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FAULT TOLERANCE SCHEMES FOR GLOBAL LOAD BALANCING IN X10

CLAUDIA FOHRY, MARCO BUNGART, AND JONAS POSNER *

Abstract. Scalability postulates fault tolerance to be efficient. One approach handles permanent node failures at user level.
It is supported by Resilient X10, a Partitioned Global Address Space language that throws an exception when a place fails.

We consider task pools, which are a widely used pattern for load balancing of irregular applications, and refer to the variant
that is implemented in the Global Load Balancing framework GLB of X10. Here, each worker maintains a private pool and supports
cooperative work stealing. Victim selection and termination detection follow the lifeline scheme. Tasks may generate new tasks
dynamically, are free of side-effects, and their results are combined by reduction. We consider a single worker per node, and assume
that failures are rare and uncorrelated.

The paper introduces two fault tolerance schemes. Both are based on regular backups of the local task pool contents, which are
written to the main memory of another worker and updated in the event of stealing. The first scheme mainly relies on synchronous
communication. The second scheme deploys asynchronous communication, and significantly improves on the first scheme’s efficiency
and robustness.

Both schemes have been implemented by extending the GLB source code. Experiments were run with the Unbalanced Tree
Search (UTS) and Betweenness Centrality benchmarks. For UTS on 128 nodes, for instance, we observed an overhead of about
81% with the synchronous scheme and about 7% with the asynchronous scheme. The protocol overhead for a place failure was
negligible.
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1. Introduction. Large-scale applications are likely to encounter hardware failures during their execution.
Consequently, fault tolerance is of crucial importance. Checkpoint/restart is an established approach, but
application-specific techniques may induce less overhead.

Resilient X10 [4] provides an interesting platform to experiment with user-level fault tolerance. This exten-
sion of the language X10 raises an exception in the event of a permanent place failure. Moreover, Resilient X10
provides an inquiry function to check a particular place’s liveness. Failure notification to programs is quite a
unique feature in current parallel programming systems [5].

The base language X10 [3] follows the Partitioned Global Address Space (PGAS) model, and provides a
shared memory abstraction on top of distributed hardware. Nodes of a compute cluster are modeled as places,
which comprise a set of processors and a memory partition. Access to local memory is faster than access to
remote memory, and the difference is visible to the programmer.

On the algorithm side, we consider task pools, which are a widely used pattern for load balancing of irregular
applications. Moreover, tasks are deployed by several modern parallel programming systems, where they replace
or complement threads/ processes as a central construct for specifying parallelism. Examples include Cilk [6],
OpenMP [25], Chapel [7], and X10 [3].

The use of tasks is promoted for reasons such as ease of programming and load balancing support. Beyond
that, tasks provide the additional benefit of easy migration. Since tasks do not refer to a thread / process
number in their code, they may be moved away from a faulty place, without having arranged for that in the
application code.

Despite their importance, fault-tolerant task pools have received little attention in previous research. In
contrast, much work has been conducted on fault tolerance for the related master/worker and parallel divide-
and-conquer patterns. The former was chiefly considered in MapReduce systems such as Hadoop [8]. Unlike
task pools, Hadoop considers the set of tasks to be fixed from the beginning, and a central master has an
overview of all tasks. In divide-and-conquer algorithms, the overall result is computed along the call tree, which
is traversed bottom-up after the computation of leaves. Consequently, children must preserve a link to their
parents, and parents can recompute their children by need. Fault-tolerant divide-and-conquer algorithms also
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handle the case that subtasks are stolen away recursively [9, 10, 11]. The schemes perform well for divide-and-
conquer, but would induce too much overhead in our setting. A third group of related work specifically deals
with idempotence when recomputing tasks with side effects (e.g. [20]).

Unlike related work, we assume that tasks may generate other tasks dynamically, are free of side effects, and
produce results that are combined by reduction. This task model is used by various search and optimization
algorithms, as represented by the Unbalanced Tree Search [12] and Betweenness Centrality [13] benchmarks. It
also underlies the Global Load Balancing framework GLB, which is part of the X10 standard library.

In this paper, we consider the particular type of task pool that is implemented in GLB. It stores tasks in a
collection of private pools, each of which belongs to a single worker. A worker operates on its own pool most of
the time. Only when this pool is empty, it asks a coworker for tasks. Victim selection and termination detection
follow an efficient state-of-the-art scheme, called the lifeline algorithm [1].

We introduce two different fault tolerance schemes that extend GLB. Both regularly save the local task
pool contents of one worker in the main memory of another. When a place fails, its backup partner takes over
the lost tasks. In case of unfavourably correlated failures, such as simultaneous loss of a place and its backup
partner, the program aborts with an error message. Successful completion, on the other hand, guarantees that
the final result is correct, despite possible failures.

In both schemes, particular attention was paid to stealing, to avoid inconsistencies between victim and thief
after a place failure. The first scheme, which has been introduced in [2], defines a conservative steal protocol.
It mainly adopts synchronous communication and cautiously aborts the program in any potentially critical
situation.

The second scheme improves on the first one wrt. efficiency and robustness, where robustness characterizes
the number of situations that lead to program abort. The improvements have been achieved by a major
redesign. Most importantly, the second scheme relies on asynchronous communication consistently. Thus, a
worker may continue processing tasks while waiting for an outstanding communication reply. To keep complexity
manageable, an actor-like communication structure has been devised. Moreover, the second scheme exploits
the redundancy that is immanent in stealing. As compared to the first scheme, the second scheme furthermore
reduces handshaking in the steal protocol, combines multiple steal requests in a transaction, and adopts several
more minor changes.

In addition to the two schemes presented in this paper, we are currently working at a third scheme. That
scheme may be even more efficient, but at the price of reduced flexibility. In particular, it can only be applied
to task pools that are organized as a collection of stacks. The UTS benchmark considered in this paper, for
instance, can not be handled with the third scheme. The second and third schemes share the idea of an actor-like
communication structure. The third scheme has been outlined in [15], with focus on X10 language support, but
its implementation is still ongoing.

The schemes described in this paper have been implemented in X10, by extending the GLB source code.
Our own code which can be obtained for free from the second author’s homepage.

Apart from the unfavourably correlated failures mentioned above, the two schemes can cope with any
number of permanent place failures. To avoid unfavourable correlations, we allow only one worker per cluster
node. This assumption partly stems from GLB, which permits one worker per PGAS place, but goes farther
by requiring that only one place is mapped to each node.

Experiments have been run with the UTS and BC benchmarks. While we observed significant overheads
with the first fault tolerance scheme, the second scheme was about as fast as the original GLB. The overhead
for restore was low in all cases.

The paper starts with background on X10, task pools, and the GLB library in Sect. 2. Then, Sect. 3
introduces some basic concepts that are common to both fault tolerance schemes, and gives an overview of
their respective approaches. Details of the synchronous scheme are presented in Sect. 4, and details of the
asynchronous scheme in Sect. 5, respectively. Sect. 6 describes our experimental setting, reports performance
numbers, and discusses results. Finally, Sects. 7 and 8 are devoted to related work and conclusions, respectively.

2. Background.

2.1. X10 and Resilient X10. X10 is a novel parallel language from IBM [3], which supports object
orientation and exception handling in a similar way as Java. Following the Asynchronous PGAS (APGAS)
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programming model, gives the programmer the view of a shared address space that is divided into disjoint
partitions. The notion of place captures a memory partition and a set of processors, which have faster access
to the local memory partition than to remote data.

The placement of data and computations is controlled by the programmer. Access to remote data requires
to move the computation to the remote place. This is accomplished with the at keyword. In a place change,
part of the data from the original place is transparently copied along. Parallelism is specified orthogonally.
Using the async keyword, a programmer starts an asynchronous task on the current place. Tasks are called
activities, and can be moved to a remote place by combining async and at.

Later in this paper, we will refer to remote computations launched via at or at async as messages. This
notion reflects that, in both cases, a computation request, possibly accompanied by data, is sent to the remote
place. There, it is queued until a remote thread is available for its execution. Messages sent with at are called
synchronous, since the activity at the origin place is suspended until the remote activity returns, possibly with a
result. Messages sent with at async are called asynchronous, since the activity at the origin place immediately
continues with its sequential flow of control.

In asynchronous communication, the origin activity is not notified on completion. Spawning of activities
can, however, be enclosed in a finish block. At the end of the block, the parent activity waits until all spawned
activities and their descendants have terminated.

For place-internal load balancing, a work-stealing scheduler is built into the X10 runtime system. It assigns
the activities to the available threads. This scheduler can not be used for global load balancing, since the
assignment of tasks to places is under programmer control. Therefore, it is complemented by GLB, which
belongs to the X10 library since version 2.4.2. GLB tasks are more heavy-weight than X10 activities. For their
deployment, a GLB user must implement interfaces in a custom class.

Since version 2.4.1 of end-2013, X10 supports resilience in its runtime system. It is switched on by setting
some environment variables. We deployed resilience mode 1, which has the limitation that place 0 must not
fail, or otherwise the program aborts with an error message.

Resilient X10 provides two mechanisms for failure notification. First, a DeadPlaceException (DPE) is
raised in the event of a failure. When a place fails before or during synchronous communication, the DPE
is delivered to all parent activities instead of the regular reply. In asynchronous communication, the DPE is
delivered to parent activities, as well, but usually they catch the exception only at the end of a surrounding
finish block. Second, X10 provides an inquiry function isDead(...), which may be called by any place to
check any other particular place’s liveness.

2.2. Task Pools and GLB. The paper refers to the particular type of task pool that is used by GLB.
Tasks are assumed to be free of side effects, and may generate other tasks dynamically. The overall result is
computed by reduction from individual results of each task.

The GLB task pool comprises a distributed data structure and a set of workers. The data structure is a
collection of private pools, each of which belongs to a single worker and is stored at the worker’s place. Initially,
one or several workers may have tasks in their pool, which is referred to as dynamic or static initialization,
respectively.

Workers are realized by activities. Each worker runs a loop, in which it repeatedly takes a task out of the
local pool, processes it, and possibly inserts new tasks generated. When the local pool is empty, the worker
contacts one or several coworkers, called victims, and asks them for tasks.

Victim selection and termination detection follow the lifeline scheme [1]. According to this scheme, a
worker successively contacts up to w random coworkers and z lifeline buddies. The latter in their entirety form
an appropriate graph. If a victim has no tasks to share, it rejects the request and, if it is a lifeline buddy,
additionally stores it. If a lifeline buddy obtains tasks later, it shares them with the stored worker.

When all w + z steal attempts failed, the worker activity ends. If a lifeline buddy sends tasks later, it
restarts the worker by spawning a new activity at the corresponding place. Note that multiple lifeline buddies
may have stored steal requests from our worker simultaneously, and may, thus, send tasks at the same time
later. While only the first message arriving leads to restart, the worker may consequently receive tasks when
its pool is non-empty. Similarly, it may receive tasks from a lifeline buddy while waiting for the answer to an
outstanding steal request.
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The computation terminates when all workers have ended. Then, the final result is computed by reduction
from partial results, which are collected and combined by each worker during task processing. Termination is
detected by an outer finish block, which surrounds all starts and restarts of worker activities.

GLB assumes that there is only one worker per place. Additionally, it precludes any parallel activities at
this place. This is enforced by setting environment variables. The assumption is quite restrictive, but eliminates
any need for place-internal synchronization. Thus, a worker may, without distruption, alternatingly process up
to n tasks, receive incoming messages, and invoke local functions to answer the received steal requests. Recall
that messages correspond to remote activities. In GLB, these activities are queued, but are not allowed to run
until the worker calls Runtime.probe() to receive the messages. This call releases the worker’s thread, and all
pending activities are scheduled sequentially in any order. GLB uses the following types of messages:

e give: The worker receives tasks from a victim. This message may be the response to an outstanding
steal request, or originate from an older request stored by a lifeline buddy. In either case, the corre-
sponding activity integrates the tasks into the worker’s pool by calling a merge function. If the worker
has ended, it is additionally restarted.

e trySteal: The worker is the victim of a steal request. If its pool is empty, the corresponding activity
immediately replies with a noTasks message. Otherwise, it records the request at the worker’s place.

e noTasks: This is the rejection of a former steal request.

When all messages have been received, the worker activity resumes and sends out tasks to the thiefs recorded.
The first thief gets half of the tasks, the second a quarter, and so on. Any remaining thieves are sent a noTasks
message. Since the requests are taken from a data structure, the worker is able to prefer random thieves over
lifeline thieves.

Steal requests are sent asynchronously with at async, i.e., the thief spawns a remote activity and continues.
So it remains responsive to requests from others. The victim sends its reply asynchronously, as well. Request
and reply are related by a volatile variable, which is located at the thief place. The thief sets this variable when
sending out the request, and the victim resets it later.

From a user’s perspective, GLB defines a class and two interfaces that must be implemented. In particular,
a GLB user must define a data structure and the following access functions for the private pools:

e merge and split integrate tasks and split the pool, respectively.

e process(n) takes n tasks out, processes them, and inserts any newly generated tasks. If less than n
tasks were available, the function returns false.

Note that GLB does not restrict the data structure, except that the functions must be provided. While the
fault tolerance scheme in [15] only allows stacks, the schemes introduced in the present paper do not restrict
GLB’s flexibility. As a minor restriction, we forbid use of the yield () function, which may be invoked by GLB
user code to interrupt long-running tasks. A workaround is explained in Sect. 6.

3. General Structure of the Fault Tolerance Schemes. Our schemes handle the following issues:
e writing regular backups and maintaining a ring structure of backup places,
e recognizing node failure,
e keeping backups consistent during stealing, and
e returning to a consistent state after failures.
The first and second issues are handled in a similar way by the two schemes, and are discussed in this
section. The third and forth issues are handled differently with quite complex protocols. Sect. 4 provides the
details for the synchronous scheme, and Sect. 5 for the asynchronous one.

Scope of Fault Tolerance. Fault tolerance begins with writing the first backup right after task pool
initialization. If a failure occurs earlier, the program can be restarted without notable loss of time.

The number of cases that lead to program abort is lower for the asynchronous than for the synchronous
scheme, as captured by the term robustness. Both schemes guarantee that the program either outputs a correct
result, or crashes.

Any fault tolerance scheme must find a compromise between overhead and robustness. Our schemes strive
to hold each relevant data element at exactly two locations at any time. If the two locations fail simultaneously,
the program is aborted. While the redundancy level could in principle be changed from two to some other
value, a fair balance of redundancy among data elements is desirable to minimize the backup overhead for a
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given level of robustness. The asynchronous scheme gets closer to a fair balance than the synchronous scheme,
as explained in Sect. 5.1.

Our algorithms suppose a reliable communication layer, i.e., if both sender and receiver of a message
are alive, the message must eventually be delivered. A timing guarantee is not needed, though. In particu-
lar, different messages from the same sender to the same receiver may overtake. This may happen since, at
Runtime.probe(), pending activities are scheduled in any order.

Ring Structure. Let P denote the number of places. In both schemes, each worker regularly writes a
backup to the main memory of another place. For that, workers are arranged in a ring, and numbered 0... P — 1.
Outside failures, worker i regularly writes its backup to the main memory of worker (i + 1) mod P, which is
called its backup partner Back(i). Vice versa, if Back(i)= j, we denote the predecessor as i =Forth(j).

In case of failures, the gap is bridged, i.e., the next node alive along the ring takes the role of Back(i).
Re-establishing the ring structure is accomplished by a restore protocol. These protocols differ between the
synchronous and asynchronous schemes and are explained in Sects. 4 and 5.

Logs. In both fault tolerance schemes, each worker keeps a log of the places that it has taken over due to
restore. The relation of taking over is transitive, i.e., if worker ¢ — 2 restored ¢ — 1, and later ¢ restored i — 1,
then we say that worker ¢ has taken over both workers ¢ — 2 and ¢ — 1.

Logs are inspected when a worker receives a restore request and must decide whether the program can
recover. Consider, for instance, the sequence of workers ¢ — 2,7 — 1,4. If 4 — 1 fails first, and i — 2 later, then ¢
can perform ¢ — 2’s restore if and only if it has ¢ — 1 in its log and Forth(i) =i — 2.

The synchronous scheme stores logs as a list of all workers restored. The asynchronous scheme, instead,
only stores Forth as its log, relying on the invariant that each worker ¢ must have taken over all workers
[Forth + 1...7 — 1] (cyclically), or otherwise Forth is invalid. There must not be gaps between Forth and 4,
since any missing worker’s data would be lost. In both schemes, the log is part of a worker’s backup data.

Backup Writing. Regular backups are written every kn processing steps, called a backup interval. Here,
n denotes the GLB parameter, and k£ > 1 is an additional parameter. To determine the length of a backup
interval, each worker counts steps independently and, at the end, autonomously sends its backup. The backup
comprises the current contents of the local task pool, the current value of the partial result, as well as the
worker’s log. These data are copied to a val variable and transparently sent by X10’s at construct.

Our algorithm writes backups only right before a process(n) call. At these moments, the task pool
contents, supplemented by the current value of the partial result, defines a worker’s state in full.

Shadowing Results of partially finished Tasks. Sometimes, the execution of a single task takes too
long to keep a worker responsive. Therefore, GLB defines a yield() method. A user can invoke this method
inside process(n) to interrupt task execution and call Runtime.probe (). Our fault tolerance schemes do not
support yield() for two reasons: First, yield() would complicate the program structure, especially for the
asynchronous scheme, by introducing an additional Runtime.probe () call. Second, at a yield() call, a worker’s
state is not fully represented by the task pool contents.

One of our benchmarks (Betweenness Centrality) deploys long-running tasks, so we still had to find a
workaround. Within the execution of a single task, BC performs a breadth-first search on a graph to find all
shortest paths from one specific node to all others. Since the number of nodes is typically large, yield() should
be called in-between. An alternative is provided by one of the BC sample codes that are supplied with GLB.
This code does not use yield(), but instead decomposes each process(n) into several step calls.

After each step call, the worker may suspend to answer steal requests. To continue thereafter, it needs to
save its internal state. This state is larger than the backup state, we denote it as shadow. The shadow is only
visible to the particular worker, not to others. During each process(n), the worker operates on the shadow,
and at the end of process(n), the shadow’s result is combined into the partial result. When a backup is written
during process(n), it covers the state at the beginning of process(n), but not the shadow. Maintenance of
shadows induces additional overhead for copying after each step.

Communication Structure. As noted before, the major difference between our two fault tolerance
schemes concerns communication. While the synchronous scheme uses X10’s at construct in most cases, the
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asynchronous scheme uses at async everywhere.

Asynchronous communication improves efficiency, since a worker may continue processing tasks while com-
municating with others. Moreover, it remains responsive this way.

On the backside, asynchrony complicates the program structure, since a worker may have to manage
multiple outstanding requests at the same time. To reduce complexity, we designed an actor-like communication
structure, in which a worker alternatingly processes tasks, receives messages, and carries out the actions required
by these messages. The structure is inspired by GLB, but goes farther by consistently applying this three-phase
structure to all types of communication. This allows us to process messages in a well-defined order, and to
prioritize messages. The scheme resembles the actor model [16] insofar as a worker, except for processing tasks,
is a passive entity, and only becomes active upon message receipt.

Failure Notification. As noted in Sect. 2.1, X10 supports failure notification by DPEs and by the
isDead(...) function. DPEs are well-suited for the synchronous scheme. Throughout the corresponding
program, for timely failure notification, all place changes are enclosed in try-catch blocks. When a place fails
during a regular backup, its predecessor is informed immediately and can initiate the restore protocol (see
Sect. 4.2). When a place fails during stealing, the DPE is received by a different worker, which broadcasts it
to all other workers. The broadcast is an expensive, but timely way to reach all workers that are currently
involved in a communication with the failed worker and whose identities may not be known to the sender.

Unfortunately, DPEs are not suited for the asynchronous scheme, since they are only caught by the outer
finish, which comes too late. Therefore, we do not use DPEs in the asynchronous scheme, but instead rely on
isDead(...). This X10 issue is further discussed in [15].

We implemented a monitoring scheme, in which each place regularly inquires its backup place’s liveness by
calling isDead(...). Monitoring is disturbed if a worker has ended and thus can not take the initiative for the
regular calls. Here, monitoring deploys so-called ghost activities, which are temporal re-activations of an ended
worker.

To state it in more detail, a worker regularly calls isDead(...), as noted. If the successor is dead, the
restore protocol is invoked. If it is alive, the worker sends a monitor message. The corresponding remote activity
checks whether the successor has ended and, if so, starts a ghost activity. The ghost activity is responsible for
1) invoking isDead(...) on the successor’s successor, and 2) calling monitor recursively, if needed. It can be
easily verified, that any failure is recognized this way.

The scheme is speeded up by a second failure notification mechanism, called timeouts. Timeouts are
deployed in the asynchronous protocols: When a worker has sent a message, it typically expects a reply, even
though it does not explicitly wait for it in the actor scheme. These replies are stored in a list, together with
some time limit. Occasionally, the worker runs through the list. For all replies that have exceeded their time
limit, it invokes a synchronous communication to the respective communication partner. If it is dead, it takes
appropriate action according to the respective protocol. In addition, it informs the place’s Forth who will
initiate the restore protocol.

4. Synchronous Fault Tolerance Scheme. While the basic approach of our fault tolerance schemes has
been discussed in Sect. 3, steal and restore are more complex. Since the approaches in the synchronous and
asynchronous schemes are fundamentally different, we handle the synchronous approach in this section, and the
asynchronous approach in Sect. 5.

4.1. Steal Protocol. Stealing requires special arrangements to avoid inconsistencies between thief place
F, victim place V, as well as their backups at Back(F) and Back(V). Otherwise tasks may be computed twice
or not at all. The protocol is conservative in that the program is cautiously killed in any possibly inconsistent
situation, to guarantee that a computed result is always correct.

Figure 4.1 depicts the steal protocol, which was introduced in [2], with time advancing from top to bottom.
In the figure, a wavy line indicates that the place is processing tasks (if available), and a solid line marks actions
that are part of the protocol. At the backup places, wavy lines are omitted for clarity before and after their
involvement. A thick dotted line represents the queueing of a request, i.e., the request has to wait until the
worker calls Runtime.probe(). An asterisk denotes an asynchronous message sent via at async, whereas the
other arrows correspond to synchronous communication via at. To state it in more detail, V invokes three ats:
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from @ to @, from ® to @, and from about @ to about @. During the second at’s operation at F, another at
to Back(F) is launched.

The protocol starts with a trySteal request. If V has no work, it responds as explained in Sect. 2.2, and
no further action is taken. Otherwise, V registers at place F. From @ to ®, F is not allowed to accept other
register requests.

After registration, V splits the pool by calling the user-provided split function. Then, it saves the tasks to
be stolen and writes a backup without them. While tmpBackup # null, there may be an inconsistency, since
Back (V) does not know whether F and Back(F) have already taken over the tasks.

After the backup, V sends the tasks to F, called give in the figure. On arrival, F merges the tasks into its
own pool. The pool is not necessarily empty, since section @ to ® of the protocol may be repeated if different
lifeline buddies send work at about the same time.

Analogously to V, thereafter F writes a backup and starts processing the tasks just received. The remain-
ing arrows display some handshaking to let all places know when the protocol has finished. Then, variables
tmpBackup and stolen may be reset, and F and V may accept other requests.

Looking back, there are two situations in which backups are written: regularly every kn steps, and during
stealing. To reduce overheads, we restart the kn period after each steal-related backup. Moreover, a place first
checks for steal requests before writing a regular backup.

The protocol in Fig. 4.1 considers the base case of a single steal request. Other cases are reduced to this
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one as follows:

e If V receives other steal requests between ® and @, they are rejected or delayed until @.

o If V receives a register from F between @ and @, a place number-based ordering guarantees that
only one of the crossing registers between F and V passes. The other is delayed until @. Crossing
registers may occur when F is V’s lifeline partner and wants to answer a steal request from V that it
has recorded long ago.

e If V receives other register requests between @ and @, they are delayed until @

o If F receives trySteals or registers between @ and ®, they are rejected or delayed until ®.

e If F receives other registers before @, section @ to ® is run for the first request arriving, and the
others are delayed until ®. Hence, for “our” request, the protocol corresponds to the base case, except
for a larger delay between @ and @ in this rare case.

e At F and V, backup requests from Forth(F) and Forth(V) are processed as usual, concurrently to the
steal protocol.

e During the protocol, regular backups of F and V are skipped and replaced by the steal backups.

e If places F and Back (V), or places V and Back (F) coincide, the respective roles are pursued concurrently.

4.2. Restore Protocol. The restore protocol is depicted in Fig. 4.2. After Forth(P) has been notified of
the failure, as explained in Sect. 3, it locates Back (P) as being the next place alive in the ring. Then, Forth (P)
sends a restore(P) message to Back(P). Upon receipt, Back(P) inspects its log, as further explained below.
If recovery is possible, Back (P) merges the tasks from the backup into its own local pool, combines the partial
results, and inserts P into its log. Thereafter, it sends a backup of its new state to Back (Back(P)). This backup
is called a taken-over backup, or shortly TO-backup.

After the TO-backup, Back(P) reports completion to Forth(P), which is denoted by RSTack in the figure.
Thereupon, Forth(P) sends a backup to Back(P). It is called an inauguration backup, or shortly IA-backup,
since Back(P) is Forth(P)’s new backup place. Note that the protocol uses synchronous communication,
therefore the arrows labelled RSTack and IAack correspond to implicit returns from at calls.

To explain the usage of the log, consider the case that Back(P) fails at &3. Although Forth(P) recognizes
Back (P)’s failure, it has no clue when the failure occured. Therefore, Forth(P) looks up Back(Back(P)) and
requests P(!)’s backup, as it would do if Back(P) died long ago. In our setting, Back(Back(P)) has received
Back(P)’s backup, including P’s data, as indicated by the log. Therefore, Back (Back(P)) transforms the request
to restore P into a request to restore Back (P), and, on completion, reports success to Forth(P). Because of the
ring structure, the scheme extends to any number of failed places.

If Back (P) fails before &3, P is not contained in the log, and therefore Back (Back(P)) aborts the program.
Between ©) and €3, Forth(P)’s data are unsecured. Thus, if Forth(P) dies during this time, Forth(Forth(P))
will neither find Forth(P)’s backup place, nor a place that has Forth(P) in its log. This is recognized by the
first place alive, which aborts the program.

4.3. Recovery and Correctness. The following items show that, during the steal protocol, a failure of
F and/or V can either be recovered successfully, or halts the program:

e Failure of F before sending the @ — @ message: Because of the register call, V is notified of the failure.
Since the stealing has not yet begun, recovery corresponds to the base case.

e Failure of F after @ but before sending the message into @: V re-merges the stolen tasks into its queue
and directs Back (V) to reset tmpBackup. Depending on the state of F’s backup, Back(F) either restores
the old backup of F, or kills the program. When the program goes on, all places consistently see the
tasks in question at V.

e Failure of F right before or during V’s unregister call: V continues with the protocol, finalizing its
backup at Back(V). If Back(F) has a temporary backup from F, it kills the program. Otherwise it
restores the new backup, which includes the stolen tasks.

e Failure of V: Depending on time, Back(V) restores the old state, restores the new state, or kills the
program.

Killing the program when tmpBackup # null can be avoided by some additional handshaking between
Back(V) and F, or between Back(F) and V, in the event of a failure. This is done in our asynchronous fault
tolerance scheme, which is described in Sect. 5. In the synchronous scheme, we stayed with the simpler protocol.
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Depending on context (e.g. overall running time), the lower robustness of this scheme may be sufficient since
typical steal rates are low [17], and place failures are rare, such that their coincidence is unlikely.

Remark on Implementation. In a few cases, the synchronous scheme uses asynchronous messages,
similar to the original GLB. The original GLB marks these messages with @Uncounted, such that finish ignores
these activities in its bookkeeping to save time. Unfortunately, @Uncounted async discards exceptions [18].
Since we need exceptions for fault tolerance, we had to eliminate some of the @Uncounted annotations.

5. Asynchronous Fault Tolerance Scheme. As noted in Sect. 3, each worker has a three-phase struc-
ture, which we have implemented by the following loop:
while (nTasks > O || stealFailed) {
processUpToNTasks () ;
Runtime.probe() ;
processRecorded() ;
}
Here, stealFailed is true iff all w + z steal attempts failed. At the call to Runtime.probe(), all pending
remote activities are run. They may record requests, e.g. steal requests, in the worker’s data structures.
Recorded requests are carried out by the worker in processRecorded.

5.1. Steal Protocol. The asynchronous steal protocol is depicted in Fig. 5.1. A victim V may have more
than one thief, but for clarity, only one thief F is depicted here. As compared to the protocol in Sect. 4, this
protocol has been designed to strictly minimize communication. This manifests in minimalist handshaking and
handling multiple steal requests together. These aspects will be elaborated later.

First, let us look at a positive side effect of stealing: redundancy. When tasks are sent from V to F, they
are copied, and thus exist twice. Inspired by resilient divide-and-conquer algorithms [9, 10], we exploit the
redundancy for fault tolerance. Thus, the backups are not updated to account for task movement, or at least
not immediately. Instead, the stolen tasks are kept at V, and only a link to V is sent to Back(F). If F dies,
Back(F) obtains the tasks from V. This way, the backup volume is reduced.

Nevertheless, excessive scattering of a worker’s data must be avoided, since it would increase the probability
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of coincident failures. Therefore, as shown at the bottom of Fig. 5.1, the links are replaced by real tasks at any
next backup. The backup, which may be scheduled at F for whatever reason, incorporates the tasks behind the
links (if not finished yet). It is called an afterMerge-backup. After this backup, a delOpen message is sent to
V, to release the tasks.

Because of the algorithm’s three-phase structure, it is well possible that multiple steal requests are received
at V at the same time. Thus, in Fig. 5.1, a victim V may have more than one thief, but for clarity only one
of them is depicted. To reduce the number of messages, multiple steal requests are handled together in a
so-called transaction. Transactions are numbered by tans, which are assigned consecutively by each worker 7.
Consequently, a pair (i,tan) is system-wide unique.

First, V runs through the thieves in some particular order, which is defined later. For each thief F, it
determines the tasks to be sent. According to the lifeline scheme, the first thief gets about half of the tasks,
the second a quarter, and so on. Any remaining requests are rejected. The transaction is formed from those
thieves that get tasks. Their identities are kept in a list at V during the transaction.

The tasks destined for the different thieves are removed from the local pool, and inserted into a local data
structure at V, called Open. It is a P-size array of lists, where each entry Open(F) holds the tasks to be sent
from V to F. Additionally, references to the task groups of the current transaction are saved in another list, to
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speed up access.

Before giving the tasks to thieves, V informs its backup partner. In Fig. 5.1, this is called steal-backup.
Note that a single backup is sufficient for all steal requests of a transaction. A steal-backup differs from other
types of backup in that the tan and a list of thieves are included.

Note that the stolen tasks are omitted from the steal-backup, which reflects our approach of relying on the
redundancy of stealing. Since at least half of the tasks are stolen, the backup volume is significantly reduced
this way.

A steal-backup may be an afterMerge backup. After the steal-backup, V and its backup are synchronized.
Thus, the counter for the kn time period may be reset, which relativizes the steal backup’s expense.

During the steal-backup, V goes on processing tasks, to avoid loosing time while waiting. When the backup
is finished, as signalled by the receipt of the STLack message, V gives the task groups to the respective thieves.
This operation runs fast, since the task groups have already been recorded before. Then, V returns to work,
again, to not loose time waiting.

At this point, V can safely give away the tasks, since Back(V) is able to and will take care of consistency.
Briefly stated, if V dies, Back(V) will contact all thieves of the current transaction (whose identities have been
stored), and make sure they have received their tasks. Usually they have, or will after some short waiting
(except if there is a second failure). Nevertheless, the time between receiving the steal backup and the BVend
message is somewhat critical for Back(V), since it does not hold V’s state completely. Therefore, we denote this
time period as queasy and mark it by valid=false.

Note the asymmetry between the victim and thief sides: F is involved in a single give of the transaction,
whereas V may give tasks to multiple thieves. As stated before, F sends the steal requests consecutively, but
can nevertheless receive multiple give messages at about the same time. They are handled in any order. It is
not necessary to wait for the final Fend message of the first give before processing the next. Thus, there may
be multiple outstanding Fend messages. F keeps them in a list, called OpenFend. Only when this list is empty,
a backup may be sent from F to Back(F). The resulting delay is limited, since F may receive tasks from at most
z workers.

Bookkeeping of all participants makes use of the tans. They are included in all messages of the steal
protocol, and saved wherever appropriate. For instance, at V, they are added to each task group. Unlike the
other participants, F saves the tans of merged task groups permanently. It needs the information since, in
case V dies after ¢3, it must be able to answer Back(V)’s inquiry. Fortunately, there is an efficient scheme for
permanent storage: Since F’s at most w + z steal requests go to different victims, subsequent transactions with
the same victim are processed in the order of their tans. Therefore, it is sufficient to keep each V’s most recent
received tan.

For each give, F first sends the respective link to Back (F), and then inserts the tasks. Right afterwards,
F starts processing the tasks. There is no problem about returning to work since, if F dies before ¢, Back (F)
resets to a previous state anyway, and if F reaches &, the results of work are correctly reflected in the new
backup.

As noted above, the handshaking in Fig. 5.1 has been designed to be minimalistic. In particular, Back (F)
only reports to V, but not to F. When V receives a BFack message, it immediately sends Fend to the respective
thief. Moreover, it removes F from the thieves-list of this transaction. It easily recognizes when all F’s have sent
their BFack. Then, the transaction is over, and V signals that to Back(V) via a single BVend message.

5.2. Restore Protocol. Restore presupposes timely failure notification, which has been explained in
Sect. 3. In the following, we assume that Forth(P) has recognized P’s failure. The restore protocol is depicted
in Fig. 5.2. Note that Forth(P), P, etc. need not have successive numbers, but workers in-between may have
been restored.

The protocol is time-critical between €) and &3J, since Forth(P)’s data are unsecured. Therefore, Forth (P)
and Back (P) run the protocol in so-called emergency mode. In this mode, processing of tasks pauses, for higher
reactivity. Moreover, only urgent and short messages are handled. The other messages must be received, but
they are only stored and handled later. The loss in efficiency due to emergency mode can be neglected, since
we assume that failures are rare.

As shown in Fig. 5.2, the protocol resembles the restore protocol of the synchronous fault tolerance scheme,
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but accounts for the fact that tasks referenced by links must be collected. Also, to improve robustness, failure
of V in queasy state does not automatically lead to program abort. Instead, Back (V) checks whether the tasks
have been taken over by the thief side. Only if the tasks are lost, the program is killed.

The protocol begins with a restore message from Forth(P) to Back(P). Upon receipt, as explained at the
end of Sect. 3, Back(P) makes sure that P = Forth, and that the source equals Forth(Forth(P)). Since failures
may happen at any time, three particular situations must be taken care of:

1. P fails between ) and §3 in the steal protocol, i.e., Back(P) is in queasy state.

2. P fails between ¢ and 3, and Back(P) has saved links.

3. P fails when Forth(P) and/or Back(P) are already involved in another restore protocol.
Situations 1 and 2 may appear together, since a worker is allowed to receive tasks between ¢ and ¢3. In
situation 1, Back(P) contacts all thieves of the current transaction, called GOTcheck in Fig. 5.2. They check
whether they have received tasks for the corresponding tan, otherwise wait for a moment in case the message is
late, and then respond (called GOTok/GOTfalse in the figure). The restore can only be performed if all answers
are GOTok. Otherwise, Back(P) aborts the program.

In situation 2, Back(P) sends a linkResolve message to each former victim. Usually, the victim finds the
respective tasks in Open(P) and sends them back in a 1inkTasks message. Occasionally, though, the victim has
recognized P’s failure before Forth(P) did (from a timeout on an outstanding BFack). In this case, the victim
has already taken back the tasks, i.e., it re-inserted them into its own pool and removed them from Open(P).
Consequently, the tasks are not available anymore. Interestingly, such orphaned links are no problem: The
victim just sends back null instead of a task group, and therewith informs Back (P) that it has taken care of
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the tasks. One may ask why the victim takes back the tasks when observing timeout. The reason is that F may
have failed before ¢, and, thus, there is no link.

Situation 3 stands for several sub-cases, which will be discussed below. Now, let us look at a normal protocol
run. After having sent the linkResolve and GOTcheck messages, Back (P) waits for answers. During that time,
in fact, it performs the Forth checks discussed earlier. Moreover, it inserts the tasks from the saved backup
into its own pool, as it does with the tasks arriving via linkResolve in course of time.

Sending out the messages before deciding whether to perform the restore at all may appear counter-intuitive.
This order is more economical, though, since it avoids loosing the waiting time, and time-critical messages are
sent earlier this way. Changing the order does not compromise correctness: If Back(P) remains alive, the
order does not matter. If Back(P) dies before performing the Forth checks, two successive workers are gone,
and Back(Back(P)) Kkills the program anyway. While details are omitted for brevity, considerations like that
determine the ordering of actions throughout our algorithm.

When all outstanding 1inkTasks and GOTok messages have been received and the tasks have been inserted
(denoted €2 in the figure), Back (P) has successfully restored P. This corresponds to @ in Fig. 4.2. Like there,
the protocol finishes with TO- and IA-backups.

The most important sub-cases for situation 3 are handled as follows:

e Back(P) dies during the protocol:After recognizing the failure,Forth (P) figures out that Back (Back(P))
is the next place alive along the ring, and sends a restore message. If Back(Back(P)) has already
received Back(P)’s TO-backup, it performs the restore, otherwise it aborts the program.

e Forth(P) receives a restore between ¢) and €3: Forth(P) kills the program.

e Back(P) recognizes failure of Back (Back(P)): Back(P) kills the program.

In the second and third cases, the program could in principle be continued by nesting protocol execution. This
would, however, complicate the program. Since we have assumed unfavourably correlated failures to be unlikely,
we instead abort the program.

5.3. Communication Structure. As noted before, the actor scheme allows us to handle incoming mes-
sages in a predefined order. Moreover, messages can be easily prioritized or delayed until the next iteration
of the main loop. The order is accurately defined for all message types of our algorithm but, for brevity, the
following list is restricted to a few typical representatives:

e Handshaking and link management messages are handled immediately (e.g. noTasks, BFack, receipt of
a link, 1inkResolve and GOTcheck)

e Arrival of a TO-backup or IA-backup has the highest priority of recorded requests.

e Arrival of restore comes thereafter, since a TO-backup may increase the chances for successful restore.

e Upon arrival of give, the link is sent immediately, but the (more time-consuming) merge action is
recorded.

e Steal requests come after merge, so that the steal backup replaces the links, and the received tasks can
be distributed.

e Regular backups have lowest priority.

6. Experiments. Experiments were conducted on an Infiniband-connected cluster, where each node com-
prises two 8-core Intel Xeon E5-2760 CPUs as well as 32 GB main memory. All experiments used one place per
node on up to 128 nodes. We deployed X10 version 2.5.2 (SVN, revision 29421) and GCC 4.8.4 to compile the
programs. Resiliency was only switched on for the fault-tolerant program versions.

We used two benchmarks: Unbalanced Tree Search (UTS) and Betweenness Centrality (BC). Both are
included as samples in the X10/GLB distribution. UTS is a well-known benchmark that counts the number
of nodes in a highly irregular tree, which is constructed on the fly from node descriptors [12]. Each descriptor
encodes a subtree and naturally corresponds to a task. We used geometric distribution for the tree shape. BC
considers the set of all shortest paths in a graph, and for each node computes the number of shortest paths
running through it [13]. GLB uses UTS as an example for dynamic task pool initialization, and BC for static
initialization.

For the fault-tolerant frameworks, the sample codes of UTS and GLB were slightly adapted. In particular,
the BC example was extended by shadows, as explained in Sect. 3.
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TABLE 6.1
Experimental results for the Parameter n and k

Benchmark | Configuration Framework determined n and k&
GLB n = 512
small FTGLB n = 4096, k = 65536
UTS FTGLB-Actor | n = 8192, k = 65536
GLB n = 16384
large FTGLB n = 32768, k = 65536
FTGLB-Actor | n = 65536, k = 65536
GLB n = 512
small FTGLB n = 65536, k = 512
BC FTGLB-Actor | n = 32768, k = 1024
GLB n = 16384
large FTGLB n = 65536, k = 512
FTGLB-Actor | n = 65536, k = 512

Both UTS and BC were run with a small and a large configuration, to account for different computation-
to-communication ratios. In the following, b denotes the branching factor, d the tree depth, s a random seed,
and N the number of graph nodes:
small UTS: d =13, b=4, s =19
large UTS: d =17, b=4, s =19
small BC: N =2 s =2
large BC: N = 216, s =2
We compared three program versions:

e the original GLB code from the X10 distribution (GLB),
e our synchronous GLB version from Sect. 4 (FT-GLB), and
e our asynchronous GLB version from Sect. 5 (FTGLB-Actor).

Experiments were grouped into two stages. In the first stage, we determined the optimal n and k values
for the process(n) calls and the kn backup intervals. In the second stage, we measured performance with the
best n and k values obtained before. All experiments were repeated three times, and the average was taken.

In the first stage, we started the small UTS and BC configurations on 8 nodes, and the large configurations on
32 nodes, varying n. These place numbers have been observed before to lead to good performance. Although [1]
reports on scalability to many more places, we were not able to achieve such speedups with our configurations
and hardware.

The best n and k values are depicted in Table 6.1. The fault-tolerant program versions prefer higher n, due
to their increased overhead. Although steal rates are similar for all programs, these versions need to perform
additional actions to, e.g., write backups. The k values are not important for UTS, since steals, and therefore
steal backups, are frequent. Therefore, any sufficiently large k value performs well. For BC, we chose k such
that a regular backup is written roughly every 10 seconds.

Results of stage 2 are depicted in Figs. 6.1 and 6.2 for the small configurations, and in Figs. 6.3 and 6.4 for
the large configurations.
For a deeper analysis, we divided a typical run into three phases:
e Setup and initial work distribution: Each place writes its initial backup. Dynamic work distribution
requires stealing.
e Steady state: The nodes work mostly independently, the steal rate is low.
e Final stage: More and more places run out of work and steal from each other, increasing communication.
For the small configurations, the frameworks spent a high portion of time in the final stage, which led to a
high communication-to-computation ratio. The huge overhead of up to 655% for FTGLB as compared to GLB
in Figs. 6.1, 6.2 and 6.4 indicates that the synchronous scheme has deficiencies. They have been largely resolved
with the FTGLB-Actor framework, which exhibits almost the same performance as GLB in the UTS runs. In
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the BC runs, there is a notable difference of up to 62.5% between GLB and FTGLB-Actor in Figs 6.2 and 6.4.
It can be explained by the need to manage shadows.

To measure the overhead of our restore protocols, we started three runs on 5 and 9 nodes for each con-
figuration and benchmark, crashed one place shortly after the start of the task execution, and compared the
execution time with that on 4 and 8 places, respectively. The overhead was about 6% in all cases.

7. Related Work. As already stated in the introduction, related work differs from ours in the task model
used. First, MapReduce systems such as Hadoop [8] assume the set of tasks to be fixed. Ciel [19] extends
MapReduce by permitting tasks to generate new tasks, but still task management is centralized at a master
process. Second, divide-and-conquer algorithms exploit references between stolen children and their parents for
fault tolerance [9, 10], whereas we discard parents and maintain only one partial result per worker. Third, side
effects in tasks can be tackled by tracking operations [20].

Outside fault tolerance, load balancing and task pools are a long-standing area of intensive research, e.g. [1,
6, 14, 21]. In [22], an X10 keyword for mobile activities is suggested that brings activities and global load
balancing together.

Resilient X10 has been deployed in other applications [4]. For instance, a fault-tolerant DistArray data
structure [23] bases recovery on regular backups, similar as we do. Less closely related to our work, transient
faults in task pools can be detected and handled by replication and voting [24].

8. Conclusions. This paper has introduced two different task pool algorithms that can tolerate any
number of permanent place failures, except failure of the first place. The algorithms are based on backups of
the local task pool contents, which are regularly written to the main memory of a neighboured place. Important
aspects have been failure notification, as well as steal and restore protocols. Especially the protocols differ
significantly between the algorithms. Most importantly, the first algorithm uses synchronous, and the second
asynchronous communication. To reduce complexity, the second algorithm deploys an actor-like communication
structure. Moreover, it exploits stealing-inherent redundancy, and requires less handshaking. Both algorithms
are conservative in that a computed result is guaranteed to be correct, at the price of halting the program in a
few rare cases. There are more such cases for the first than for the second algorithm.

The algorithms have been implemented in the GLB framework of X10. In experiments with UTS and BC,
we observed significant overheads for the first algorithm, but the second algorithm’s performance was close to
that of non-fault-tolerant GLB.

There are several directions for future research. First, we will finish the implementation of the third scheme,
which was mentioned in Sect. 1. Beyond that, it would be interesting to apply our approach to other task pool
algorithms, especially to algorithms that allow multiple workers per place and deploy concurrent data structures.
Also, it would be interesting to implement the fault tolerance schemes in other programming systems, e.g. in
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MPI with user level failure mitigation [26].
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