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STUDYING SVM METHOD’S SCALABILITY USING TEXT DOCUMENTS

DANIEL MORARIU∗, MARIA VINŢAN† , AND LUCIAN VINŢAN∗

Abstract. In the last years the quantity of text documents is increasing continually and automatic document classification is
an important challenge. In the text document classification the training step is essential in obtaining good results. The quality of
learning depends on the dimension of the training data. When working with huge learning data sets, problems regarding the training
time that increases exponentially are occurring. In this paper we are presenting a method that allows working with huge data
sets into the training step without increasing exponentially the training time and without significantly decreasing the classification
accuracy.
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1. Introduction. While more and more textual information is available online, effective retrieval is difficult
without good indexing and summarization of documents’ content. Documents’ categorization is one solution
to this problem. The task of documents’ categorization is to assign a user defined categorical label to a given
document. In recent years a growing number of categorization methods and machine learning techniques have
been developed and applied in different contexts.

Documents are typically represented as vectors in a features space. Each word in the vocabulary is rep-
resented as a separate dimension. The number of word occurrences in a document represents the normalized
value of the corresponding component in the document’s vector.

In this paper we are investigating how classification accuracy is influenced using only relevant selected
input vectors subset belonging to a larger data training set. The answer will show if the classification method
is scalable or not. We are using classifiers based on Support Vector Machine (SVM) techniques. They are less
vulnerable to degrade when the dimensionality of the feature space is increasing, and have been shown effective
in many classification tasks. The SVM is actually based on learning with kernels and support vectors.

We are developing a seven steps strategy that trains the classifiers on a reduced data set without significant
accuracy decrease comparing with training on the larger initial data set, but reducing the learning time [1]. In
designing this strategy we were inspired by a method presented in [2] which uses a tree structure to hierarchically
group similar databases articles, at different abstract levels. Despite this strategy was not recommended by the
authors to be used on text documents, we modified it in order to group the similar text documents into a single
level.

In this experiment we are using an original implementation of SVM algorithm with some improvements
presented by us in [3]. In order to represent the vectors and to select the relevant features we are using a feature
selection method based on SVM, already presented in [4, 5]. For training and testing part we are using Reuters’
database [6].

Section 2 contains the prerequisites for the work that we are presenting in this paper. In sections 3 we
are presenting the proposed scalability method and in section 4 the main results of our experiments. The last
section debates and concludes on the most important obtained results and proposes some further work, too.

2. Experimental Framework.

2.1. Support Vector Machine. The Support Vector Machine (SVM) is a classification technique based
on statistical learning theory [7, 8] that was successfully applied in many challenging non-linear classification
problems, processing large data sets.

The SVM algorithm finds a hyperplane that optimally splits the training set. The optimal hyperplane can
be distinguished by the maximum margin of separation between all training points and itself [9]. Looking at
a two-dimensional space we actually want to find a line that “best” separates points in the positive class from
points in the negative class. The hyperplane is characterized by a decision function like:

f(x) = sign(〈~w, Φ(x)〉 + b) (2.1)
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where ~w is the weight vector, orthogonal to the hyperplane, “b” is a scalar that represents the margin of the
hyperplane, “x” is the current tested sample, “Φ(x)” is a function that transforms the input data into a higher
dimensional feature space and 〈·, ·〉 represents the dot product. Sign is the sign function. If ~w has unit length,
then 〈~w, Φ(x)〉 is the length of Φ(x) along the direction of ~w. Generally ~w will be scaled by ‖~w‖ . In the
training part the algorithm needs to find the normal vector “~w” that leads to the largest “b” of the hyperplane.
For extending the SVM algorithm from two-class classification to multi-class classification typically one of two
methods is used: “One versus the rest”, where each topic is separated from the remaining topics, and “One
versus the one”, where a separate classifier is trained for each class pair. We selected the first method for two
reasons: first, our preliminary experiments show that the first method obtains better performance, which might
be explained by the fact that the Reuters’ database contains strongly overlapped classes and assigns almost all
samples in more than one class. Second, the overall training time is shorter for the first method.

2.2. The Data-set. Our experiments were performed on the Reuters-2000 collection [6], which has 984MB
of newspapers articles in a compressed format. Collection includes a total of 806,791 documents, with news
stories published by Reuters Press covering the period from 20.07.1996 through 19.07.1997. The articles have
9822391 paragraphs and contain 11522874 sentences and 310033 distinct root words. Documents are pre-
classified according to 3 categories: by the Region (366 regions) the article refers to, by Industry Codes (870
industry codes) and by Topics proposed by Reuters (126 topics, 23 of them contain no articles). Due to the huge
dimensionality of the database we will present here results obtained using a data subset. From all documents we
selected the documents with the industry code value equal to “System software”. We obtained 7083 files that
are represented using 19038 features and 68 topics. We represent a document as a vector of words, applying
a stop-word filter (from a standard set of 510 stop-words [10]) and extracting the word stem [10]. From these
68 topics we have eliminated those that are poorly or excessively represented, obtaining 24 different topics and
7053 documents that were split randomly in a training set (4702 samples) and a testing set (2351 samples).

In some experiments we will use a larger data set of 16139 documents. From entire Reuters Database we
have selected those documents that are grouped by Reuters in “Computer Systems and Software” (I33020)
by industry code. After this selection there are 16139 documents left to work on. From these documents we
extracted a number of 28624 features after eliminating the stop-words and stemming. The documents are pre-
classified by Reuters after topic and in the resulting set there were obtained 25 different topics. These 16139
samples are divided randomly into a training set of 10757 samples and a testing set of 5382 samples.

2.3. Kernel Types. The idea of the kernel trick is to compute the norm of the difference between two
vectors in a higher dimensional feature space without representing them in that space. We are using in our
selected classifiers two types of kernels, each of them with different parameters: polynomial and Gaussian
kernels [3]. For the polynomial kernel we vary only the kernel’s degree and for the Gaussian kernel we change
the parameter C according to the following formulas (x and x’ being the input vectors):

Polynomial,

k(x, x′) = (2 · d + 〈x · x′〉)d (2.2)

where d being the only parameter to be modified and representing the kernel’s degree:
Gaussian (radial basis function RBF),

k(x, x′) = exp(−
‖x − x′‖2

n · C
) (2.3)

where C being the classical parameter and n being the new parameter, introduced by us, representing the
number of elements from the input vectors that are greater than 0 [3].

2.4. Representing the input data. Also in our work we will use different representations of the input
data. After extensive experiments [5],[11] we have seen that different types of kernels work better with different
types of data representation. We represented the input data in three different formats. In the following formulas
n(d,t) is the number of times that term t occurs in document d, and maxτ n(d, τ) is the maximum frequency
occurring in document d [12].

Binary representation—in the input vector we store “0” if the word doesn’t occur in the document and
“1” if it occurs, without considering the number of occurrences.
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Nominal representation—we compute the value of the weight using the formula:

TF (d, t) =
n(d, t)

maxτ n(d, τ)
(2.4)

Cornell SMART representation—we compute the value of the weight using the formula:

TF (d, t) = {
0 ifn(d,t) = 0

1 + log(1 + log(n(d, t)) otherwise
(2.5)

3. A Method for studying the SVM Algorithm’s Scalability. The original learning step that uses
the Support Vector Machine technique to classify documents is split in three general stages. In the first stage
all training data are grouped based on their similarity. For compute the similarity we use two different methods
based on the “winner-take-all” idea [13]. The first method computes the center of the class (called further the
representative vector) using arithmetic average and the second method computes the center of the class using
LVQ (Learning Vector Quantization—equation (3.2)) in one step. The number of groups that can be created
in this stage is unlimited and depends on the similarity level, data dimension and a specified threshold. From
each created group a representative vector is obtained. With these vectors we create a new training data set
that will be used in the classification step. After the classification (developed using Support Vector Machine
[7]), besides the classification rules (decision functions) that are obtained, we also obtain the elements that have
an effective contribution to the classification (named support vectors in the SVM algorithm). Taking only the
support vectors (called further relevant vectors) we obtained a new reduced data set, containing only a small
but relevant part of the representative vectors already obtained in the first stage. For each relevant vector we
take all original vectors that were grouped in its category and generate a new data set. In the third stage, a
new classification step, we will use a reduced dimension of the training set choosing only a small part of the
input vectors that can have a real importance in defining the decision function. All these stages are represented
in Fig. 3.1, too.

The original learning step (those three previously presented stages) that uses the Support Vector Machine
technique to classify documents are splits in the next 7 smaller steps:

1. We normalize each input vector in order to have the sum of elements equal to 1, using the following
formula:

T̃ F (d, t) =
n(d, t)

∑19038

τ=1
n(d, τ)

(3.1)

where TF (d, t) is the term’s frequency, n(d, t) is the number of times that term t occurs in document d, and
the denominator represents the sum of terms that occur in the entire document d.



4 D. Morariu et. all

2. After normalization we compute the Euclidian distance between each input vector and each center of
the group (representative vector) that was created up to this moment(the gray small circles in Fig. 3.1). We
keep the smallest obtained distance (linear clustering). If this distance is smaller than a predefined threshold
we will introduce the current sample into the winner group and recompute the representative vector for that
group; if not, we will create a new group and the current input vector will be the representative vector for that
new group.

3. After grouping, we create a new training data set with all the representative vectors (all the gray circles
in Fig. 3.1). This set will be used in the classification step. In this step we are not interested in the classification
accuracy because the vectors are not the original vectors. Here, we are interested only in selecting relevant
vectors (the vectors that have an effective contribution to the classification).

4. We are doing a feature selection step on this reduced set (each of them having 19038 features). For
this step we are using SVM FS method presented in [4]. After computing all weights we select 1309 features
because, as we showed in [11], this number of features produces optimal results.

5. The resulted smaller vectors are used in a learning step. For this step we use polynomial kernel with
degree equal to 1 and nominal data representation. We use the polynomial kernel because it usually obtains
a smaller number of support vectors in comparison with the Gaussian kernel [11]. We use the kernel’s degree
equal to 1 because in almost all previous tests we obtained better results with this value.

6. After SVM learning step, besides the classification rules (decision functions) that are obtained, we also
obtained the elements that have an effective contribution to the classification (named support vectors in the
SVM algorithm). They are represented in Fig. 3.1 as being the large circles with a thick. We chose all groups
that are represented by those selected vectors and we develop a new set containing only the vectors belonging
to these groups. This new set is a reduced version of the original set, containing only relevant input vectors
that are considered to have a significant influence on the decision function.

7. This reduced vectors set will now be used in the feature selection and classification steps as the original
input data.

In the second presented step all training data are grouped based on their similarity. To compute the
similarity we use two different methods based on the “winner-takes-it-all” idea [13]. First method computes
the center of the class (the representative vector) using arithmetic mean and the second method computes
the center of the class using LVQ formula (Learning Vector Quantization [14]) in one step. Depending on the
method used to compute the representative vector we are using two vector representation types. In the first
method, where the representative vector is computed as an arithmetic mean, it contains the sum of all elements
that are included in that group, and a value that represents the total number of samples from that group. In the
second method the representative vector is computed using equation (3.2) for each new sample that is included
in the group. The formula for computing the representative vector for the LVQ method is:

~wi(t + 1) := ~wi(t) + α(~x − ~wi(t)) (3.2)

where ~wi is the representative vector for the class i, ~x is the input vector and α is the learning rate. Because we
want a one step learning and taking into account the small number of samples, we’ll choose a relatively great
value for the parameter α.

3.1. Clustering Data Set using Arithmetic Mean. In our presented results we started with an initial
set of 7083 vectors. After the grouping step we reduce this dimension at 4474 representative vectors, meaning
63% of the initial set. For this reduction we used a threshold equal to 0.2. On this reduced set a classification
step for selecting the relevant vectors was made. After the classification the algorithm returns a number of
874 support vectors. Taking those support vectors we created a data set containing only 4256 relevant samples
meaning approximately 60% from the initial set. Using this new reduced set we developed a feature selection
step, using SVM FS method [4], and we select only 1309 relevant features. The reduced set is split in a training
set having 2555 samples and in a testing set having 1701 samples.

3.2. Clustering Data Set using the LVQ Algorithm. In order to compare the two presented methods
we tried to obtain approximately the same number of vectors with both methods. With the LVQ algorithm,
for a value of the threshold equal to 0.15 and a learning rate equal to 0.9, we obtained after the first step 3487
groups (representative vectors). We expect this method to work better when huge data sets will be used. In the
next step, we trained a classifier in order to select from these representative vectors only those vectors that are
relevant. The algorithm returns 912 support vectors and we selected only those support vectors that have the
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Fig. 4.1. Comparative results for different data set dimensions—Polynomial kernel.

Lagrange multipliers greater than a certain threshold (in our case 0.25). We considered these support vectors
as being the most relevant vectors from all the representative vectors. We create a data set that contains only
4333 samples. This number represents approximately 61% from the initial data set. The obtained set is split
randomly into a training set of 2347 samples and in a testing set of 1959 samples.

4. Experimental Results.

4.1. Methods’Scalability—Quantitative Aspects. We are presenting here results only for a reduced
vector dimension as number of features (1309 features). We are using this dimension because with this number
of features we obtained the best results [5]. Also in our work we are using three different representations of the
input data: binary, nominal and Cornell Smart [3].

In Fig. 4.1 we are presenting comparative classification accuracies obtained for Polynomial kernel and
nominal data representation for all four sets—the original set noted as SVM-7053, the set obtained using
arithmetic mean to compute the representative vector, noted as AM-4256, the set obtained using the LVQ
method to compute the representative vector, noted as LVQ-4333 and the set randomly obtained, noted as
RAN-4277. The RAN-4277 set is obtained choosing randomly a specified number of samples from the original
set [11].

As it can be observed there is a small difference between the results obtained for AM-4256 and LVQ-4333.
The difference in the accuracy obtained between the original set and AM-4256 set is on average equal to 1.30%
for all kernel degrees. The same average difference is obtained also between the original set and LVQ-4333.
When we work with a small degree of the kernel the difference between the original set and AM-4256 set is
smaller than 1% but the difference between the original set and LVQ-4333 is greater (1.60%). When the kernel’s
degree increases the results are better with LVQ-4333 comparatively with AM-4256 but usually the difference
can be considered insignificant. At average, over all kernels’ degree and all data representations the difference
between the original set and AM-4256 is 1.65% and the difference between the original set and LVQ-4333 is
1.64%. We observe that for the same values of kernel’s degree, which obtained the best accuracy using the
original set, were also obtained the smallest difference between the original set and the reduced set. The results
obtained using randomly choused set are at average with 8% smaller than the results obtained using the entire
set.

In Fig. 4.1 it is interesting to observe that for small kernel’s degree we obtain better results using first
method for creating the groups and for the greater kernel degrees we obtain better results using second method
for creating the groups. In the theory of Support Vector Machine researchers recommend to use greater value
for the degree in case where data are overlapped. In the case when data are not strongly overlapped, with small
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Influence of the type of modified - Gaussian Kernel 
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Fig. 4.2. Comparative results for different data set dimensions—Gaussian kernel.

degrees are obtained better results and with greater degrees the accuracy of classification decreases. Obtained
results suggest that with the first method usually we haven’t obtained overlapped data but with the second
methods based on LVQ we obtained overlapped data. This observation occurs also for Binary and Cornell
Smart data representation and Polynomial kernel. An interesting behavior can be observed when the kernel’s
degree increases (and the accuracy of classification decreases) the discrepancy between the original set and both
reduced sets decreases, too. We developed also some tests with different values for threshold and learning rate
(α) and this value only increases more or less the number of groups. Usually for both methods the threshold
is the main parameter that adjusts the number of classes. The parameter (α) has only a small influence in
determining the number of classes (depending the input set dimension and on the on-coming samples), but has
a great influence in specifying the center of the class. Parameter (α) in this tested case has a small influence
because we worked with a relatively reduced number of samples. Even if the LVQ-4333 uses more samples
for training in the second step comparatively with AM-4256 the results are usually poor because in the first
step the representative vectors aren’t able to represent exactly the center of the groups; the selection of the
representative vectors maybe can have a great influence in defining the hyperplane even if not all vectors will
be relevant in the final step.

In Fig. 4.2 are presented the results obtained using the Gaussian kernel and Cornell Smart data represen-
tation. For this kernel the average accuracy difference between the two sets is greater than for the polynomial
kernel case, being at average of 1.89% for AM-4256 and 1.95% for LVQ-4333. The difference between the orig-
inal set and the randomly reduced set (RAN-4277) is also big for the Gaussian kernel (being at average 7%).
The smallest difference was obtained with a parameter C equal with 1.8. For this value we obtained the best
results in all previous tests (using the original data set). This difference is of 1.5% for AM-4256 and of 1.75%
for LVQ-4333. For this type of kernel the method based on LVQ obtains poorly results in almost all cases.

We are reducing the data in the first step at 63% and in the second step at 60% for the first method and
respectively to 50% in the first step and 61% in the second step for the LVQ method. With this reduction
however the lose in accuracy was about 1% for polynomial kernel and about 1.8% for Gaussian kernel. It is
interesting to note that the optimal parameter’s values (degree or C ) are usually the same for the original data
set and respectively the reduced one.

Obviously, the time needed for training on a smaller number of samples decreases. For example, for
polynomial kernel with degree 1 and Nominal data representation, 1031 seconds are needed to learn using all
data set and 209 seconds using the reduced set. At these 209 seconds we also have to add the time needed to
select the support vectors (548 seconds) and the time needed for grouping data (84 seconds). The last two times
occur only once for all the tests with polynomial and Gaussian kernels. The total time for polynomial kernel
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Table 4.1

Training time for each data set and some training characteristic.

Data set Kernel’s Characteristics tgroup time tselect SV tclassify ttraining total

SVM-7083 POL, D2.0, BIN - - - 1532.57
SVM-7083 POL, D1.0, NOM - - - 1031.21
SVM-7083 POL, D1.0, CS - - - 1107.64
SVM-7083 RBF, C2.8, BIN - - - 4492.95
SVM-7083 RBF, C3.0, CS - - - 4481.65
AM-4256 POL, D2.0, BIN 84 548.46 263.36 895.82
AM-4256 POL, D1.0, NOM 84 548.46 209.62 842.08
AM-4256 POL, D1.0, CS 84 548.46 215.56 848.02
AM-4256 RBF, C2.8, BIN 84 548.46 511.87 1144.33
AM-4256 RBF, C3.0, CS 84 548.46 513.81 1146.27
LVQ-4333 POL, D2.0, BIN 97 571.43 289.40 957.83
LVQ-4333 POL, D1.0, NOM 97 571.43 232.53 900.96
LVQ-4333 POL, D1.0, CS 97 571.43 250.67 919.10
LVQ-4333 RBF, C2.8, BIN 97 571.43 599.14 1267.57
LVQ-4333 RBF, C3.0, CS 97 571.43 618.04 1286.47

Table 4.2

Decreasing in average accuracy for all data representation.

Average Average Average
Kernel type Data representation accuracy[%] accuracy[%] accuracy[%]

AM-4256 LVQ-4333 Ran-4277

Polynomial kernel BINARY 1.907259 2.124463 7.581452
Polynomial kernel NOMINAL 1.302935 1.307764 7.869350
Polynomial kernel CORNEL SMART 1.750215 1.943873 7.603154
Gaussian kernel BINARY 3.816914 3.755501 8.776014
Gaussian kernel CORNEL SMART 1.891519 1.954537 5.870109

and degree 1 is 842 seconds. To compute these timing, in both cases (with the original set and with the reduced
set), we don’t take into consideration the time needed for feature selection. Every time the feature selection step
starts with 19038 features but in the second case we have a reduced dimension of the set (as number of vectors).
Some of these timing are also smaller than the first time. These values were obtained using a Pentium IV at
3.2 GHz, 1GB DRAM memory and Win XP. For the second method to obtain the representative vectors (using
LVQ) the grouping part takes more time (97 seconds). The time for selecting support vector is 571 seconds.
For example the time needed to compute the classification accuracy for polynomial kernel and degree 2 is 232
seconds, so the total time that can be considered is computed as:

ttotal time = tgroup time + tselect SV + tclassify (4.1)

where tgroup time is the time needed for grouping data, tselect SV is the time needed for classifying data and
finding support vectors and tclassify is the time needed for classifying the reduced set. This time can also include
the time needed for selecting the features. This time is not included in the classifying time using original data
set so it will not be included here.

In Table 4.1 are presented some training times for each data set. We are interested only in training time
because after training the testing time depends only on the testing set dimension and the number of support
vectors. For only one sample the response is less than one second.

In Table 4.2 the average difference between the accuracy obtained with the original set and the accuracy
obtained with the reduced set are presented. In other words, we present here the average decrease obtained for
each type of data representation and for each kernel when we worked with a reduced set. For Gaussian kernel
and Binary data representation we obtained the greatest decrease from all the tests (3.8%). For polynomial
kernel the decrease is at average of 1.65%.

Learning with the entire Reuters’ data set will be impossible on ordinary PC’s due to the huge time and
memory needed. Our obtained results will be useful in choosing the adequate parameters for the learning step.
For example, for the entire Reuters database we only started the first step of feature extraction and after this
step we obtained 806791 vectors, each of them having 310033 dimensions (features) and a total of 103 distinct
topics.
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Influence of the type of data representation - Polynomial Kernel 
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Fig. 4.3. Influence of kernel’s degree using a large data set—Polynomial kernel.

4.2. Expected Results using a Larger Data set. We chose a significantly larger training and testing
data sets in order to test the previously presented method. We can not run tests for this larger data set due to
its dimensionality and the limits of our computational capability but we reduced it and perform tests only for
the reduced dimension. Based on the obtained results presented in the previous section we will try to estimate
the performance that can be obtained if the entire set will be used. The characteristics for this large data set
were presented in section 2.2. First, we tried to create small groups in order to reduce the dimension following
the steps presented in section 3 and depicted in Fig 3.1. For creating the groups we use the method based on
the LVQ algorithm executed in just one step. Thus, using a threshold equal with 0.15 and a learning coefficient
α=0.4 (smaller because a large number of vectors are used) after a first step we obtained 11258 groups that
represent a reduction at 69% of the entire set. Using this reduced set we start training using SVM algorithm in
order to select only the support vectors. After training we select only those support vectors that have values
greater than a threshold equal with 0.2 (only relevant vectors). After this second step we obtained only 10952
samples that are split randomly in a training set of 5982 samples and a testing set of 4970 samples. In what
follows we present the results obtained using only this reduced set that means 67% of the entire set. If the
scalability is kept according to our figures presented in the previous paragraph, where the results are usually
with 1-2% smaller if the reduced set is used instead of the entire set, we will expect that, if the entire large set
will be used, the accuracy will be with only 1-2% higher than the presented results.

We run a lot of tests for polynomial kernel and a lot of tests for Gaussian kernel using all of the three types
of data representation. We present results comparatively for each type of data representation. Fig. 4.3 presents
results obtained for polynomial kernel and all types of data representation. The presented results are obtained
using a set with 3000 relevant features. For features selection we used SVM FS method that was presented in
[5]. Even if we work on the reduced large set, the results are comparable with results obtained working with
the entire set but with a smaller number of samples (7053 samples). For example, for polynomial kernel and
nominal data representation using a set of 7053 samples we obtained an average accuracy of 83.73% and using
this reduced data set we obtained 83.57% at average.

Fig. 4.4 presents results obtained using Gaussian kernel and several values for parameter C using two types
of data representation. For Gaussian kernel in average with this new data we obtained for Cornell Smart data
representation an average accuracy of 82.57% which is closer to the average accuracy obtained with a set with
7053 samples 83.14%. All the presented results are obtained using a reduced set at 65% of the entire data set.
We will not present here the time for training and testing because we used on the training part only the reduced
set and we don’t have results for the training time of the entire set.

5. Conclusions and Further Work. In the real life when working with text documents we need to
work with huge sets of documents to obtain good classification accuracy. In this paper we are proposing and
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Fig. 4.4. Influence of C parameter using a large data set—Gaussian kernel.

developing a strategy to work with large text documents sets. This strategy doesn’t increase exponentially the
training time, actually it decreases it and doesn’t substantially loose in classification accuracy. A method to
reduce the number of vectors from the input set and make two learning steps in order to consider the learning
step finished was developed and tested. We noticed that the classification accuracy decreases at average with
only 1% for polynomial kernel and with about 1.8% for Gaussian kernel, when the data set is reduced at 60%
of the entire data set. If the reduction of the set was randomly made (RAN-4277) at a dimension smaller with
40% than the original set, the lost in classification accuracy is at average of 8% for the polynomial kernel and
respectively of 7% for the Gaussian kernel.

A major issue that occurs in all classification and clustering algorithms is that they are reluctant to fit in
the real spaces. For instance they have a problem dealing with new documents for which none of the features
are in the previous feature set (the product between the new features set and the previous feature set is an
empty set). As a further improvement we will try to develop tests with families of words and use as features
only a representative of each family. In this way the number of features will be significantly reduced and thus
we can increase the number of files that can be classified further on. In order to achieve this we might use the
WordNet database, which contains a part of the families of words for the English language.
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