. DOI 10.12694 /scpe.v16i1.1058
H SCALABLE COMPUTING: PRACTICE AND EXPERIENCE ISSN 1895-1767
.. Volume 16, Number 1, pp. 19-35. http://www.scpe.org (© 2015 SCPE

SELECTED APPROACHES AND FRAMEWORKS TO CARRY OUT GENOMIC DATA
PROVISION AND ANALYSIS ON THE CLOUD

PHILIP C. CHURCH AND ANDRZEJ M. GOSCINSKI*

Abstract. While High Performance Computing clouds allow researchers to process large amounts of genomic data, complex
resource and software configuration tasks must be carried out beforehand. The current trend exposes applications and data as
services, simplifying access to clouds. This paper examines commonly used cloud-based genomic analysis services, introduces the
approach of exposing data as services and proposes two new solutions (HPCaaS and Uncinus) which aim to automate service
development, deployment process and data provision. By comparing and contrasting these solutions, we identify key mechanisms
of service creation, execution and data access required to support non-computing specialists employing clouds.

Key words: Bio-informatics, Software as a Service, HPC

AMS subject classifications. 68M14, 92C37

1. Introduction. High Performance Computing (HPC) has enabled new discoveries in disciplines such
as biology and medicine by providing computer facilities to perform complex algorithms and process big data
within reasonable time frames. However, HPC requires powerful and expensive computational hardware, data
storage, advanced middleware, and sophisticated discipline oriented applications. Due to their high initial
purchase and maintenance costs, HPC resources are only affordable by rich institutions. Furthermore, these
resources are shared by many researchers, which leads to long waiting times for application execution. Thus,
many researchers cannot access HPC infrastructures when needed; they often scale down their applications to
reduce waiting times.

In response to these problems, public cloud vendors such as Amazons Elastic Compute Cloud (EC2) [1]
have started to provide solutions specifically designed for running HPC applications. These clouds provide the
ability to scale on demand as the users requirements change, accelerating the discovery of new knowledge in
various fields of research. Thus, discipline specialists now have access to on-demand, scalable and pay-as-you-go
HPC facilities that can provide users faster turnaround times on their experiments.

However, while these clouds alleviate the costs of procuring required IT resources, the cost and time of
learning how to prepare a HPC cloud and its applications remain a problem to many users [2]. Thus, if discipline
scientists want to use HPC clouds for scientific discovery, they must also become system administrators and
computer specialists performing time consuming resource management and software configuration activities [3].
Once the HPC cloud has been set up, additional time must be spent transferring data from local machines to
the cloud before analysis can be carried out. This process differs depending on the area of discovery; when
working with genomic data, users take advantage of both publicly available and privately collected data. As a
result, a significant amount of the scientists time is spent to build an understanding of the HPC cloud, acquiring
system management skills and managing data instead of conducting research on these HPC clouds.

Discipline specialists are used to accessing software tools through user friendly discipline oriented interfaces.
Therefore, we propose to use the lessons learnt from using software tools and hide from a discipline specialist
all the operations that require administrator and computing expert knowledge and skill to exploit clouds. This
paper examines currently used solutions in the area of bioinformatics to carry out research in the cloud, as well
as our work on building frameworks to simplify development and deployment of sequential and HPC application
exposed as services to be executed in a Software as a Service (SaaS) cloud.

In terms of genomic data, the current approach taken in the bioinformatics area is that data is shared
through public data servers (also known as biological databases). Three geographically separated databases
(American, European and Asian) store genomic data which is mirrored on a daily basis; this is supplemented
by smaller public databases which store specialized data (for example cancer data [4]). Research groups will
often have a local server in which they maintain copies of the data they are interested in (public and privately

*School of Information Technology, Faculty of Science and Technology, Deakin University, Geelong VIC 3127, Australia
(philip.church@research.deakin.edu.au, ang@deakin.edu.au)

19

20 P.C. Church and A.M. Goscinski

collected) as well as analysis tools [5]. Since data is stored not only on private data servers but mainly on public
data servers, there is a natural opportunity to expose them as Data as a Service (DaaS).

By comparing and contrasting these solutions, we identify the cloud access procedures that are carried out
by discipline specialists, and cloud service components that are commonly provided by developers but hidden
from these specialists. We demonstrate that building frameworks that automate these cloud service components
opens the way to build SaaS and DaaS clouds that support genomic data analysis and make them easy to use
by discipline, non-computing specialists.

In brief, the contributions of this paper are as follows;

e A review of current cloud service approches to analyse genomic data.
e An extention of the Uncinus framework to publish and access genomic databases.
e The identification of key components required by cloud services to support non-computing specialists.

The rest of this paper is as follows. Section 2 describes current approaches to carry out genomic research
on the cloud. Sections 3 presents developed by us two cloud service solutions (HPCynergy and Uncinus).
Section 4 presents the path towards DaaS in biology and describes an extension to the Uncinus framework
to support current genomic data resources. Section 5 compares and contrasts cloud solutions using a range of
criteria. Section 6 describes the key components required by cloud services to support non-computing specialists.
Finally, section 7 presents the conclusion and future work.

2. Current Approches. The use of HPC clouds to support genomic analysis is of great interest to the
bioinformatics community. HPC clouds promise the ability to access HPC resources cheaply and on-demand.
While any software can run on laaS clouds, software exposed as a service can be accessed by a majority of
researchers working in the area of bioinformatics and therefore it is inherently more useful.

Popular tools used to carry out genomic research on the cloud include: Cloud BioLinux, Galaxy and the
Tuxedo Suite.

2.1. Cloud BioLinux. One of the early attempts to simplify the deployment and execution of bioinfor-
matics software on the cloud was Cloud BioLinux [6]. Cloud BioLinux is a virtual machine (VM) configured
for high-performance bioinformatics using cloud platforms. At time of writing [7], over 135 bioinformatics tools
have been deployed and configured on the virtual machine. As applications have been taken from a large number
of sources, there is no standard interface mechanisms, instead users access and execute installed applications
through unique graphical interfaces or command line. However documentation of each installed application is
made available through a centralized website.

Cloud BioLinux is compatible with IaaS clouds that implement the Amazon model, such as Amazon EC2 [1],
OpenStack [8] and Eucalyptus [9]. Alternatively the Cloud BioLinux VM can be executed on a desktop computer
using virtualization software such as Virtualbox [10]. The operation to deploy Cloud BioLinux on Amazon EC2
is shown in Fig. 2.1.

1. First, the user selects and configures the Cloud BioLinux VM. This process requires that the user
create or select a key pair (a security credential), which will be used by the user to securely connect to the VM
instance after it is running. The user must also create or select a security group, which defines firewall rules for
the VM instance. Lastly, they specify the number of machines in which to deploy Cloud BioLinux. Running
VMs are shown in the Amazon EC2 management console.

2. Once the VM has been launched, the user can access Cloud BioLinux. Users can access the Cloud
BioLinux command line through a SSH client (secure shell) and the security keys generated in step 1. Alternately
they can use a virtual desktop client to access Cloud BioLinux graphically. Once connected, users transfer files
to Cloud BioLinux from a local or remote server before running applications.

3. Once a user has finished their analysis, they can terminate their Cloud BioLinux virtual machine. For
this purpose, in the Management Console, they locate the instance(s) in the list of instances on the Instances
page, and confirm to terminate the instance(s).

Currently Cloud BioLinux does not provide HPC support; instead each user runs distinct VMs that
encapsulate an operating system, analysis software and data. With this approach, users receive distinct
and pre-defined computational resources, since each user initializes their own Cloud BioLinux server. While
Hadoop/MapReduce [11] [12] is available on Cloud BioLinux, computation is limited to the single virtual ma-
chine. Future work will allow end-users to easily provision Hadoop clusters on any cloud. This will facilitate

Selected Approaches and Frameworks to Carry out Genomic Data Provision and Analysis on the Cloud 21

)
aih

Usier

3) Terminate
Cloud BioLinux

2) Access
Cloud BioLinux

1) Select & Configure
Cloud BioLinux

7] Services v Edit Philip Church » N. Virginia ~

1. Choose AMI h e Ty e Insta 4. Add Storag g Instance

Cancel and Exit

Step 1: Choose an Amazon Machine Image (AMI)

» Root device type

CloudBi

Quick Start 1109 of 9 AMIs
\ Cloud BioLinux
My AMIs
AWS Marketplace ® :ﬁ%z:g;aux Ubuntu 12.10 20121224 - m
Community AMIs - o 64-oit
5 Opelalics sy ® ::23113&;1%2;)‘ Ubuntu 13.04 2013-07-05 - m
¥ Architecture 64-bit

W Services v

Philip Church ~ N. Virginia ~

Actions v (! ° e
Filter: Public Images v All Images ~ All Platforms v Q X
Name AMIName ~ AMIID Source :
» @ ubuntuimage amicoc072a4 099720109477/ubuntu/images/ebs/ubs

] Places Syste
o
i Accessories >| l Qmcart
3 & Act Py Jemboss
.é Graphics > 8 Arb file Preferences Jools Favourites
ALGHMENT
@ intemet » & Atemis oiseuaY
2 CLC Sequence Viewer ENZVME KINETICS
clustalw INFORMATION
(§ Science > & MUCLEIC
JE8 sound & video > & dlustalx e Th—
_J System Tools > S oo, Y Rashtol - SDMS XARY DIFPRACTION.
& dendroscope M Ble wew Dispiay Colours Options Setiogs Lelp
@ Ubuntu Software Center
& entrez &l
fle Edt Alignmens T
X Exchanger
S fastONAMI Mode MuRiphe Akgme]
& Forester ATV

& gt +3 P w. 'y
& lvies e X

Fic. 2.1. Cloud BioLinux Deployment Process

running large-scale bioinformatics data processing pipelines.

2.2. Galaxy. Galaxy [13] is an web-based framework for genomic research. Due to the flexibility and
easy-to-use nature of Galaxy, it has become a popular method for carrying out genomic analysis. Galaxy is
deployed on a server and accessed through a web browser. Using provided web interfaces, users can share data
and applications (as tools) and execute tools as workflows (see Fig. 2.2). Users using Galaxy first upload
data from local or public data servers (biological databases) using a range of Galaxy tools. Uploaded data is
transfered via FTP and stored on the Galaxy server. Tools which provide analysis capabilities are then used to

22 P.C. Church and A.M. Goscinski

Analyze Data

jEo0k Upload File (version 1.1.4)
search tools (%} File Format:
Get Data Auto-detect v

m

wWhich for ? See he alow
Upload File from your Which format? See help belo
computer File:

UCSC Main table browser No file selected.

TIP: Due to browser limitations, uploading files larger than
UCSC Arch table b . : e -
Linls lm s niEs 2GB is guaranteed to fail. To upload large files, use the
EBI SRA ENA SRA URL method (below) or FTP (if enabled by the site
administrator).

BioMart Central server

URL/Text:
GrameneMart Central server

Fic. 2.2. Galazy Framework Interface

r~

U Write Program

—_—
ser Code Store
~| Galaxy Tool
' Tool store _ | Directory
i Definition
File

Fic. 2.3. Galazy Tool Deployment Process

process data uploaded to the Galaxy server. Galaxy ensures that this analysis is reproducible by automatically
generating metadata for each analysis step. Galaxys metadata includes: input datasets, tools used, parameter
values, and output datasets. Galaxy also provides a workflow system which facilitates analysis repeatability,
allowing users to carry out analysis based on stored metadata.

Adding a tool to Galaxy requires the user to provide an application to execute and a graphical interface
(see Fig. 2.3). Applications can be written in a number of different programming languages as long as the
Galaxy server has a valid interpreter installed; common languages include Python and Perl. Regardless of the
language utilized, code is placed in the tools directory of the Galaxy installation. Each tool in this directory
must be exposed through a graphical interface. To simplify this process, Galaxy users define a GUI for their
tool using a Tool Definition File (TDF). A TDF is written in XML and consists of four parts; input controls,
output data, test inputs (for validation purposes) and user help.

A key feature of Galaxy is workflow generation, where users can link together installed tools into a single
pipeline. Through a pipeline Galaxy can run multiple tools concurrently, reducing the time taken for analysis.
To simplify the construction of these pipelines, Galaxy provides an editor (see Fig. 2.4) from which users access
a graphical interface for creating and modifying workflows. A user drags and drops tools onto the workflow
canvas and configures each step in the workflow. Users can add tags to a workflow, annotating each step of
the workflow. Workflows are run in Galaxys analysis workspace; like all tools executed in Galaxy, Galaxy
automatically generates history items and provenance information for each tool executed via a workflow.

Galaxy supports the use of the Amazon EC2 cloud through the CloudMan service [14] (see Fig. 2.5). Cloud-
Man automates the process of constructing a cluster using Amazon EC2 resources. Through a web interface,
users must first specify their AWS Secret Key ID, and Secret Key. Once these details have been validated, a
user can select the size of the cluster required and the location of a persistent data volume. CloudMan utilizes
a modified Cloud BioLinux image which contains Sun Grid Engine (SGE) [15]. This image is automatically
deployed on the Amazon EC2 cloud as both the head node and workers. Data stores are then linked to the

Selected Approaches and Frameworks to Carry out Genomic Data Provision and Analysis on the Cloud 23

Workflow Canvas | RNASeq workflow

Input dataset b 4 FASTQ Groomer x

output File to groom

Tophat for lllumina »*
output_file (fastgsanger,

fastgcssanger, fastgsolexa, RNA-Seq FASTQ file

fastqillumina
g) RNA-Seq FASTQ file

Input dataset x FASTQ Groomer x insertions (bed)
output File to groom deletions (bed)
output_file (fastgsanger, junctions (bed)

fastqcssanger, fastgsolexa,

. . accepted_hits (bam)
fastqillumina)

Fic. 2.4. Galaxy Workflow Deployment Interface

~
U Configure CloudMan G, Amazon EC2
E—
ser Interface <2
< \ Head Node
‘\\3%% (C. BioLinux) [<
\\\?,\?A
oy ¢
Worker
Nodes

Fic. 2.5. Galazy Cloud Deployment Process

constructed cluster. Once deployed, users can access Cloud BioLinux tools through command line and Galaxy
through framework interfaces (via a web browser). By providing user with standard Galaxy interfaces, the cloud
is made transparent to the user, in other words Galaxy running on the cloud is indistinguishable from Galaxy
running on a local server.

2.3. Tuxedo Suite. The Tuxedo suite brings together commonly used bioinformatics tools for analyzing
genomic data generated from high throughput sequencing machines. Some of these tools provide support for
HPC platforms in order to reduce the time taken to process genomic data. Two HPC enabled tools in this
suite, Crossbow and Myrna, have been made available as cloud services.

Crossbow [16] is a scalable application for genome sequencing aimed at performing alignment between the
small fragments produced by the current generation of high-throughput sequencing machines. Crossbow has
been integrated into Amazon EC2 using a map and reduce strategy [12]. A graphical interface (see Fig. 2.6)
allows users to deploy Crossbow on the Amazon EC2 cloud. This interface requires user provide their AWS
Secret Key ID and Secret Key to access their Amazon Account, input any optional arguments accepted by
Crossbow and select the number and type of cloud instances they wish to use.

The operation of Crossbow is shown in Fig. 2.7, where a virtual cluster is first created on the Amazon EC2
cloud. Sequence fragments are then uploaded from the users desktop to Amazon storage (S3). Next crossbow
code is uploaded to the master /head node, compiled and run. Output data is compressed and sent back to the
user.

Myrna [17] is cloud-scale software developed for the purpose of analysing RNA-seq data. Using this software,
it is possible to identify the number and type of genes present in a biological sample. To accomplish this, Myrna

24 P.C. Church and A.M. Goscinski

Crossbow 1.2.1

AWS ID *
AWS Secret Key *

AWS Keypair Name gsg-keypair Look it up

Check credentials...

Job name Crossbow

Job type © Crossbow
Just preprocess reads

Input type © Ppreprocessed reads
' Manifest file
Truncate length 0 (If blank or 0, truncation is disabled)

7] Skip reads shorter than truncate length

Options [T Keep cluster running after job finishes/aborts
EC2 instances 1
Instance type c1.xlarge (recommended) ~

Fic. 2.6. Crossbow Service Interface

User Desktop Amazon EC2
Upload
CrossBow CfuzzBow > Master
Code Node
Preprocessed | [Ypload Data Node Node
Reads 1 N
Output
P Amazon S3
Data
* Tar Sequence Data

Fic. 2.7. Crossbow Cloud Workflow

aligns sequence data, normalizes and carries out statistical modeling in a single computational pipeline. Like
Crossbow, Myrna also runs on Amazon EC2 using a map reduce strategy. During execution, each step in the
Myrna pipeline is mapped and reduced. A map stage takes a stream of input data, analyses and returns results
in the form of a stream. A sort/huffle phase is carried out that sorts data according to data similarity. Lastly,
the reduce stage performs computation on data. Myrna is accessed as a service through a web interface in
the same manner as Crossbow. Through this interface, users provide their Amazon ID and Secret Key and
configure software settings. Upon execution of Myrna as a service, a virtual cluster on Amazon EC2 is created
before deploying and executing Myrna.

3. Proposed Approches For Bioinformatic Services. Popular approaches to carry out bioinformatics
on the clouds utilize a combination of packaged virtual machines and graphical interfaces to expose applications

Selected Approaches and Frameworks to Carry out Genomic Data Provision and Analysis on the Cloud 25

SaaS Layer

HPC Application Service

HPC
Application
API

HPC Service
Software
Libral

Amazon EC2
(HPC VM
| Application Image

Fic. 3.1. Implementation overview of HPC' cloud framework

Application |
Broker

exposedas HPCaa$S Layer

laaS Layer

as services. In this way, tools such as Galaxy and Tuxedo Suite (and to a lesser extent Cloud BioLinux)
allows users to take advantage of scalability and clouds without understanding cloud architecture. While these
solutions are simpler to use, they are difficult to develop and are not flexible (users limited to the services made
available). In response we present two approaches for exposing bioinformatics applications as services, HPCaaS
and Uncinus. HPCaaS brings targeted cloud computing to Galaxy, while Uncinus supports the development
and deployment of services through a cloud middleware.

Our frameworks offer these features through HPC-based publicly accessible virtual machine (IaaS) abstrac-
tion, automating the process of exposing HPC biology and discipline applications as services, making these
services visible through a broker, and evocable through user friendly discipline oriented interfaces.

3.1. HPCaaS: Galaxy Plugin. We have implemented a Galaxy plugin that allows users to deploy soft-
ware packages on the EC2 cloud. This plugin was developed by integrating three components: (i) the EC2
service (public TaaS cloud) for providing HPC infrastructure, (ii) a HPC service software library for access-
ing high level HPC resources obtained from a IaaS cloud, and (iii) the Galaxy software application used as a
web-based platform for exposing and accessing HPC application services.

The overview of the prototype design, demonstrating the relationships among the Amazon EC2 service,
the HPC software library, and the Galaxy software application is shown in Fig. 3.1. Also shown in Fig. 3.1
is our view of the cloud service stack and where different cloud services would be found. At the bottom (IaaS
layer), Amazon EC2 provides cloud infrastructure services. Supported HPC applications are installed in virtual
machines and their images were saved and stored in EC2.

In the middle (HPCaaS layer), a HPC software library [18] was used to expose and access Amazon EC2
services in order to provide users a higher level of HPC services such as constructing and managing computer
clusters. By using a specific feature of the Galaxy software application, a web-form of the HPC service was
generated to be used as a simple but effective interface for users to access the HPC service. Finally, such HPC
service was exposed as a tool in a Galaxy server.

On the top (SaaS layer), a HPC application service for a supported HPC application was developed as
follows. First, an API of the HPC application was constructed. This API acts as a program stub for its
corresponding HPC application, which had been installed in a virtual machine and had been stored in the
Amazon EC2 service. Second, a web-form of the HPC application service was generated using the Galaxy
application software. Finally, such HPC application service was exposed as a tool in a Galaxy server. It should
be noted that each HPC application service would access the HPC services in the HPCaaS layer and the HPC
application installed and stored in a VM image at the bottom IaaS layer through its web-form.

Using the HPCaaS Galaxy plugin, users can expose existing virtual machines stored on the Amazon cloud.
For each VM, HPCaaS’s Tool Definition File (TDF) needs to be modified. In this process, the location of the

26 P.C. Church and A.M. Goscinski

<inputs>

<param name="amilD" type="select” format="text" label="AMI">
<option value="ami-cOc26fa9">Image for mpiBlast</option>
<option value="ami-15fc387c"=Image for NAMD<=/option>
</param>

=/inputs>

Generates

Analyze Data Workflow Shared Data

Amazon EC2 = || Create HPC cluster (version 1.0.0)
@ Create HPC cluster in Number of Nodes:
Amazon EC2 [|
® Terminate HPC cluster —
in Amazon EC2 Cluster Name:
Get Data [|
Send Data Amazon Machine Image:
ENCODE Tools Image for mpiBlast ~
Lift-Over

: . Compute Server Type:
Text Manipulation

Filter and Sort

Join, Subtract and - Execute

[Cluster Compute Quadruple Extra Large Instan v |

Fic. 3.2. HPCaaS Galaxy Deployment Interface

;Galaxy Analyze Data Workflow Shared Data

Amazon EC2 HPC = Perform Blast alignment (using mpiBLAST) (version 1.0.0)
BLAST Cluster Name (from Amazon):
@® Perform Blast [Clusters]

alignment (using =
m—piBlast) for Number of processes to be used:
genomatic
selguences Search Sequences:

Get Data [Wallaby_ESTs -

Send Data r———

T as atabase:

ENCODE Tools <

Lift-Over

Text Manipulation ngf 0: Blast:

s astn

Filter and Sort Oblastp

Join, Subtract and ®blastx

e —————————— Set expectation value cutoff:

Group

Convert Features [0:601 |

Extract Features _

Fic. 3.3. HPCaaS mpiBLAST service Interface

Amazon Machine Image (defined as an ID given by the cloud provider) is added to the dropdown menu of the
graphical interface (see Fig. 3.2). Lastly, an interface for the VM is generated; this is performed by defining a
TDF in the same manner as other Galaxy tools.

The steps taken to utilize this interface is similar to that of the Tuxedo suite (see section 2.3), in that users
can create a virtual cluster in the cloud by specifying the required number and type of cloud resources. HPCaaS
will automatically construct a virtual cluster with the specified resources, each node consisting of a copy of the
virtual machine image. However, HPCaa$S is more flexible then the Tuxedo Suite as it allows multiple VM to
be exposed through the same interface. In this way, the time taken to build HPC cloud services is reduced.

Selected Approaches and Frameworks to Carry out Genomic Data Provision and Analysis on the Cloud 27

~
Linux Server &
(APACHE) User
PHP ‘
| mySQL DBMS | Amazon EC2
V; Uncinus Amazon Web
r) Services API
| Euca2ools
A
. J \
SSH |<'—T| Virtual Machine

Fic. 3.4. Uncinus Server Querview

Once the virtual machine has been deployed on cloud resources, it is made available as a Galaxy tool. An
interface for mpiBLAST [19], a commonly used distributed sequence alignment tool, is shown in Fig. 3.3. It
consists of six input controls;

e Cluster Name: the name given to the cloud cluster deployed using HPCaaS.
e Number of processes: The number of instances of mpiBLAST that should be run. This also effects the
number of fragments that the mpiBLAST database is divided into.
Search Sequences: the file containing the sequence fragments in which to align.
The database type: the database in which to carry out BLAST.
The type of blast: the version of BLAST to run. This option depends on the type of data being analyzed
e The expectation cutoff: a text control which allows a user to choose a value in which to filter results.

The mpiBLAST interface is defined such that it mirrors similar tools such as the Tuxedo Suite and those
provided through Galaxy. In this way, a user can access services in a uniform manner regardless of where the
software package is being run.

3.2. Uncinus. Uncinus is an environment which takes advantage of existing computer and software re-
sources. Users are provided with a web based interface in which they can share and access a range of cloud,
resource and software services. Through use of a broker, Uncinus supports a modular approach to deploying
applications on HPC clusters and IaaS clouds, users constucting services (consisting of software and hardware)
on demand [20]. These on-demand services are made possible through automated application deployment and
job submission provided by the Uncinus middleware.

Deployment of Uncinus on a Linux server is shown in Fig. 3.4. Both end-users and developers access
Uncinus through a series of web pages (HTML/PHP) hosted by an APACHE server. Through these web pages,
users can access services to publish applications and request compute resources. To provide these services,
Uncinus interacts with a mySQL database (to store user credentials and service deployment information) and
Euca2ools [9] (to interact with Amazon like clouds). Through euca2ools, users can access the Amazon Web
Service API and thereby request cloud resources. Once cloud resources are deployed SSH is used to interact
directly with virtual machines.

Users accessing Uncinus for the first time must create a user account. Through this account creation process,
a user provides a unique username, password and cloud provider account details. For security reasons, cloud
provider account details must be provided in the form of access and secret keys. Once logged in, users can access
the components that make up Uncinus (mySQL DBMS, cloud middleware and Euca200ls) through graphical
interfaces, shown in Fig. 3.5. The mySQL database is used to store end-user credentials and information
about deployed applications/resources. Cloud Deployment Middleware sits above the TaaS cloud and provides
a number of services including secure data transfer, cloud resource allocation, HPC environment setup, job
submission systems and automated application deployment. Communication between the middleware services

28 P.C. Church and A.M. Goscinski

Graphical -
P Unicinus Interfaces
Interface
mySQL DBMS
Appllcatlon Cloud Deployment Middleware
Broker Argument to AMI/App
Interface Deployment
Parser Recorder
Secure Data R:slgﬂ?ce
Cloud Transfer
Allocator
Interface
Services
Euca2ools
laaS Cloud Amazon EC2

F1c. 3.5. Uncinus Software Overview

and the cloud is performed through Euca2ools.

Users access Uncinus through a series of web interfaces that expose the Cloud Deployment Middleware.
Unlike other commonly used cloud solutions (described in section 2) which require construction of virtual
machines, Uncinus creates services at the application level allowing users with limited cloud experience to
develop software services. During the process of exposing an application, users specify a variety of attributes [21]
including the service name, software files, installation scripts, software I/O and hardware requirements.

Fig. 3.6 presents the attributes required to deploy mpiBLAST as a service. Publication of this service begins
by assigning the service a name (Application Name). Next, a compressed file containing the mpiBLAST source
code was uploaded to the broker (Files). An installation script (Install Script) was provided to specify that the
openMPIT service be loaded as a prerequisite before compiling mpiBLAST. The services interface (Arguments) is
specified by defining the type of data required. For this service, a control to upload sequence data and three text
controls that determine the type of database and BLAST to be run were specified. The commands to execute
mpiBLAST were provided (Running script) in the form of a shell script that formats the selected database and
executes mpiBLAST over the selected number of processes. The output of the mpiBLAST service (Result) is a
file called blast_results.txt which is to be downloadable by the user. Lastly, requirements for running mpiBLAST
are provided; Linux (Operating System), a cluster with 8 nodes each with 8 core running at 2.66 GHz (CPU)
and 2 GB of RAM per node (RAM).

The published mpiBLAST service was deployed using the interface shown in Fig. 3.7. Users begin by
selecting from available computational resources (cloud and non-cloud) and from a list of published services.
When this job is submitted, Uncinus carries out automated resource selection (using published attributes such
as CPU and RAM) to identify how to deploy services on the selected resources. This resource selection process
calculates a distance metric based on the service requirements and resource specifications.

Once the mpiBLAST service was deployed, a web interface is automatically generated using the published
attributes. The mpiBLAST service interface presented to the user is shown in Fig. 3.8. Through this interface,
users can: specify mpiBLAST argument, upload sequence data, execute mpiBLAST, download results, and
terminate the job (freeing all cloud resources). Also provided through this interface is a tool for transferring
files to and from the cloud; uploaded files are mirrored across each node in the cluster.

Through the current implementation of Uncinus, users can take advantage of published software and cloud
resources, accessing resources without the need to carry out complex configuration tasks such as setting up a
virtual cluster. However in the example above, users are still required to upload sequence data from their local
machine. By exposing data as a service, Uncinus can be extended to allow software services to take advantage

Selected Approaches and Frameworks to Carry out Genomic Data Provision and Analysis on the Cloud 29

Applications: [Create New App -

Application Name: [mpiBLAST |

Files: FILES/mpiBLAST-1.6.0.taz App Location: | mpiblast

Install Script: Running Script:

<regApp>OpenMPI<reqApp> mpiformatdb -N <mpi:#processes> -i <dataType>-o T;
tar -xvzf mpiBLAST-1.6.0.tgz mpirun -np <mpi:#processes>

[configure --machineFile hostFile.txt mpiblast -p <BLAST>

make install -d <database> -i <seqData> -o blast_results.txt;
Arguments:

<mpiEnabled:hostFile.txt><mpiEnabled:hostFile.txt>
<upload:seqData>Upload Sequence Data (fasta):<upload:seqData>
<text:database>Database (nt, p, x):<text:database>
<text:dataType>Data Type (nt, p, x):<text:dataType>
<text:BLAST>BLAST Type (blastn, blastp, blastx):<text:BLAST>

Results: [blast_results.txt |

Manual: [http://www.mpiblast.org/Docs/Guide y

Operating System: [Linux | CPU: [8;8-cores;2.66Ghz |RAM:[2 GB |

Published:

F1a. 3.6. Uncinus mpiBLAST Publication

of publically available data.

4. Moving Toward Data as a Service. Data as a Service is an area not highly explored in the area of
genomics. The only commercial example is Amazon which provides two DaaS services: S3 which provides users
with extendable storage and the Elastic Block Storage (EBS) which provides users the ability to create virtual
hard-drives. Through these two services, Amazon provides access to genomic data from the 1000 genome project.
An academic attempt at Daa$ is being led by the University of Chicago [26], who have recently announced the
creation of a petabtye scale open science data cloud which will allow researchers access to manage, analyze and
share their data.

4.1. Toward Daa8S in Biology. Currently the approach taken in the bioinformatics area is that data is
shared through public data servers (also known as biological databases). Three primary databases (NCBI [22],
EBI [24] and NGI [23]) store DNA sequence data and are mirrored on a daily basis, this is supplemented by many
smaller databases which target a subset of data (for example specific diseases [4] and collection platforms [25]).
Research groups working the area will often have a local server in which they maintain copies of the data they
are interested in (public and privately collected) as well as analysis tools (as seen in solutions such as Galaxy) [5].
Data stored on these local servers exist in the form of human readable ASCII files which are often not indexed
or easily searchable.

While these methodologies are satisfactory for small amounts of data, when analysing the amount of genomic
data generated by current sequencing machines, there arises a number of issues.

e Database Discovery: Smaller specialized databases can be difficult to find, currently discovery of new
databases is reliant on paper publication and word-of-mouth.

e Lack of Data Management: Research groups maintain local data servers which store data. Data is often
stored in a human readable ASCII format which takes up more disk space compared to binary formats.

30 P.C. Church and A.M. Goscinski

Amazon Enviroment

Job Name: [mpiBLAST

[J: Cloud Controls []: Cluster Controls

32-bit Amazon Server Image West-lin Cluster
Ubuntu Cluster Node (11.10) Mamsap Server
Ubuntu Server 64-Bit (11.10)

- v

Application Modules

mpiBLAST

Microarray Annotator

Gene Set Enrichment

Gene Set Enrichment (P-value)
Find Pivot

Submit Job

n

Fic. 3.7. Uncinus Service Development Interface

Program Arguments

Running App: [mpiBLAST __ ~] [TeminateJob |
Upload and Download Files (Mirror):

ec2-204-236-151-109.us.west-1.compute.amazonaws.com

mpiBLAST @
Upload Sequence Data (fasta):

Database (nt, p, x): | |

Data Type (nt, p, x): | |

BLAST Type (blastn, blastp, blastx): [

| Results: blast results.txt

Fia. 3.8. Uncinus mpiBLAST Service Interface

Data is difficult to find as there are limited search/discovery mechanisms implemented on these local
data servers.

e Database Reliability: Local data servers often have minimal/no backup or redundancy (due to the cost
of storage). These systems are inflexible, which jeopardizes availability and reliability.

e Data Transfer: In context of utilizing cloud resources, most cloud tools require that data is moved from
public databases to a user’s local machine and then back to the cloud. This method is wasteful as data
is transferred to a local machine where it is not needed.

Since data is stored not only on private data servers but mainly on public data servers, there is a natural
opportunity to expose them as Data as a Service. The data could be stored on any of the server without the
user involvement; the data attributes could be stored on a data broker, which becomes a major tool used by
other user who wish to search for specific data. The data copies, for reliability and availability, could be stored

Selected Approaches and Frameworks to Carry out Genomic Data Provision and Analysis on the Cloud 31

Public Cloud

Public Data Server n

Data Broker

e Data Broker

Private Data Server n

Private Data Server i Data ~
Data | | [Database aa

Database ;% Data API
Data API |

Public Data Server 1

[Data || | Database]

[Fosearapl]

Data Broker

| I— Data Broker |
pa—
v [eu |

Data Broker

Data Broker

Public Data Server n

Compute Cloud _
Resources
[Resources |

r

ICompute Cloud
Resources

Cloud API

Private Cloud 2

Private Data Server

Private Cloud 1

.
-

Uncinus

GUI

v

[Appl & Data Broker]

] Cloud Services f
E. ition>>
laaS Cloud

Fic. 4.1. DaaS Owverview

on a number of servers; their location could be hidden from the user. The selection of a copy of the requested
data could be carried out by the broker taking into consideration user location and money limits. A user
oriented interface could offer an easy access to the data broker that supports data selection for the application
of interest. Data are managed by cloud service providers; that relieves discipline specialists from many activities
of computing nature. As shown in Fig. 4.1, the user can carry out discovery on their local resources, within
the research group/laboratory private cloud, and/or a public or hybrid cloud. The last option lowers the costs
of resources, supports computations on demand, and allows cooperation to be exploited widely.

4.2. DaaS in Uncinus. In this proposed solution we extend the Uncinus application broker to publish
data severs. Users specify the location of the server as well as methods to download files (GET), upload files
(PUT) and get directory listings (LIST). In this way Uncinus can support a range of public biological databases
by abstracting their unique API. Public data brokers are also deployed which users can access to discover
databases and share their own data. The data broker will also be able to upload data to published biological
databases. By linking the Uncinus broker to a public broker, Uncinus users will be able to access private data
servers and public biological databases. Through the proposed solution we are convinced that in many cases the
performance of discovery in biology and medicine could be dramatically improved if data sharing (as described
above) is applied widely.

5. Comparison of Solutions. Our paper investigates a number of popular bioinformatics SaaS cloud
solutions. These solutions differ in how they are developed, deployed and used. We compare and contrast these
solutions through the use of six criteria; 1) usability /access, 2) development, 3) deployment, 4) service discovery
5) cloud utilization and 6) data intergration. Each platform and their adherence to the five criteria are shown
in Table 5.1.

The first criterion focuses on how the presented solutions are accessed and used. In general, all of the

32 P.C. Church and A.M. Goscinski

TABLE 5.1
Popular solutions compared to defined criteria.

Develop. | Deploy. | Discovery | Utilization

BioLinux

Uncinus

bioinformatics cloud software described in this paper allows users to take advantage of scalability and clouds
without understanding cloud architecture. Through graphical interfaces, users can access HPC clouds without
needing to carry out the time consuming task of setting up middleware to create a virtual cluster in the
cloud. Cloud BioLinux exposes applications through an OS interface, while Tuxedo Suite, Galaxy, HPCaaS and
Uncinus provide web based controls.

The second criterion focuses on comparing the effort taken to develop services. In general, development
of bioinformatics cloud services is difficult and time consuming, requiring skills in genomics, HPC computing,
programming and cloud computing. This is seen in Cloud BioLinux and HPCaaS, which depend on the creation
and packing of a VM through the use of command line tools. In the case of HPCaaS, users must also modify
the HPCaaS tool to recognize the VM. The Tuxedo Suite required the development of graphical interfaces and
software API to communicate with the cloud application. Recognizing the difficulty of cloud service development,
we have seen a gradual shift from individual services to frameworks such as Galaxy and Uncinus, which attempt
to simplify service development. Galaxy makes the development process easier by simplifying construction of
graphical interfaces. Uncinus takes this one step further and allows users to define attributes, which are used
to generate graphical interfaces and better utilize resources.

The third criterion examines how solutions are deployed on the cloud; currently this ranges from difficult to
deploy to no deployment required. Traditionally, HPC cloud solutions have been offered at an IaaS level, which
is targeted at computing experts. Early bioinformatics solutions which made use of these IaaS cloud platforms
(such as Cloud BioLinux) are difficult to deploy. Other solutions attempt to simplify deployment through
automation of this deployment process. Galaxy, HPCaaS and Uncinus as frameworks, provide functions to
deploy services on clouds. The Tuxedo Suite automates all aspects of deployment; users require only their
Amazon ID and Secret Key.

The fourth criterion examines how these services are discovered by users. Individual services such as Cloud
BioLinux and the Tuxedo Suite do not have any inbuilt form of discovery. The Tuxedo Suite consists of a
small number of tools and therefore has no need for discovery mechanisms; as these suites get larger, the lack
of service discovery can limit their use. Cloud BioLinux contains hundreds of different applications; however
service discovery is not supported. Each application provided by Cloud BioLinux has different access methods.
Frameworks such as Galaxy, HPCaaS, and Uncinus, which also make available large amounts of tools, use service
repositories. By centralizing and indexing available services, users can find software easier.

The fifth criterion examines how well these solutions take advantage of the cloud during execution. The
Tuxedo Suite is built directly for the cloud; this solution takes advantage of cloud scalability to increase perfor-
mance. CloudBioLinux and Galaxy (via CloudMan) are based around duplicating the environment, and unless
parallelism is built into the hosted tools, can only ensure a consistent level of performance (each user having
their own instance of Galaxy or Cloud BioLinux). Our approaches aimed to expose individual distributed
applications like the Tuxedo Suite while taking advantage of the framework features to simplify service devel-
opment. The first approach, HPCaaS, extended Galaxy based analysis to the cloud through a HPC software
library that exposed Amazon EC2 services. Using HPCaaS, users could access VM stored on the EC2 cloud
and execute distributed applications through Galaxy interfaces. Uncinus focused on service level development
and deployment on clouds. Instead of developing a VM, users could publish installation steps which would be
automatically carried out.

The sixth criterion examines how well these solutions are integrated with data. While all package can be

Selected Approaches and Frameworks to Carry out Genomic Data Provision and Analysis on the Cloud 33

integrated with data, some are more complex to set-up then others. Packages that use Amazon EC2 can use
genomic data (such as data from the 1000 genome project) stored using Amazon Cloud Storage (S3) and the
Elastic Block Store (EBS). Some variants of CloudBioLinux will automatically mount the virtual EBS drives,
and Tuxedo Suite (while not providing native access to this data) could be configured to use the genomic data
stored on Amazon S3. Galaxy provides tools which can be used to discover and download genomic data which
is stored on the Galaxy Server. HPCaaS (as a Galaxy tool) can also utilize the data downloaded in this way.
The method proposed by Uncinus uses a data broker, allowing for discovery of data across multiple up-to-date
genomic databases, as a result Uncinus is able to access a wider range of data when compared to the Amazon
based solutions. Furthermore Uncinus stores only the link and description of the data, instead of the actual
data as seen in the Galaxy approach, this minimizes the need for local storage and prevents unnecessary transfer
between the genomic database, the Uncinus server and the computational resources.

In conclusion, the cloud solutions presented in this paper fall under two categories, stand-alone services
and frameworks. Individual solutions include Cloud BioLinux and the Tuxedo Suite, while frameworks include
Galaxy, HPCaaS, and Uncinus. The benefits of utilizing individual services are that they are often built for
and can fully utilize the cloud, in addition they often have minimal to no deployment requirements. On the
other hand, individual services are difficult to develop (requiring specialized GUI and API) and are difficult
to discover. For a user looking to carry out research on the cloud, picking the right service from hundreds is
difficult. Popular frameworks solve this problem with large repositories of services managed by brokers. This
model can identify and therefore reduce the overlap in the types of cloud software services being made available.
Additionally, frameworks simplify development by automating key steps in the service development process such
as for example construction of graphical interfaces. While these features clearly benefit discipline researchers,
popular frameworks (Galaxy) do not take full advantage of distributed and cloud computing platforms. Our
solutions attempted to fill this gap to some success, proposing frameworks which provided access to clouds in a
manner similar to individual services.

6. Discussion. While originally developed for business, cloud and service computing can be used for
research. Cloud resources on-demand can enhance local resources, reducing the turn-around time of analysis
and/or allowing for bigger problems to be solved. However clouds do not fit all applications; depending on the
research being carried out, HPC hardware may be required. Fortunately, a range of cloud providers now offer
HPC cloud solutions. Services built on top of these HPC cloud solutions could offer researchers access to HPC
on demand without the need to understand and carry out complex deployment methods. It is by combining
service and cloud computing technologies that solutions have been devised to simplify genomics analysis. These
solutions fall into two categories; stand-alone services which are built from the ground up to utilize the cloud,
and cloud frameworks which simplify the development of cloud services.

Despite the advantages of frameworks such as Galaxy, the bioinformatics cloud software service area is still
dominated by individual, isolated applications (as seen in the Tuxedo Suite and Cloud BioLinux). Development
of these cloud services are time consuming and often repetitive. A review of these approaches shows that the
most utilized operations during IaaS application deployment fall into four categories: cloud security, resource
allocation, application deployment, and data transfer (see Table 6.1). When deploying HPC applications,
operations in these categories must be repeated for each computational node utilized. For this reason, steps
such as installation and data transfer (particular in large data scenarios) can greatly increase the time spent to
utilize cloud resources. In addition, a user wishing to provide services through the cloud (a service provider)
is required to provide a further layer of abstraction on top of the IaaS cloud, exposing the deployed cloud
application through a graphical interface.

TABLE 6.1
Most Utilized Operations during laaS deployment.

Cloud Security Creating security keys and groups
Application Deployment | Installing software applications
Data Transfer Transfer files to and from the cloud
Resource Allocation Launch and Terminate Instances

34 P.C. Church and A.M. Goscinski

TABLE 6.2
Components required for SaaS development.

Software API Allows execution of cloud applications
Graphical Interface Allows communication with the API
Service Publication (Optional) | Stores and allows users to find service

Once software has been deployed on the cloud, it is possible to expose it as a service. Software services can
be discovered and utilized by a larger number of discipline specialists but require development of a software
APT and graphical interface which are then (optionally) published (see Table 6.2). A software API defines
the instructions used to run the application. A graphical interface allows users to execute and pass application
arguments to the API. These services can be published; cloud application, API and interfaces stored and indexed
through a broker. Service publication supports users, allowing then to discover services that fulfill their goals.

We propose that future cloud solutions should look to automate as much of these operations as possible in
order to make service development as simple as possible. When building clouds aimed at carrying out research,
cloud specific operations should be logically separated from data processing and analysis.

7. Conclusion. In conclusion, this paper presents a survey of approaches currently used in genomic anal-
ysis. Trends in the area show a move from IaaS clouds to SaaS frameworks. Early cloud solutions (Cloud
BioLinux) packaged software tools into a single virtual machine. Due to the difficulty of maintaining this type
of monolithic solution, developers moved to individual cloud services (Tuxedo Suite). More recently, frameworks
such as Galaxy, which provide usability similar to cloud services while simplifying development, have become
popular. However Galaxy’s support for clouds is still primitive, reliant on mirroring the current state of the
Galaxy server.

As a response we developed and presented two SaaS cloud frameworks that draw upon concepts from
SaaS clouds, Galaxy and bioinformatics cloud software, in order to solve known cloud usability issues (the
difficultly of cloud development and flexibility of individual tools). These frameworks addressed cloud usability
by providing researchers the tools to access the cloud and run distributed applications. Users with a background
in programming, system administration and cloud computing can develop HPC software and publish VM
resources. Users with knowledge of the software applications (but limited programming skills) can define
required attributes through the service publication interfaces and become SaaS providers. Lastly, users with a
background in biology and minimal computing knowledge can access the applications and resources (published
by the broker) that are required to perform analysis. For such users, clouds are made completely transparent and
HPC applications are exposed as services. In this way discipline specialists with different levels of computing
expertise can take advantage of cloud resources. By incorperating the ability to publish data resources, we
further simplfy the genomic analsis process, users will be able to access up-to-date genomic data while removing
the need for locally maintained genomic databases.

Through this successful integration of cloud and service computing, the analysis, interpretation and compu-
tation of genomic mammalian data was made easier, to be carried out by non-computing discipline specialists,
and cheaper. By comparing current approaches and our cloud frameworks we identify the cloud access proce-
dures that are commonly carried out by users, and cloud service components that are commonly provided by
developers. Operations carried out by users during ITaaS application deployment fall into four groups: cloud
security, resource allocation, application deployment, and data transfer. They require a computing expert to
be carried out; discipline specialists should be relieved from learning clouds and acquiring skills to carry out
these operations. Instead they should concentrate on their discipline problems using clouds, in particular SaaS
clouds. The major components provided by cloud services fall into three categories: Software API, Graphi-
cal Interface and Service Publication. The development of these components should be carried out to satisfy
discipline specialists requirements to allow them to directly benefit from SaaS clouds.

Future work should aim to automate these procedures in such a way that clouds are made transparent to
the user. Research into graphical methods to create virtual machines could widen the use of IaaS clouds, while
natural language could be applied to service development to automatically generate graphical interfaces from
software manuals and source code. A number of technical improvments could also be made: to take advantage

Selected Approaches and Frameworks to Carry out Genomic Data Provision and Analysis on the Cloud 35

of exisiting software repositories such as Galaxy, there is a need to standardize interface mechanisms, there is
also a need to enable seamless application scalability to improve cloud performance.

REFERENCES

AMAZON, Amazon Elastic Compute Cloud: Getting Started Guide, LLC AWS Amazon, 25 (2010).

GoscINSKI A, BROCK M, CHURCH P, High Performance Computing Clouds., CRC, Taylor & Francis group, June 2011.

YELICK K, COGHLAN S, DRANEY B, CANON RS, The Magellan Report on Cloud Computing for Science, U.S. Department of
Energy, Office of Science, Office of Advanced Scientific Computing Research (ASCR), December 2011.

D. FENSTERMACHER, C. STREET, T. MCSHERRY, ET. AL, The Cancer Biomedical Informatics Grid , in Engineering in Medicine
and Biology Society, 2005. IEEE-EMBS 2005. 27th Annual International Conference of the, 2005, pp. 743-746.

L. Da1, X. Gao, Y. Guo, J. XIAO, AND Z. ZHANG, Bioinformatics clouds for big data manipulation., Biology Direct, vol. 7,
p. 43, 2012.

CLouD RESEARCH GROUP, Cloud BioLinux: pre-configured and on-demand high performance computing for the genomics
community, 2010.

KraMpis K, BooTrH T, CHAPMAN B, TiwARl B, BicaAk M, FIELD D, NELSON K, Cloud BioLinux: pre-configured and on-
demand bioinformatics computing for the genomics community., BMC Bioinformatics 2012, 13(1):42.

OPENSTACK, Open source software for building private and public clouds., http://www.openstack.org/

NurMI D, WoLsKI R, GRZEGORCZYK C, OBERTELLI G, SOMAN S, YOUSEFF L, ZAGORODNOV D, The Eucalyptus Open-Source
Cloud-Computing System, Proceedings of the 2009 9th IEEE/ACM International Symposium on Cluster Computing and
the Grid. IEEE Computer Society 2009.

ORACLE VIRTUALBOX, http://www.virtualbox.org

DEAN J, GHEMAWAT S, MapReduce: simplified data processing on large clusters, Proceedings of the 6th conference on Sym-
posium on Opearting Systems Design & Implementation - Volume 6; San Francisco, CA. 1251264: USENIX Association
2004: 10-10.

ApACHE HADOOP, http://hadoop.apache.org/

GOECKS J, NEKRUTENKO A, TAYLOR J, TEAM TG, Galazy: a comprehensive approach for supporting accessible, reproducible,
and transparent computational research in the life sciences, Genome Biol 2010, 11(8):R86.

AFGAN E, BAKER D, CORAOR N, CHAPMAN B, NEKRUTENKO A, TAYLOR J, Galazy CloudMan: delivering cloud compute
clusters, BMC Bioinformatics 2010, 11(Suppl 12):54.

GENTzSCH W, Sun Grid Engine: Towards Creating a Compute Power Grid, Proceedings of the 1st International Symposium
on Cluster Computing and the Grid. IEEE Computer Society 2001.

LANGMEAD B, ScHATz M, LIN J, Pop M, SALZBERG S, Searching for SNPs with cloud computing, Genome Biol 2009,
10(11):R134.

LANGMEAD B, HANSEN K, LEEK J, Cloud-scale RNA-sequencing differential expression analysis with Myrna, Genome Biol
2010, 11(8):R83.

WonG AKL, GosciNskl AM, A unified framework for the deployment, exposure and access of HPC applications as services
in clouds, Future Generation Computer Systems 2013, 29(6):1333-1344.

DARLING A, CAREY L, FENG W, The Design, Implementation, and Fvaluation of mpiBLAST., ClusterWorld 2003: 2002.

CHURCH P, WoNG A, BRoCK M, GOSCINSKI A, Toward Ezposing and Accessing HPC Applications in a SaaS Cloud., Web
Services (ICWS), 2012 IEEE 19th International Conference on: 24-29 June 2012 2012. 692-699.

BROCK M, GOSCINSKI A, Attributed Publication and Selection for Web Service-Based Distributed Systems, Services - I, 2009
World Conference on: 6-10 July 2009 2009. 732-739.

NATIONAL CENTER FOR BIO-INFORMATICS, http://www.ncbi.nlm.nih.gov/

NATIONAL GENOMICS INSTITUTE, http://www.nig.ac.jp/

EUROPEAN BIOINFORMATICS INSTITUTE, http://www.ebi.ac.uk/

A. BrazmA, H. PARKINSON, U. SARKANS, ET. AL, ArrayEzpress—a public repository for microarray gene expression data at
the EBI., Nucl. Acids Res., vol. 31, pp. 68-71, January 1, 2003 2003.

OPEN SCIENCE DATA CLOUD - UNIVERSITY OF CHICAGO, https://www.ci.uchicago.edu/research-centers/open-science-data-
cloud

Edited by: Jesus Carretero
Received: September 8, 2014
Accepted: January 21, 2015

