Scalable Computing: Practice and Experience ISSN 1895-1767
Volume 11, Number 1, pp. 53{62. http://www.scpe.org c 2010 SCPE

EXPLORING CARRIER AGENTS IN SWARM-ARRAY COMPUTING

BLESSON VARGHESE AND GERARD MCKEE Y

Abstract.  How can a bridge be built between autonomic computing approa ches and parallel computing systems? The work
reported in this paper is motivated towards bridging this ga  p by proposing a swarm-array computing approach based on “In telligent
Agents' to achieve autonomy for distributed parallel compu  ting systems. In the proposed approach, a task to be executed on parallel
computing cores is carried onto a computing core by carrier a gents that can seamlessly transfer between processing cores in the event
of a predicted failure. The cognitive capabilities of the ca rrier agents on a parallel processing core serves in achievi ng the self-ware
objectives of autonomic computing, hence applying autonom ic computing concepts for the bene t of parallel computing s  ystems.
The feasibility of the proposed approach is validated by sim ulation studies using a multi-agent simulator on an FPGA (Fi  eld-
Programmable Gate Array) and experimental studies using MP | (Message Passing Interface) on a computer cluster. Prelim inary
results con rm that applying autonomic computing principl es to parallel computing systems is bene cial.
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1. Introduction. Inspirations from nature have led computing scientists to focus orbiologically inspired
computing paradigms. Amorphous computing [1], evolutionary comptiing [2] and organic computing [3] are such
areas that focus on abstracting designs from nature. Lately, alonomic computing inspired by the autonomic
human nervous system [4] is the emphasis of distributed computingasearchers which is considered in this paper.

With the aim of building large scale systems [5], reducing cost of ownehép [6] [7] and reallocating man-
agement responsibilities from administrators to the computing sysem itself [8][9][10], autonomic computing
principles have paved necessary foundations towards self-maniag systems. Self-managing systems are char-
acterized by four objectives, namely self-con guration, self-haling, self-optimizing and self-protecting and four
attributes, namely self-awareness, self-situated, self-monitang and self-adjusting [4][11][12].

Autonomic computing researchers have adopted six di erent appoaches, namely emergence-based, compo-
nent/service-based, control theoretic based, arti cial intelligence, swarm intelligence and agent based approaches
to achieve self-managing systems.

The emergence based approach for distributed systems considecomplex behaviours of simple entities
with simple behaviours without global knowledge [13]. Autonomic compting research on emergence based
approaches is reported in [13] and [14].

The component/service based approach for distributed system&mploy service-oriented architectures, and
is implemented in many web based services. These approaches aranigedeveloped for large scale networked
systems including grids. Autonomic computing research on compomg/service based approaches is reported in
[15], [16] and [17].

The control theoretic based approach aims to apply control theoy for developing autonomic computing
systems. The building blocks of control theory are used to modelamputing systems and further used to study
system properties. Using a de ned set of control theory methodlogies, the objectives of a control system can
be achieved. Research on control theoretic based approacheppdied to autonomic computing is reported in
[18] and [19].

The arti cial intelligence based approaches aim for automated deci®n making and the design of rational
agents. The concept of autonomy is realized by maximizing an agent'sbjective based on perception and action
in the agent's environment with the aid of information from sensors and in-built knowledge. Work on arti cial
intelligence approaches for autonomic computing is reported in [20]rad [21].

The swarm intelligence based approaches focus on designing algoritis based on collective behaviour of
swarm units that arise from local interactions with their environment. The algorithms considered are population-
based stochastic methods executed on distributed processordutonomic computing research on swarm intelli-
gence approaches is reported in [22] and [23].

The agent based approaches for distributed systems is a generiedhnique adopted to implement emer-
gence, component/service, arti cial intelligence or swarm intelligerce based approaches. The agents act as
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autonomic elements or entities that perform distributed task. The domain of software engineering considers
agents to facilitate autonomy and hence have a profound impact orachieving the objectives of autonomic
computing. Research work based on multi-agents supporting autaomic computing are reported in [9], [24]
and [25].

However, though all of the autonomic computing approaches abav aim towards the objectives of auto-
nomic computing, few researchers have applied autonomic computgnconcepts to parallel computing systems.
This is surprising since most distributed computing systems are closg associated with the parallel computing
paradigm. The bene ts of autonomy in computing systems, namely educing cost of ownership and reallocating
management responsibilities to the system itself are also relevant tparallel computing systems.

How can a bridge be built between autonomic computing approachesral parallel computing system? The
work reported in this paper is motivated towards bridging this gap by proposing a swarm-array computing
approach, that aims to achieve autonomy for distributed parallel omputing systems.

Swarm-array computing is biologically inspired by the theory of autonromous agents in natural swarms that
are abstracted and implemented in parallel computing systems. Thigechnique considers the computational
resource as a swarm of resources and the task to be executed aswarm of sub-tasks. Hence, the approach
considers complex interactions between swarms of sub-tasks amsvarms of resources. These interactions bring
about the notion of intelligent agents or swarm agents carrying thesub-tasks and intelligent cores or swarm of
cores executing the sub-task.

In this paper, a swarm-array computing approach is proposed as aolution that aims to apply autonomic
concepts to parallel computing systems and in e ect achieve the ofectives and attributes of self-managing
systems. Unlike another swarm-array computing approach repded in [26], the approach proposed in this
paper considers the task to be executed on parallel computing ces as a swarm of autonomous agents.

The remainder of the paper is organized as follows. Section 2 considghe proposed swarm-array computing
approach. The second approach is of focus in this paper. Sectioniivestigates the feasibility of the proposed
approach by considering simulations. Section 4 presents the implemégation of the proposed approach on a
computer cluster. Section 5 concludes the paper by considering fiure work.

2. Swarm-Array Computing Approach. Swarm-array computing is a swarm robotics inspired ap-
proach that is proposed as a path to achieve autonomy in parallel amputing systems. The foundations of
swarm-array computing are the existing computing paradigms of paallel and autonomic computing. There are
three approaches based on intelligent cores, intelligent agents and hybrid approach based on both intelligent
cores and intelligent agents that bind the swarm-array computing ©nstituents together [26].

In this paper, the focus is on the second approach based on intelligeagents. The aim of the “Intelligent
Agent based' approach is to demonstrate that the cognitive capailities of an agent complementing its intelligence
can be used to achieve the objectives and attributes of autonomicomputing.

In the intelligent agent based approach, a task to be executed on parallel computing system is decomposed
into sub-tasks and mapped onto agents that carry these tasksmio nodes or cores for execution. The agent and
the sub-problem are independent of each other; in other words,he agents only carry the sub-tasks or act as a
wrapper around the sub-task independent of the operations pdormed by the task.

In the proposed approach, an agent has capabilities similar to the gaabilities of a natural agent presented
above. Intelligence of an agent in the computing environment is demstrated in four di erent ways. Firstly,
an agent is aware of its environment, that is the nodes or cores on lich it can carry a task onto, other agents
in its vicinity and agents with which it interacts or shares information. Secondly, an agent can situate itself
on a node or core that may not fail soon and can provide necessagnd su cient consistency in executing the
task. Thirdly, an agent can predict core failures by consistent moiitoring (for example, power consumption and
heat dissipation of the cores can be used to predict failures). Fotinly, an agent is capable of shifting gracefully
from one core to another, without causing interruption to the state of execution, and notifying other interacting
agents in the system when a core on which a sub-task being execudtés predicted to fail.

Hence, objectives such as self-con guration, self-healing and K@ptimizing and attributes such as self-
awareness, self-situated, self-monitoring and self-adjusting arinherently obtained in the proposed approach by
the cognitive capabilities demonstrated by the agent.

3. Simulation Studies.  Simulation studies were pursued to validate and visualize the propogkintelligent
agent based approach. Various simulation platforms were consided, namely network simulators, which could
predict behaviours of data packets in networks, and multi-agent smulators, that could model agents and their
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behaviours in an environment. Since FPGA cores are considered in th paper, network simulators were not an
appropriate choice. The approach proposed in this paper considerexecuting cores as agents; hence a multi-
agent simulator is employed. This section is organized into describinghte experimental environment, modelling
the experiment and experimental results.

With the objective of exploring swarm-array computing, FPGAs are selected as an experimental platform
for simulating the proposed approaches. FPGAs are a technologynder investigation in which the cores of
the computing system are not geographically distributed. The cors in close proximity can be con gured to
achieve a regular grid or a two dimensional lattice structure. Another reason of choice to look into FPGAs is
its exibility for implementing recon gurable computing.

The feasibility of the proposed swarm-array computing approach vas validated on the SeSAm (Shell for
Simulated Agent Systems) simulator. The SeSAm simulator environmat supports the modelling of complex
agent-based models and their visualization [27][28].

The environment has provisions for modelling agents, the world andisulation runs. Agents are character-
ized implemented in the form of an activity diagram by a reasoning engie and a set of state variables. The state
variables of the agent specify the state of an agent. The world prades knowledge about the surroundings in
which the agent is situated. A world is also characterized by variablesaand behaviours and de nes the external
in uences that can a ect the global behaviour of the agent. Simulation runs are de ned by simulation elements,
namely situations, analysis lists, simulations and experiments that catribute to the agent-based model being
constructed.

As considered in Section 2, the swarm-array computing approachansiders the computing platform and the
problem/task. An FPGA is modelled in the SeSAm environment such tha the hardware cores are arranged in
a 5 X 5 regular grid structure. The model assumes serial bus conngvity between individual cores. Hence, a
task scheduled on a core can be transferred onto any other coie the regular grid.

The breakdown of any given task into subtasks is not considered witin the problem domain of swarm-array
computing. The simulation is initialized with sub-tasks scheduled to a fav cores in the FPGA grid. Each sub-
task carrying agent consistently monitors the hardware cores. Tis is possible by sensory information (in our
model, temperature is sensed consistently) passed onto the caer agent. In the event of a predicted failure, the
carrier agent displaces itself to another core in the computing sygm. The behaviour of the individual cores
vary randomly in the simulation. For example, the temperature of the FPGA core changes during simulation. If
the temperature of a core exceeds a prede ned threshold, theubtask being executed on the core is transferred
by the carrier agent onto another available core that is not prediced to fail. During the event of a transfer
or reassignment, a record of the status of execution of the subsk maintained by the carrier agent also gets
transferred to the new core. If more than one sub-task is exet¢ad on a core predicted to fail, each sub-task
may be transferred to di erent cores.

Figure 3.1 is a series of screenshots of a random simulation run devpkd on SeSAm for nine consecutive
time steps from initialization. The gure shows the executing cores & rectangular blocks in pale yellow colour.
When a core is predicted to fail, i. e., temperature increases beyond threshold, the core is displayed in red.
The subtasks wrapped by the carrier agents are shown as blue lleaircles that occupy a random position on
a core. As discussed above, when a core is predicted to fail, the salsk executing on the core predicted to fail
gets seamlessly transferred to a core capable of processing agthinstant.

The simulation studies are in accordance with the expectation and hece are a preliminary con rmation
of the feasibility of the proposed approach in swarm-array compuing. Though some assumptions and minor
approximations are made, the approach is an opening for applying aonomic concepts to parallel computing
platforms.

4. Implementation. In this section, a cluster-based implementation of the intelligent agat approach is
considered. The cluster used for the research reported in this geer is one among the high performance comput-
ing resources available at the Centre for Advanced Computing and Eherging Technologies (ACET), University
of Reading, United Kingdom [29] [30]. The cluster is primarily used for the purpose of teaching and performing
multi-disciplinary research. The cluster consists of a head node an83 compute nodes. All nodes are connected
via a Gigabit ethernet switch and communicate via the standard TCP protocol.

The cluster-based implementations reported in this paper are bagkon the Message Passing Interface (MPI)
[31], a standardized application programming interface (API) used ér parallel and/or distributed computing.
Open MPI [32] [33] version 1.3.3, an open source implementation of MP2.0 is employed on the cluster. An
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Fig. 3.1 . Sequence of nine simulation screenshots (a) - (i) of a simula tion run from initialization on the SeSAm multi-agent

simulator. Figure shows how the carrier agents carrying sub -tasks are seamlessly transferred to a new core when executi ng cores
fail.

important feature of MPI 2.0, dynamic process creation and managment, is of potential for exploration in the
context of swarm-array computing.

The MPI dynamic process model permits the creation and managenre of a set of processes both when
an MPI application begins and after the application has started. The management of newly created pro-
cesses include cooperative termination of a process, communicatiobetween newly created processes and
existing MPI application, and establishing communication between two independent processes. MPI rou-
tines such as MPLCOMM _SPAWN is used to create a new MPI process and establish communican from
an existing MPI application. On the other hand, MPI routines such as MPI MPI _COMM _ACCEPT and
MPI1_COMM _CONNECT can be used to establish communication between two indepslent processes. More
MPI speci ¢ details on dynamic process model can be obtained from [§ [34].

To analyse the proposed intelligent agent based approach a parallaeduction algorithm is considered.
Parallel reduction algorithms implement the bottom-up approach of binary trees [35], and are of interest in the
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Fig. 4.1 . lllustration of the parallel summation algorithm.

context of applying autonomic computing concepts to parallel compting systems due to two reasons. Firstly,
the computing nodes of a parallel reduction algorithm tend to be criical. The execution of the algorithm stalls
or produces an incorrect solution if any node information is lost. Seondly, parallel reduction algorithms are
employed in critical applications such as space applications. Such afipations require autonomic distributed
systems.

Parallel summation is an exemplar of parallel reduction algorithm con&lered in this paper. If this class of
algorithms do not incorporate fault tolerance concepts, then if a omputing node fails due to an unpredictable
event, the execution of the algorithm would stall.

The general concept of the algorithm is illustrated in gure 4.1. The agorithm works in four sequential
levels. The rst level comprising nodesN; Ng receives a live input feed of datal; 1g. The second level
comprising nodesNg N1, receives data from the rst level, adds the data received and yieldshe result to the
third level nodes N13 and Ny4. The fourth level, adds data received from the third level nodes ad produces
the nal result.

For a given time step, every node in a level operates in parallel. Eachate is characterized by input
dependencies (process or processor a node is dependent on fgaiving an input), output dependencies (process
or processor a node yields data to as output) and data contained irthe node. The rst level nhodes have one
input dependency and one output dependency. For instance, naN; has one input dependency; and nodeNg
as its output dependency. However, the second, third and foutt levels have two input dependencies and one
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Fig. 4.2 . Mapping hardware nodes of the cluster to logical nodes in the abstracted layer.

output dependency. For instance, nodeN 3 of the third level has nodesNg and Nig as input dependencies and
node N5 as output dependency. The data contained in a node is either the inpt data for the rst level nodes
or a calculated value (sum of two value in the case of a parallel summain algorithm) stored within a node.

A layer that abstracted the hardware resource layer, otherwisereferred to as the abstracted layer had to
be implemented. The hardware resource layer comprises physicabdes of the cluster and is connected via a
switch, thereby forming a fully connected mesh topology. Howeverthe abstracted layer is obtained when the
physical nodes are abstracted as logical nodes. This is possible by phementing rules/policies. The policies
are such that a process can only communicate with a vertically, horiantally or diagonally adjacent process,
e ectively leading to a grid topology on the abstracted layer. For example, nine nodes forming a fully connected
mesh topology in gure 4.2 is abstracted to a grid topology in the abstaction layer.

The intelligent agents implemented in the parallel summation algorithm are with respect to the cognitive
capabilities of agents considered in Section 2. The agents on the abacted layer are created such that they carry
input and output dependencies and data. Since, parallel summations relatively less complex when compared
to other computational algorithms, the agents carry little information and have only few dependencies.

Each process executing on a node also gathers some sensory infation to predict whether a node is
likely to fail. The sensory information enables an agent to know its ownsurroundings on the computational
environment, hence demonstrating the rst cognitive capability considered in Section 2.

In the implementation presented in this paper node temperatures ge simulated. When the temperature
of a node rises beyond a threshold, the process executing on thabde predicts a failure and hence spawns a
process on an adjacent core in the abstracted layer. In this casan agent gathers sensory information on rising
temperature than can likely impair or deteriorate its functioning, th ereby demonstrating the third cognitive
capability considered in Section 2. When rising temperature is dete@d, an agent has the potential to identify
a node in the computational environment on which a new process cahe spawned, thereby demonstrating the
second cognitive capability considered in Section 2.

The agent on the abstracted core expected to fail shifts to the djacent core on which the new process was
spawned. An agent is capable of passing from one node to anotheghereby demonstrating the fourth cognitive
capability considered in Section 2.

The dependency information carried by the agent that was shiftedto the new core is employed to reinstate
the state of execution of the algorithm. The data for summation coitained in the agent, either obtained from
a previous level or a calculated value to be yielded to the next level, esures that information is not lost and
does not a ect the nal solution in critical applications.

Since the agents possess cognitive capabilities autonomic computirapjectives such as self-con guration,
self-healing and self-optimizing and autonomic computing attributessuch as self-awareness, self-situated, self-
monitoring and self-adjusting are inherently achieved. Hence, theapproach implemented above incorporates
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Fig. 5.1 . Time taken for an agent transfer from a computational node in the third level to an adjacent node. Mean time for
agent transfer in third level nodes MT_, =0:343 sec.

concepts of the intelligent agent approach in swarm-array compuhg and is a preliminary step towards applying
autonomic computing concepts to parallel computing systems.

The method proposed is an ample demonstration, though not highly sphisticated, that accommodates the
concepts of intelligent agents leading towards achieving a few auta@mic computing objectives and attributes.

5. Results. Ty, , the time taken by an agent to transfer from a nodeN,, predicted to fail onto an adjacent
node in the abstracted layer and re-establish all process dependeies for seamless execution was noted. Nodes
N13 and N14 as shown in gure 4.1 are the third level computational nodes of theparallel summation algorithm,
and hence are the only nodes considered for calculatingy,, in this paper. Thirty dierent trial runs were
performed to gather the statistic.

Figure 5.1 is the plot that shows Ty, for the third level nodes N13 and N14 for 30 di erent trials.

Further, MTy, , the mean time of Ty, for a particular node was calculated. This metric yields information
on the mean time taken by an agent to transfer from a nodeN, predicted to fail onto an adjacent node in
the abstracted layer and re-establish all process dependenciesrfseamless execution.M Ty, is calculated as
follows:

)@0
MTy, = T. 30,n=13:14 (5.1)

TR=1

and TR being independent trials.
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MT_,;p = 3, the mean time taken for an agent transfer from all nodes predtted to fail in the third level
of the parallel summation algorithm onto an adjacent node in the absracted layer is calculated as follows:

MTL3= = MTNn (52)
n=13

The mean time for an agent transfer from a computational node in he third level to an adjacent node in
the abstracted layer is obtained asM T, = 0:343sec indicated by a red axis line in gure 5.1.

This statistic is the time taken for reinstating execution after a predicted third level node failure. If other
approaches such as traditional checkpointing with human adminstation was employed, reinstating execution
would be atleast in the order of minutes. This brief comparison revel that the intelligent based approach
is e ective than traditional methods. Hence, applying autonomic camputing concepts to parallel computing
systems is bene cial.

In short, though preliminary results obtained through simple expeliments are presented, the intelligent
agent based approach of swarm-array computing proposed in thipaper is promising and paves a path for
bridging autonomic computing concepts and parallel computing sysems.

6. Discussion & Conclusion.  The impact that swarm-array computing can bring about can be foreseen
by taking into account the industrial or business perspective and esearch perspective. From the industrial
viewpoint, achieving autonomy in parallel computing systems is prodative. The path towards autonomy can
be equated to increasing reliability of geographically dispersed systes and hence reduction in total cost for
maintenance. From the research perspective, achieving mobility ofwarm agents in a heterogeneous parallel
computing environment opens a new avenue to be explored. Moreev, swarm-array computing can be proposed
as a new approach for closer examination and investigation.

From an application oriented point of view, swarm-array computing can be more assuring for applications
that demand reliability. One potential application that can be in uenc ed includes space applications. Space
crafts employ FPGAs, a special purpose parallel computing systenthat are subject to malfunctioning or
failures of hardware due to "Single Event Upsets' (SEUs), causedytradiation on moving out of the protection
of the atmosphere [36]{[38]. One solution to over-come this problem igo employ recon gurable FPGAs.
However, there are many overheads in using such technology andatdware recon guration is challenging in
space environments. In other words, replacement or servicing diardware is an extremely limited option in
space environments. On the other hand software changes can complished. In such cases, the swarm-
array computing approach can provide solutions based on agent nimlity and minimize overheads in software
uploading and exclude requirement to recon gure hardware.

In this paper, a swarm-array computing approach based on intelligat agents that act as carriers of decom-
posed tasks has been explored. Foundational concepts of a swadarray computing approach namely intelligent
agent based approach is considered. The feasibility of the propodepproach is validated on a multi-agent sim-
ulator. Experimental results obtained from a cluster based implematation of a parallel summation algorithm
that implements concepts of intelligent agents is presented. Thouly only preliminary results are presented in
this paper, the approach gives ground for expectation that autmomic computing concepts can be applied to
parallel computing systems and hence open a new avenue of reselaiin the scienti c community.

Future work will aim to study the other swarm-array computing app roaches considered in section 2. E orts
will also be made towards implementing the approaches in real time onther parallel computing systems using
other existing middleware for parallel computing systems.
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