA-PSO-K-means gradually stabilized. After more than 60 iterations, all
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algorithms converged basically. Therefore, SAA had obvious advantages in high-dimensional text clustering and
could quickly converge to the approximate optimal solution in the early population updating stage. SAA and K-
means’s performance was not stable, and the range of F-values varied greatly, showing significant fluctuations.
For PSO-K-means and SAA-PSO-K-means, their performance was relatively stable, and the variance of F-
values was smaller. This study provided a new design model for ISCD by combining K-means and SAA, which
could effectively improve the accuracy and efficiency of the design. However, there are some shortcomings in
this study. The performance of four algorithms is not completely stable, which may affect the reliability and
prediction accuracy of the algorithms. Therefore, further research and improvement are needed to improve
the stability of this design model combining K-means and SAA, and to further verify the effectiveness and
feasibility of this design model.

9. Future Scope of the Study. In the follow-up research on the hybrid improved K-means and SAA
indoor scene coloring design model, it is necessary to conduct in-depth analysis on the stability of the algorithm,
explore the influencing factors and their internal mechanisms, optimize the parameter setting and structure of
the algorithm, and improve the applicability and robustness of the algorithm in different indoor scenes. Secondly,
the research focus is extended to the parallel processing of the algorithm, so as to shorten the large-scale data
processing time and improve the practical application efficiency of the algorithm. In addition, the future
research should also consider integrating more advanced optimization algorithms, such as genetic algorithm,
ant colony algorithm, etc., for the comparative study of algorithm performance and further improvement of the
model. Through cross-field collaborative research, the application potential of the algorithm in other aspects
of interior design, such as material selection, furniture layout, etc., is explored, and the application scope of the
model is expanded.
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