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FORMAL MODELLING AND SIMULATION
OF A MULTI-AGENT NANO-ROBOTIC DRUG DELIVERY SYSTEM

MARINA NTIKA; PETROS KEFALAS] AND IOANNA STAMATOPOULOU?

Abstract. Targeted drug delivery with the use of nanorobots, a yet mostly theoretical but very promising future concept, is
anticipated to become a significant ally in cancer treatment. The way that nanorobot systems are currently envisaged by researchers
is such that they exhibit autonomous and collaborative behaviour that can be uniquely captured by multi-agent systems. In this
paper, we investigate this hypothesis by describing the process of formally modelling a simple agent-based system for a simulation of
targeted drug delivery. We propose a system comprising different types of nanorobots, and evaluate the effects of various parameters
on the final outcome. The data that were retrieved from the corresponding simulation runs, are in support of our hypothesis,
demonstrating that nanorobotic drug delivery systems can be effectively simulated by utilising intelligent agent technology.

Key words: multi-agent system, simulation, drug delivery, nanorobots, formal modelling

AMS subject classifications. 68T42, 68U20

1. Introduction. Multi-Agent Systems have established their applicability in studying complex systems
that involve a number of heterogeneous resources working collaboratively towards solving a common problem,
despite the fact that each individual might have partial information about the problem and limited capabilities.
As stated by Brooks in [4, 3], Multi-Agent Systems (MAS) may potentially exhibit “emergent intelligence”
commonly found in biologically inspired systems.

In parallel, Nanotechnology, currently one of the most important and fast growing areas in modern science,
focuses on manipulating matter with dimensions similar to the ones of biological molecules. Many scientific
fields, such as Physics, Material Sciences, Chemistry, Chemical Engineering, Microbiology and Genetics, are
currently enjoying the fruits of nanotechnological research [10], which has already led to various commercially
available applications, but what appears to be amongst the most promising endeavours is the development of
nanotechnological constructs targeted for medical use. One quite attractive but also challenging such application
is the targeted drug delivery, which is anticipated to be a revolutionary strategy for overcoming serious barriers
in health impairments, and nowadays, with the rapidly increasing nanotechnology advances, is regarded as one
of the most promising research topics worldwide.

Combining the aforementioned research areas, our contribution focuses on the formal modelling and devel-
opment of a MAS simulation of nanorobots that deliver an appropriate pharmaceutical substance to unhealthy
human body tissue. Inspired by the fact that in silico experimentation has established its importance to the
research community over the past decade, with mathematical models, algorithms and computer simulations
having proven to be valuable allies in studying various and diverse problems in the fields of Biology and Medical
Sciences [31, 24], we opted to simulate a simple targeted drug delivery system.

The paper is organized as follows: Section 2, briefly discusses the current status of nanotechnology in
medicine and the way computer simulations are employed in medical nanorobotics, with special focus on Multi-
Agent System simulations. In Sections 3 and 5 our proposed system is presented and the formal modelling,
simulation design and implementation processes are described. Section 6 includes the experimental analysis and
the results of the simulation runs. In Section 7 the contemporary approaches in manufacturing robots in the
microscale are presented, and finally, we conclude with a short discussion for further work in Section 8.
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2. Background and Similar Work.

)

2.1. Nanotechnology in a Nutshell. The prefix “nano-” means a billionth, hence, when it is added in
front of the word “meter” it denotes a factor of 102, resulting in dimensions comparable to atomic diameters.
Consequently, Nanoscience studies the properties of objects at the nanoscale, and Nanotechnology focuses on
manipulating matter in structures with at least one dimension sized from 1 to 100 nanometers. Both fields have
a multidisciplinary core, involving researchers of diverse backgrounds and with variant skills. Current advances
in the domain have been receiving much attention for the past two decades, both from the Academia and the
Industry, largely due to the fact that nanostructures exhibit unique properties and characteristics [29, 26, 53],
profoundly different than the ones that have been observed at the macroscale.

A plethora of applications in a wide range of fields are currently available, spanning from flexible digital
screens to self-cleaning surfaces, from nanoparticle comprised catalysts [48] to carbon nanotubes acting as
chemical sensors [51] etc. However, the potential of nanotechnological constructs targeted for medical use is of
special interest.

Nanoparticles, being considered as the building blocks for nanotechnology, are of great scientific interest, due
to the unique properties they often possess. Those properties are mostly attributed to the far larger surface area
of nanostructured materials compared to masses built from larger-scale blocks. From a biomedical viewpoint,
their size is what makes them a very attractive option for a variety of applications, among which drug-delivery
and biological and chemical sensing being the most predominant ones. When used for drug-delivery systems,
the nanoparticles carry a payload that consists of an appropriate pharmaceutical substance or other types of
payload, i.e. proteins, genes etc. This payload is encapsulated in a biocompatible and possibly biodegradable
coating. Due to their small size, nanoparticles can evade immune system detection and cross the blood-brain
barrier gaining access to the brain. Nanoparticles suitable for drug-delivery, such as dendrimers, nanocrystals,
polymeric micelles, lipid nanoparticles and liposomes [15] are already being manufactured. Those nanostructures
exploit their inherent biological characteristics, and are based on molecular and chemical interactions to achieve
the target-specific delivery or their biochemical sensing. In in-vitro experiments [25, 43], the target recognition
is performed by administering these nano-vehicles into a cell-culture or some other suitable substrate, whereas
in in-vivo [27, 16] experiments the nanoparticles are injected into the area of interest, either the bloodstream
or at specific animal body sites. The nanoparticles can only recognize their target and bind to it when they
randomly come in contact with it. Additionally, the process of releasing their payload lies purely on the rate
by which their protective surface biodegrades.

Notwithstanding the fact that research in this domain is still in its infants, scientists already envision a
far more effective schema, where the nanodevices will attain additional properties, such as communication and
navigation. These nanodevices can be also characterized with the term “nanorobot”.

2.2. Simulation in Medical Nanorobotics. Although a plethora of nanotechnological applications are
already commercially available [34], what is considered as a fundamentally important sector, human health, is yet
to enjoy substantial benefits. This is partially due to the very nature of medical research, which requires lengthy
periods of time, usually at least a decade, and adherence to strict protocols, before any new developments are
encompassed. Under these circumstances, computer simulations offer a great advantage towards accelerating
both the basic and applied research processes.

Computer simulations can offer an advantageous insight into medical nanorobotics. On one hand, appro-
priately designed simulations provide a method for thoroughly investigating the properties and dynamics of
virtually any conceptual system. Data can be collected and possible behavioural patterns may be discovered,
even before the physical elements comprising the system are technologically available. On the other hand, such
simulations can produce valuable information on the way those physical elements must be built.

Recognising the beneficial implications of biomedical computer simulations, a number of studies have been
published during the last decade. Unmat et al. [52] discuss the use of Molecular Dynamics, Molecular Kinematic
and Monte-Carlo simulations to assist in predicting the performance of bio-nanocomponents on a molecular level,
such as energy and force calculations, calculating all feasible conformations of a biomolecule etc. Sharma et
al. [46] discuss the potential of combining Molecular Dynamics simulations with Virtual Reality to portray more
accurately complex molecular structure models, that include unique nano-properties such as interatomic forces,
electrostatic fields around molecules etc.
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Going further to study the possible coordination and control of a swarm of nanorobots that are inserted in
body tissue, Calcavanti et al. have developed the Nanorobot Control Design (NCD) simulator [5]. In [5], the
NCD simulator is used to investigate a fractured coronary artery. The environment of the fractured artery was
initially simulated using FLUENT, a finite-volume based Computational Fluid Dynamics (CFD) package [14].
The simulation in FLUENT produces a set of output data, such as the temperature heterogeneity that is known
to exist over inflamed plaque surfaces. Those data are subsequently fed as input to NCD, along with several
other parameters produced by FLUENT, i.e. blood flow velocities in different parts of the arteries, cytokines
and adhesion molecule concentrations that are of interest etc. NCD then produces the visual representation
of the nanorobots operating environment. The authors demonstrate the applicability of NCD by using it to
determine the optimal values of trigger events that would cause a nanorobot to perform its pre-defined task. The
nanorobots, as envisioned by the authors, comprise molecular sorting rotors and robotic arms, biocompatible
exteriors and chemotactic sensors for distinguishing between different molecules and detecting possible obstacles
in their route.

NCD is used to further simulate other nanorobotic systems for medical applications, such as the potential
benefits that could rise by using nanorobots in laparoscopic cancer surgery [8]. Nowadays, the use of sophisti-
cated robotics machinery in laparoscopic cancer surgeries is widespread, with the daVinci surgical system [17]
being the cutting-edge technology used. DaVinci comprises a surgeon console, a patient-side cart and an image-
processing or insufflation stack. It is proposed by the authors to add nanorobots as a component, in order
to achieve advanced high-precision mapping of cancerous areas that the surgeon must dissect. CMOS manu-
facturing technology is suggested, with addition of chemical sensors to detect chemical changes. The authors’
simulation focuses on the chemical signal detection capabilities of 50 nanorobots inside a vessel, and on the man-
ner that the vessel size and the relative position of the nanorobots to the vessel walls can affect measurements.
Additional NCD simulations may be found in [6, 7].

Following this brief discussion on the impact that computer simulations may have on refining the charac-
teristics of future nanorobots, it is purposeful to investigate what type of model is appropriate for capturing
the dynamics of such a system.

2.3. Nanorobots as a Multi-Agent System. The characteristics that future nanorobots for medical
applications should possess are described in [38], to include biocompatibility and power to function, communi-
cation and navigation. A variety of nanorobotic design and control required functionalities is discussed in [52],
including amongst them swarm behaviour and bio-nanointelligence. The authors attribute the capability of
making decisions to the latter term. It can be therefore stated that, overall, nanorobot coordination is of
paramount importance, as nanorobots will need to coordinate their actions in a decentralized manner, to be-
have cooperatively, to be programmable and able to process information, all combined towards achieving a
common goal.

Setting aside the issue of biocompatibility, which falls mainly under the scope of biological research, the
remaining features, namely power supply, communication, navigation and coordination, have to be considered
when selecting the software approach that would be suitable for modelling a system comprising nanorobots.
Such a system can be conceptualized as a number of autonomous entities, each having own individual features
and properties, which work collaboratively towards achieving a common goal. Following this line of reasoning,
a multi-agent system appears to be an appropriate approach that captures this type of collaborative behaviour.

Holland and Melhuish [19] focused on investigating minimal agents’ systems, by simulating agents with
minimal sensing, mobility and computational capabilities either homing a static beacon or following a moving
one. Several algorithms are implemented and compared, with or without agent interaction, in an effort to
study the possible collective behaviour of micro- and nano-robots. One of the interesting findings in this work
is the capability of secondary swarms in tracing the attraction source. Towards that direction, Melhuish and
Welsby in [32], specifically studied the impact of secondary swarming by implementing some of the algorithms
from [19] in real blimp robots that were carrying 96¢ of Helium as a payload, and found significantly increased
performance in homing a static beacon when incorporating collective behaviour compared to employing purely
individualistic strategies.

A multi-agent system simulation is used in [41] that includes an indirect communication model (i.e. agents
with no direct communication but able to communicate with a base station), and to investigate its effect on the
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efficiency of locating a target within a complex and dynamically changing environment, comprising biological
cells that deform over time. A multi-agent simulation is designed for cancer monitoring using nanorobots [42].
Using NetLogo [54] three simple bio-inspired strategies of nanorobot target finding in complex fluid environments
were implemented and results are presented by comparing the average times of locating the target. The results
of the ran experiments indicated that all strategies were effective in locating the target within the pre-set time
limit, with the “wandering” strategy, i.e. aimlessly moving agent, adjusting direction when it senses the target,
producing the best finding times.

3. A Nanorobotic Targeted Drug Delivery System. In [37] we presented a simulation of a number
of nanorobots with chemical sensing and communication capabilities, that searched, targeted and eventually
destroyed a tumour. In particular, our scenario’s environment includes a number of cancerous cells forming
a tumour within a human body. The tumour is located in close proximity to some vascular supply and its
approximate location is assumed to be known via existing imaging techniques, therefore an appropriate injection
site near the area of interest is presumably selected. A number of nanorobots are subsequently injected to the
bloodstream with the purpose of precisely locating the tumour, and then delivering their pharmaceutical payload
so as to destroy the tumour cells.

For our simulation, we opted on simulating three different types of simple nanorobots, each group having
one main capability. Namely, some “tracking” nanorobots, bearing appropriate chemotactic sensors that can
trace the gradient of some chemical marker, some “barrier degrading” nanorobots carrying payload that can
help penetrate the vessel wall, and some “drug delivery” nanorobots carrying payload that can destroy the
cancerous cells. Our simulated nanorobots are presumed to have limited communication capabilities, that is
they are able to send and receive messages and are also limited in energy. Overall, this suggested scenario
incorporates the four key features of future nanorobots i.e. power to function, communication, navigation and
coordination. A schematic representation of the scenario is shown in Fig. 3.1.

4. Modelling and Design. In order to map the entities described in section 3, the following roles were
attributed to three different types of agents: Tracking, Barrier Degrading and Drug Delivery. We used finite
state machines extended with memory (X-Machines) [22] to formally design the agents behaviour and plans.
The following sections describe the process of formal modelling for our proposed system.

4.1. Formal Modelling with X-Machines. An X-machine (X) is defined as: X = (£, T, Q, M, ®, F, qo,

myg) [20], where:

e Y and I" are the input and output alphabets.

e () is a finite set of states.

e M is a (possibly) infinite set called memory.

e & is a set of partial functions ¢; each such function maps an input, a memory value and an emotional
state to an output and a possibly different memory value, o : X x M X E =T x M.
F is the next state partial function, F': Q x & — @, which given a state and a function from the type
® determines the next state. F' is often referred to as a state transition diagram.

e gy and mg are the initial state and initial memory.

X-machines are state-based machines extended with a memory structure. This particular feature makes
modelling more intuitive and leads towards refinement of the model and eventually implementation. In contrast
to memory-less state machines, the transitions between states are not triggered by inputs alone, but by functions
that accept an input and the memory values and produce an output and new memory values. Again, this leads
nicely towards the final implementation.

There are significant advantages by applying formal modelling mainly concerned with verification and
testing. In particular, X-machines have significant advantages over other methods because of their strong legacy
of theory and practice in: modelling potential for dynamically structured MAS [47], refinement, animation and
simulation [40], testing methods that prove correctness [20] with tools for automatic test generation [11], and
model checking for verification of properties [13]. It has been demonstrated that X-Machines and its extensions
are particularly useful for modelling biological and biology-inspired MAS [23].

4.2. Simulation Design. Tracking nanorobots (T-bots) are designed as reactive agents, that are initialized
in a state of moving randomly. They are able to sense their environment, and more particularly to accept as
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Fig. 3.1: Schematic representation of the targeted drug delivery scenario

input their current location and the protein levels in their surroundings. Once the protein level detected exceeds
a predefined value considered as Threshold1, they send a message to a random Barrier Degrading nanorobots
(B-bots) in the area, transmitting the corresponding coordinates. They continue moving, until they sense the
second protein level value, considered as Threshold2, and then they broadcast a message to all Drug Delivery
nanorobots (D-bots) in the area. From initialization and onwards, the T-bots are considered to spend a portion
of their initial energy with their every action, namely moving and transmitting messages. Once their initial
energy has ran out, the agents die and are removed from the system. The corresponding X-Machine model is
depicted in Fig. 4.1. The diagram is an illustration of F' (the next state partial function).
The rest of the formal definition falls outside the scope of this paper. However, briefly:

o ¥ = {empty_space : (R,R), protein_level : R} is the input alphabet;

e T is the output alphabet (any actions performed onto the environment and any messages sent to other
agents);

e (Q = {moving, protein_detected, dead} is the set of states.

o M = ((z,y), Energy, SensingRadius, ProteinThesholdl, ProteinT hreshold2) is the memory holding
the position of the agent, its energy which degrades over time, the radius in which the protein can be
detected and the protein thresholds which trigger the message passing.

o & = {move — randomly, energy — exchausted, detect — protein, continue — searching,
inform — B — bots,inform — D — bots} is the set of functions ¢; for instance the function energy —
exhausted is defined as: energy — exhausted(empty_space, ((z,y),0,r,
bs,ds,t1,t2)) — (Poutoforder”, ((x,y),0,r,bs,ds,t1,¢2))). Similarly, the rest of the functions are de-
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M = ( (x,y), Energy, SensingRadius, ProteinThreshold1, ProteinThreshold2)

move-randomly inform-B-dots

detect-protein

Protein Detected

continue-searching

energy-exhausted inform-D-dots

@ Dead

Fig. 4.1: X-Machine model of Tracking nanorobots (T-bots)

fined.
e go = moving and an example of initial memory might be my = ((4,8), 15,2, b1, b2, b3,
d6,d7,d8,0.14,0.17) are the initial state and initial memory.

B-bots are initialized as idle, and awaiting for a message from the T-bots. Upon receiving this message,
they start moving towards the coordinates that are included in the message they received. Their target location
is considered to be near a vessel, since tumours need blood supply to grow and in fact stimulate the growth
of new vessels towards them by producing chemical signals, a process known as angiogenesis. Once the B-bots
reach their target location they move around in a pre-defined radius, searching for a vessel cell. When they
detect it, they release their payload and degrade it. Upon doing so, they also broadcast a message to the D-bots,
transmitting their current location that implies that a pathway has been created for the D-bots to pass through
and head to the tumour. Similarly with T-bots, the B-bots are assumed to have an initial energy that declines
over time with their actions, and once it is exhausted, the agent dies. The corresponding X-Machine model is
shown in Fig. 4.2.

Finally, the D-bots are initialized idle and waiting for a message which is initially received by the B-
bots. Upon receiving the coordinates, the agents move towards the target. By then, the T-bots have also passed
through the pathway in the vessel and have accessed the tumour, which means that they have also sent messages
with the coordinates where the higher protein level has been detected. Therefore, the D-bots receive a number of
target locations, and once again start moving towards them. Their architecture is hybrid, comprising a reactive
layer, meaning that if upon moving they come into proximity of a cancerous cell, they release their payload and
destroy it. There is also a BDI-type layer, which involves stacking the coordinate data and creating respective
goals of reaching the target cell and destroying the cell in location. The corresponding X-machine model is
shown in Fig. 4.3.

4.3. Design Constraints and Limitations. Biological systems are inherently complex, and any attempt
to model them is accompanied by applying several layers of abstraction. One of the major simplifications of our
model is that it does not take into consideration the real environment of the nanorobots in the bloodstream. In
reality, the blood itself consists of blood-cells, free macromolecules, etc., elements that are in fact considered to
be moving obstacles that the nanorobots should avoid. Additionally, when focusing on the nanoscale, electric
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M = ( (x,y), Energy, SensingRadius, PayloadCapacity, Goal)
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Fig. 4.2: X-Machine model of Barrier Degrading nanorobots (B-bots)

forces are of paramount importance. Finally, when moving in the blood, the nanorobots’ movement will be
affected greatly by the blood flow.

Furthermore, the physical quantities that are involved in our design, such as energy, time, payload capacity
etc. are in our simulation treated as unit-less entities. If such a system was ever to be implemented, all these
parameters should be tuned to correspond to some real measurable quantities. This includes any constraints
that might be attributed to the limited resources that real nanorobots might have once developed.

Overall, it is important to stress out that our simulation does not attempt to mimic a real nanorobotic
drug delivery system, since nanorobots are still theoretical constructs, and there is no way to predict their
individual characteristics in a low-detail level. However, our work focuses on demonstrating the applicability
of MAS simulations to model a drug delivery system and in doing so, takes into consideration only a limited
number of parameters and functionalities.

5. Simulation of our model. The rapid growth of Agent Based Modelling is accompanied by an increase
in the number of software platforms that are utilized for building agent based simulations [2]. Some of the most
popular ones are Swarm [33], Repast [36], MASON [28], FLAME [9] and NetLogo [54], the latter being our
selected choice amongst the rest of candidates because it is simple and powerful enough to meet our aims. Our
choice would have been different if the simulation was meant to increase in scale and functionality.

NetLogo is both a programming language and a programmable modelling environment for simulating multi-
agent systems, with a built-in graphical user interface for immediate visualization of the simulation. Language-
wise, NetLogo supports agents with a rather extensive vocabulary of built-in primitives. Our criteria for selecting
NetLogo as the development framework include the following;:

e Given that the vast majority of our system’s functional requirements involve spatial movement, the
most fundamental consideration was to utilize a platform that would natively support spatial agent
characteristics.

e Based on the user requirements, manipulating the model’s parameters and collecting the simulation
results should be accomplished in a user-friendly manner.
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M = ( (x,y), Energy, SensingRadius, PayloadCapacity, Goal)
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Fig. 4.3: X-Machine model of Drug Delivery nanorobots (D-bots)

e Availability of runtime visualization was desirable, since this would provide the additional benefit of
observing behaviours that are not necessarily reflected on the numerical data collection.

e Agent communication should also be supported, as well as the implementation of both reactive and
proactive agent architectures.

NetLogo is a platform primarily intended for constructing social and natural phenomena models, it thus
meets the first three criteria but does not support neither agent communication nor proactive architectures [45].
Two NetLogo libraries [44] were used, one that includes procedures and reporters tailored to implement message
passing, and thus agent communication may be achieved and one for implementing some form of proactive
behaviour. The former library includes primitives for creating, sending and receiving a message that follows
closely the FIPA-ACL [50] message format.

6. Results and Experimental Analysis. The simulation graphical interface is presented in Fig. 6.1.
A simple experiment was conducted. In a scenario closely mapped to Fig. 3.1, the environment was set-up
with the upper area representing the body tissue, the middle (brown) area representing the vessel wall and the
bottom (red) area representing the blood within the vessel. Within the body tissue area, a number of tumour-
cells (purple) depicting the tumour were created in a random position, and the remaining area was filled with
body-cells (pink). Subsequently, the area surrounding the tumour was given a protein concentration property,
with a value gradually declining with distance from the tumour walls. A user-defined number of each type of
agents, namely Tracking T-bots, Barrier Degrading B-bots and Drug Delivery D-bots, were randomly initiated
in the bottom left side of the simulation area, which was selected to represent the injection site. Three possible
experiment outcomes were identified:
1. Tumour eliminated: no more tumour cells left in the simulation world;
2. Failure to eliminate tumour: no more D-bots left but at least one tumour cell exists;
3. Fuailure to complete experiment: one or more D-bot fail to transition from idle state because all B-bots
fail to degrade even one vessel cell.
By using the integrated NetLogo BehaviorSpace tool, a number of experiments were executed for different
sets of parameter values, and with 500 simulation runs for each experiment. Although normally a thorough
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Fig. 6.1: Simulation Interface: The graphical interface developed to run the simulation

statistical analysis would be required, at these early stages we decided to run simple experiments in order to
visualize the agent models created as well as to verify certain aspects of the experiments which were intuitively
predicted. The stochastic elements in these experiments are simply based on the random setup of the agents as
well as on their random move. Apart from this, individual agents were designed to operate in a deterministic
way which however in collaboration results in an emergent behaviour.

The experiments were grouped into four categories, one for each set of parameters, i.e. number of T-bots,
number, payload capacity and sensing radius of B-bots, number and payload capacity of D-bots and energy.
The purpose was to estimate how different values for each of these entities would result in one of the three
possible outcomes. For each experiment in a group, the relative frequencies of occurrence of the three possible
end-results were calculated.

The results were qualitatively assessed and interpreted under two perspectives. On one hand, some con-
clusions were drawn that indicate the effect of the parameter values on the designed simulation outcome. On
the other hand, the results were considered as likely offering some insight on how to improve the design of the
system, hence, produce a more efficient or error-free model. Lacking any real-life experimental data to compare
our results with, the model itself was validated against the main objective of tumour destruction.

The first conclusion that was drawn is that the system was able to accomplish the set goal of tumour
elimination. As the results indicated, even with a low numbers of T-bots and B-bots, and even with a low D-bot
payload capacity and sensing radius, it was still possible to eliminate the tumour. Nevertheless, the highest
percentages of tumour elimination were achieved for high numbers of active agents. Various experiments have
verified the intuition one might have about the importance of the three parameters in the simulations. For
instance, failure to eliminate the tumours is related to the number of agents of each type. This is apparent
when we incrementally increase the number of agents of each type, as shown in Fig. 6.2. However, the results
indicate that the effect of increasing numbers of T-bots and B-dots becomes important for low numbers of
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agents. The corresponding curves reach a plateau, and numbers higher than do not seem to lead to higher
success percentages. Similarly, regarding the D-dots, a minimum threshold appears to exist, in the sense that
with less than 8 D-bots the percentages of successful outcomes were close to zero. A steep increase appears after
above between 8 and 10 D-bots, and once again, a plateau seems to emerge for slightly higher numbers. This
observation suggests that there is a narrow band of appropriate values for the number of D-bots. Naturally, this
observation is strongly correlated to the specific model, however, this phenomenon is a fitting example of how
MAS simulations may offer advantageous insight into better understanding and possibly improving complex
systems.
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> Failed To Eliminate Tumour
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Fig. 6.2: Frequencies of outcomes plotted against numbers of agents

Further observations include:

e The effects of the B-bot sensing radius and payload capacity and the D-bot payload capacity were
investigated. Regarding the B-bots, it appeared that even with a maximum value for their number, the
percentage of tumour elimination is very low. This was attributed to the fact that —in the specific
design— for the B-bots to penetrate the vessel wall they needed to degrade two consecutive vessel cells.
With the payload capacity and the sensing radius set at the minimum value, tumour elimination was
an extremely rare occurrence.

e It was also estimated that the B-bot payload parameter affected the outcome substantially more than
the sensing radius. Indeed, when the payload was minimum, even with a high sensing radius, the
“Tumour eliminated” outcome was quite rare, with recorded frequencies ranging from 1.83% to 3.33%.
On the contrary, a minimum percentage of 15% was recorded when the payload was set to a medium
value. This effect, however, is not observed for the maximum value for the sensing radius, implying that
its significance lessens from a certain point onwards. Even with both parameters set on their highest
values, tumour elimination was recorded in roughly 65% of the cases. This result, compared to the
percentages of the control experiments (medium values for all parameters), supports the argument that
the number of D-bots affects the outcome more strongly than the B-bot payload and sensing radius.

e The D-bot payload appeared to contribute greatly to the outcome, where an increase reaching almost
88% for successful tumour elimination was observed when the corresponding parameter was set from
low to medium. However, this increase became minimal between medium and high values for the same
parameter, implying that its contribution had reached a plateau. This observation could offer insight
on determining the optimum payload capacity, should such a system be realized in real-life.

e A set of experiments were designed specifically to estimate the effect of the energy parameter, that would
be of special interest should such a system ever exist in reality. The results are shown in Fig. 6.3. The
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percentage frequencies of occurrence of the “Tumour Eliminated” and “Failed to Eliminate Tumour”
outcomes were plotted against the corresponding values of the energy parameter, while maintaining
average numbers. A correlation may be observed between the two sets of variables, indicating that
as the energy values were incrementally increased, the probability for tumour elimination increased as
well, whereas the probability for failure to eliminate the tumour decreased. Additionally, for energies
lower than 100, the agents could not achieve tumour elimination, whereas for energies higher than 600,
the percentage of success seems to remain unaffected. Once again, this indicates that MAS simulations
could possibly be used to identify lower and upper limits in the values of parameters of interest, should
such a system ever be realized. The line for the “Failure to Complete Experiment” outcome is not
plotted, as it has no practical value. However, the percentage of its occurrence may be directly deduced
from the graph.
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Fig. 6.3: Frequencies of Tumour Eliminated and Failed To Eliminate Tumour outcomes plotted against the
energy values.

Regarding the system’s overall functionality, the experiments served as an indirect validation against the
set requirements. A successful outcome, i.e. a “Tumour eliminated” result was reproducibly achievable. The
observed “Failed to complete experiment” high percentage in experiments with all parameters set to their lowest
values was anticipated. It was a design decision to favour energy preservation over experiment completion
concerns, by initializing both B-bots and D-bots awaiting for a message before exiting the initial idle state.
This lead to the possibility of these agents staying inactive, in the case that not enough 7T-bots managed to
sense the protein gradient. Nevertheless, the observed percentages in subsequent experiments with high values
for the agent parameters, suggest that a better design should perhaps be considered, to combine both energy
preservation with optimum experiment completion occurrences.
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7. Nanorobotics: Simulation versus Reality. Currently, the nanorobots as envisaged in our system,
are purely theoretical artifacts. Nanorobots are a distant and ambiguous concept. However, researchers in-
volved in the domain insist that studying and attempting to mimic nature’s molecular machines, which have
been working and optimizing their functionalities over millions of years, might be the best approach towards
fabricating real nanorobots. A roadmap proposed in [30] describes the following steps, yet far from reality:

e Developing bio-nanocomponents, such as bio-nanosensors and bio-nanomotors;

e Assembling the bio-nanocomponents into bio-nanorobots;

e Developing the concepts for nanorobot collaboration (bionanoswarms), establishing the methods for
distributive intelligence, programming and control;

e Developing and implementing automatic fabrication methodologies.

Technology nowadays allows for fabrication of micro- rather than nano-components. Spiral-shaped devices
with lengths of approximately 50 pum, that are able to swim in a controlled fashion under weak magnetic field
application have already been constructed [55]. Fabrication of a prototype autonomous robot of size 3.9 x 3.9 x
3.3 mm?, with communication, locomotion and energy storage capabilities is possible [12]. The first controlled
vertical flight of a 19 mm sized microrobot has been announced [39]. These technological advances are merely
mentioned to report the current status of microrobotic fabrication, indicating that manufacturing capabilities
become more limited as size decreases.

However, what is of significant interest from a MAS viewpoint is the prospects of nanoro-botic communica-
tion and collaboration. To achieve nanorobotic collaboration, strategies for communication among nanorobots
must be designed. Communication by means of acoustic waves has been recently investigated by Hogg and
Freitas, and findings were reported in [18]. Spherically shaped robots of three different radii; 0.5 um for the
size of an isolated nanorobot, 5 pm for nanorobot aggregates that would address tasks requiring greater than
individual capabilities, and 50 pum for the size of tissue-embedded signal repeater stations were mathemati-
cally investigated. It was concluded that communication could occur at 10* bits/s, over distances of 100 pm,
depending on available power and on safety constraints (i.e. nanorobot heating).

Another approach towards communication is once again inspired by nature, namely chemical signalling. This
method for communication has been observed both in the macro-world (ants that release and sense pheromone
trails [21]) and in the microworld (bacteria that produce and respond to signalling molecules called autoinducers,
in a process called quorum sensing [49]).

The issue of coordination will require far more elaborate mechanisms. Swarm intelligence may currently
be investigated only via computer simulations. The decentralized movement coordination by implementing
an enhanced version of common flocking algorithms is investigated [1]. A framework based on an adopted
variation of the Artificial Bee Colony algorithm is also proposed [35]. It is evident that the actual fabrication
of nanorobot-swarms will require the realisation of individual nanorobot assembly first, but researchers are
committed to explore such models in anticipation of the technological breakthrough.

8. Conclusions and Future Work. We demonstrated how Multi-Agent Systems can assist in simulating
drug delivery in unhealthy tissues by a set of collaborating nanorobots. Despite the fact that such a system
is far yet from becoming reality, MAS appeared to be an applicable solution in modelling and identifying a
number of key-issues. A targeted drug delivery system was designed, including formal models of agents that
work together in order to treat a tumour located inside some bodily tissue. A simulation based on the formal
models was developed in order to demonstrate how various parameters affect the overall treatment.

Further work would include improvement on the design of MAS. This could include enhancing the agent
communication, from simple message passing to implementing some existing agent interaction protocols, i.e.
introducing some form of negotiation. Another improvement includes refining the parameters to be investigated
in a more pragmatic manner. Blood elements might be added as obstacles in the nanorobot movement, and
blood flow may also be considered. Furthermore, inclusion of physical properties, such as blood viscosity, tissue
density and electric current can result in a more detailed system.
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