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PARALLEL WATERMARKING OF IMAGES IN THE FREQUENCY DOMAIN∗

DOROTHY BOLLMAN, ALCIBIADES BUSTILLO, EINSTEIN MORALES†

Abstract. While the internet has made it possible for the consumer to easily obtain images, audio, video, etc. in digital
form, it has also made it easier to illegally obtain copyrighted material. Digital watermarking is a partial solution to this problem.
Embedding a watermark in a legal version of material can help the copyright owner to identify who has an illegal copy. Because
of the ever increasing enormity of the flow of information, it becomes necessary to watermark files in the least amount of time
possible. For this reason it is natural to turn to parallel computing. In this work we compare the performance of three different
implementations on a cluster of SMPs, in OpenMP, MPI, and CUDA, of a simple algorithm for watermarking digital images. Our
experiments show that CUDA with one gpu is almost 300 times faster than the sequential version and many times faster than
OpenMP and MPI using 1 up to 8 nodes.
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1. Introduction. Watermarking is the process of embedding data into multimedia, including text, still
images, video, or audio, that is typically used in order to show ownership. A watermark can be either percep-
tionally visible or invisible to the human eye. Visible watermarks are used to protect copyright or to simply
identify a source of material such as a library or organization. A visible watermark identifies the owner of
material, but does not necessarily prevent other uses. On the other hand, invisible watermarks are usually used
in order to detect fraudulent use of material. For example, a seller might want to identify a person who has
used his/her material without paying royalties or the government might want to detect the identity of a person
who released classified material.

In order for a watermark to be useful, it must be either detectable or extractable by the owner. It must also
be “robust” or resistant to attacks, either intentional or non-intentional. That is, the watermark must remain
intact after attacks.

Although many different techniques for embedding watermarks in digital images have appeared in the liter-
ature for at least the last twenty years, only a few have considered the possibility of applying parallel computing
and those that do consider only the use of GPUs. In this paper we give an embarrassingly parallel algorithm for
a certain family of watermarking algorithms in the frequency domain and we compare performance of sequential,
OpenMP, MPI, and CUDA implementations of a simple representative of this family, with particular emphasis
on OpenMP and MPI.

In the following section, we briefly review several digital image watermarking algorithms that have been
considered in the literature. In Sect. 3. we define the discrete cosine transform (”DCT”) and describe the
symmetries that we take advantage of in our implementations. In Sect. 4. we describe and compare our
implementations of a watermarking procedure in OpenMP, MPI, and CUDA. In Sect. 5. we discuss experimental
results of the three implementations. In Sect. 6. we make some concluding remarks.

2. Digital Image Watermarking. Digital image watermarking can be done either in the spatial domain
or the frequency domain (or perhaps, as in [5], in both). Spatial domain techniques involve direct manipulation
of the pixel values. For example, colors of certain pixels could be changed. Another very simple spatial domain
technique is the ”least significant bit” method in which a given number of least significant bits of the host
image are replaced by the most significant bits of the watermark image. A frequency domain method consists
of embedding the watermark in the ”frequency domain”, i.e., in the functional image of a discrete transform
such as a Fourier, cosine, or wavelet transform.

Here we are interested in frequency domain methods and we briefly mention only a representative sampling
of some of the work that has been done in this area. Although there are several works in which grid (GPU)

∗This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science
Foundation grant number ACI-1053575.

†Department of Mathematical Sciences, University of Puerto Rico at Mayagüez (dorothy.bollman, alcibiades.bustillo,
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computing has been applied to image watermarking, we know of no previous work involving the application of
OpenMP and MPI.

A frequency domain method typically consists of three stages: (1) convert the host image I from the spatial
domain to the frequency domain, i.e., compute the discrete transform T , such as the Fourier, cosine, or wavelet
transform, of I; (2) apply an embedding algorithm E to T (I) and S(W ), where S is some function defined
on the watermark W , to obtain a new image array E = E(T (I),S(W )); (3) Convert E back to the spatial
domain to obtain the watermarked image E′. An extraction process consists of a procedure X which takes the
watermarked image E′ and possibly the original image I and produces the original watermark W = X(E′, I).

The DCT and IDCT (inverse DCT) of images used in frequency domain methods are applied either to
blocks of the image or to the complete image. Shieh et al [10] develop a method in which a genetic algorithm
is used to insert 8×8 blocks of the binary watermark into corresponding blocks of the DCT of the host image.
The watermarked image then consists of the concatenation of the IDCT of each resulting block. Using this
algorithm, the watermark can be extracted without the need for the original host image.

Garcia-Cano et al [2] implement the Shieh algorithm on a GPU and compare performance results with those
of a sequential version. Other works in which GPUs have been used in watermarking are, for example, those
of Lin, Zhoa, and Yang [6] and Vihari and Mishra [16]. Lin et al extract features from the low and middle
frequency domain of the DCT and embed them in the high frequency domain. Vihari and Mishra use Huffman
coding to encode copyright data that is then embedded using the ”Modified Auxiliary Carry Watermarking”
method.

Cox et al [1] develop an invisible watermark consisting of real numbers x1, x2, · · · , xn that are chosen
according to a normal distribution with mean 0 and variance 1. The DCT of the host image, as a single block,
is computed and the most perceptually significant components, determined by the largest DCT coefficients, are
replaced by vi(1 + αxi) where vi is a frequency component of the host image and α is a scalar factor. The
watermarked image then consists of the inverse DCT applied to this result.

A typical frequency domain procedure uses the DCT and partitions the image I and a logo watermark
image W into 8×8 blocks of pixels The DCT of each block Iij of the host image I is replaced αijIij + βijWij

where Wij(n) is the DCT of the corresponding block of the watermark image and where αij and βij are values
that are chosen in accordance with properties of block Iij . The watermarked image I(W ) then results from
applying the inverse DCT to each of the resulting blocks and concatenating the resulting blocks. In symbols

I(W ) =
∪

ij

IDCT (αijDCT (Iij) + βijDCT (Wij))

Kankanhali et al [4] choose αij and βij according to perceptual methods developed by Tao and Dickinson [15].
Mohanty et al [8] claim to improve this latter procedure by taking texture into consideration. We call this type
of watermarking procedure, an “α − β” method. In an α − β method each pair of blocks (Iij ,Wij) can be
processed independently, i.e., such a method is ”embarrassingly parallel”.

Frequency domain watermarking is generally regarded as being more robust than spatial domain methods,
mainly because of its resistance to lossy compression attacks. Indeed, the steps involved in frequency domain
watermarking are very similar to those of image compression such as JPEG compression. Typically, these steps
consist of the following: (1) partition the image into 8×8 blocks of pixels; (2) apply the two dimensional DCT to
each such block; (3) apply ”quantization” to each block of resulting DCT coefficients; (4) apply the inverse DCT
to each of the blocks; (5) apply entropy coding to the quantized data. Quantization is a process of reducing the
number of possible values of a quantity and entropy coding is a method for representing the quantized data in
a compact form.

3. The Discrete Cosine Transform. The one-dimensional discrete cosine transform is a linear function
F : RN → R

N defined by

C(u) = α(u)

N−1
∑

x=0

f(x) cos

(

π(2x+ 1)u

2N

)

, u = 0, . . . , N − 1 (3.1)
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The inverse transform exists and is defined by

f(x) =
N−1
∑

x=0

α(u)C(u) cos

(

π(2x+ 1)u

2N

)

, x = 0, . . . , N − 1 (3.2)

where

α(u) =







√

1
N

x = 0
√

2
N

x ̸= 0
(3.3)

The one-dimensional DCT is a linear function and can thus be represented as a matrix, i.e.,

[Cij ] =
[

α(i) cos

(

(2j + 1)πi

2N

)

]

i, j = 0, 1, · · · , N − 1

and similarly for the DCT inverse. The two-dimensional DCT is a function F : RN2 → R
N2

which when applied
to a matrix can be computed by first computing the one-dimensional DCT of the rows and then using the result
to compute the one-dimensional DCT of the columns.

Since an α−β method applies the DCT to 8×8 blocks of images multiple times, it is of interest to minimize
the number of operations in its computation. For this we use an idea of Obukhov and Kharlamov [9] which is
described in the following.

The matrix form of the one-dimensional DCT exhibits various symmetries that can be taken advantage of.
For N = 8 the representation is as follows:

F = 1√
8
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√
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Separating even and odd numbered rows we have
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Fig. 4.1. (a) Image (Lena), (b) Watermark (Barbara), (c) Watermarked image
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Thus, the one-dimensional DCT applied to a vector of length 8 can be computed using only 28 multiplications
and 56 additions. The usual product of an 8×8 matrix times a vector of length 8 requires 64 multiplications
and 56 additions.

4. Parallel Implementations of an α − β Frequency Domain Watermarking Algorithm. Given
grayscale images of a host I and a watermark W , each of the same size, which we assume to be a power of 2, an
α− β algorithm embeds W in I by (1) partitioning both I and W into blocks of 8×8 pixels and computing the
DCT of each of the corresponding blocks, Iij and Wij ; (2) computing αij = α(Iij ,Wij) and βij = β(Iij ,Wij);
(3) replacing each value DCT (Iij) in the host image by αijDCT (Iij)+βijDCT (Wij); (4) computing the inverse
DCT of each of the blocks αijDCT (Iij) + βijDCT (Wij) and concatenating the results.

Following is an example where α = αij = 0.9 and β = βij = 0.14 for all i, j. The degree of visibility of the
watermark is determined by the values of α and β.

Let us begin with a sequential version of this algorithm for an image of size dim× dim (Algorithm 1).

Algorithm 1 Sequential

1: procedure WATERMARKING(I,W, dim, α, β)
2: m = dim

8
3: for i = 0 : m− 1 do
4: for j = 0 : m− 1 do
5: Xij = DCT (Iij)
6: Yij = DCT (Wij)
7: Compute α = α(Iij ,Wij) and β = β(Iij ,Wij)
8: Zij = αXij + βYij

9: Zij = IDCT (Zij)
return Z

Each pair (Iij ,Wij) of image blocks in the above algorithm can be processed independently of the others
and hence in parallel and an efficient implementation consists of determining how the available resources can
be used to most effectively achieve this. We shall see how this can be done in OpenMP, MPI, and CUDA.
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4.1. OpenMP. OpenMP (”Open Multi-Processing”) is a shared memory programming model in which
the programmer can insert compiler directives or ”pragmas” into ordinary sequential C, C++, or FORTRAN
programs in order to partition tasks into parallel threads, the smallest unit of processing that can be scheduled
by an operating system. The most common and easiest way to parallelize code in OpenMP is by parallelizing
for loops.

In the above procedure WATERMARKING, each of the (i, j) iterations is independent of the others and so
ideally, it would be convenient to use just one parallel for loop. However, because of the double indexing, we must
use two nested for loops and in OpenMP it is possible to parallelize only the exterior for loop. However, recent
versions of OpenMP allow one to parallelize multiple loops in a nest without introducing nested parallelism by
making use of the collapse pragma. Thus, we have Algorithm 2.

The number of threads used is specified at run time.

Algorithm 2 OpenMP-Version

1: procedure WATERMARKING(I,W, dim, α, β)
2: m = dim

8
3: #pragma omp parallel for collapse(2)
4: for i = 0 : m− 1 do
5: for j = 0 : m− 1 do
6: Xij = DCT (Iij)
7: Yij = DCT (Wij)
8: Compute α = α(Iij ,Wij) and β = β(Iij ,Wij)
9: Zij = αXij + βYij

10: Zij = IDCT (Zij)
return Z

4.2. MPI. MPI (”Message Passing Interface”), originally designed for distributed memory architectures, is
a library of functions that can be used in conjunction with C, C++, or FORTRAN, as well as other languages, in
order to effect communications between processors. In the MPI implementation of our watermarking algorithm
we partition the grid of 8×8 blocks of both the host image as well as the watermark into n equal size strips
of rows of blocks, where n is the number of processors. The processor, say p0, that initially contains both
images, I and W , sends to each of the n processors a pair of strips (one from the host image and one from the
watermark). Each processor then processes its share of the two images as in the sequential version and then
sends its result to p0 which assembles the result into the complete watermarked image (Algorithm 3).

4.3. CUDA. CUDA (”Compute Unified Device Architecture”), created by Nvidia, is a parallel computing
platform and programming model in which GPUs (Graphics Programming Units) can be accessed by program-
mers for general purpose computing through the use of CUDA-accelerated libraries, compiler directives, and
extensions of C, C++, and FORTRAN, as well as other languages. A CUDA application can involve hundreds
of cores and thousands of parallel threads. Parallel portions of an application can be defined as functions that
are executed on the GPU. Such functions are called kernels. Threads are grouped into blocks of up to 512
threads, which in turn are organized into grids. All threads in a grid execute the same kernel. A grid can be
one-, two-, or three-dimensional.

With CUDA we achieve our original goal of assigning a thread to each iteration of the nested for loop of the
sequential version of our algorithm presented in Sect. 4. For this we make use of dct8×8 kernel2 of the Nvidia
code [9] for computing the DCT and IDCT in 8×8 blocks, in which the grid constructed is 3-dimensional with
64 threads per block (Algorithm 4).
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Algorithm 3 MPI-Version

1: procedure WATERMARKING(I,W, dim, α, β)
2: n = number of processors
3: m1 = dim

8
4: m2 = m1

n

5: send a section I(p) of m2 rows of 8×8 blocks of I to each processor p
6: send a section W (p) of m2 rows of 8×8 blocks of W to each processor p
7: for i = 0 : m2− 1 do
8: for j = 0 : m1− 1 do

9: X
(p)
ij = DCT (I

(p)
ij )

10: Y
(p)
ij = DCT (W

(p)
ij )

11: Compute α = α(Iij ,Wij) and β = β(Iij ,Wij)

12: Z
(p)
ij = αX

(p)
ij + βY

(p)
ij

13: Z
(p)
ij = IDCT (Z

(p)
ij )

14: receive each Z(p) in Z

Algorithm 4 CUDA-Version

1: procedure WATERMARKING(I,W )
2: for each thread-block in block-grid do in parallel
3: X = kernel DCT (Ithread)
4: Y = kernelDCT (Wthread)
5: α = kernel α(Iij ,Wij)
6: β = kernel β(Iij ,Wij)
7: Zthread = kernel linearcomb(α,X, β, Y )
8: Zthread = kernel IDCT (Zthread)

return Z

5. Experimental Results. For our actual implementations we chose a simple representative from the
α − β family of algorithms in which the values of α and β are the same for all blocks (as for example in cf.
Fig. 4.1), thus replacing the computation step for α and β in the above algorithms by inputs. Experiments
were conducted on the Stampede supercomputer [11], located at the Texas Advanced Computer Center (TACC)
and sponsored by the Extreme Science and Engineering Environment (XSEDE) with funding by the National
Science Foundation. The Stampede system is a 10 PFLOPS (PF) Dell Linux Cluster consisting of 6,400 + Dell
PowerEdge server nodes, each one of which has 2 Intel Xeon E5 (Sandy Bridge) processors and an Intel Xeon
Phi Coprocessor (MICZ Architecture). For the OpenMP and MPI programs the authors used the 16 compute
node ”development queue”, each node of which consists of 16 cores with 32 GB of shared memory. For the
CUDA experiments, the authors used the ”gpudev queue” consisting of 4 compute nodes each one of which is
equipped with a NVIDIA K20GPU with 8GB of GDDR5 memory.

We tested our OpenMP, MPI and CUDA programs with greyscale images of 512, 1024, 2048, 4096, and
8192 square pixels. For OpenMP and MPI we used a maximum of all 16 cores per node. For CUDA we used
one compute node with a GPU.

It will be noted that the behavior for 16 cores can sometimes be erratic, especially for small images. This
is because some of a node’s resources are necessarily dedicated to other instrinsic processes of the system.

5.1. OpenMP Results. The times for OpenMP are depicted in Fig. 5.1. Speedups for OpenMP are given
in cf. Fig. 5.2.

As can be seen from Table 5.1 the OpenMP implementation has almost linear speedup for 2 up to 12
threads.
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Fig. 5.1. OpenMP times
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Fig. 5.2. OpenMP Speedup

Table 5.1

Speedup

Speedup
threads 512×512 1024×1024 2048×2048 4096×4096 8192×8192

2 1.884852 1.843737 1.893246 1.708771 1.885878
4 3.699033 3.747434 3.790393 3.357762 3.7578
8 7.372234 7.338334 7.427529 6.668273 7.44652
12 11.18421 11.10579 11.34707 10.14434 11.25846
16 0.674747 2.642157 5.317085 6.853785 14.08695

5.2. MPI Results. Times and speedups with respect to MPI tasks on 1, 2, 4, and 8 nodes are given in
cf. Fig. 5.3 through 5.10.

Using all 16 cores on each node, speedups with respect to the number of nodes are given in cf. Fig. 5.11
and 5.12.
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Fig. 5.3. MPI 1 Node
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Fig. 5.5. MPI 2 Nodes
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Fig. 5.6. Speedup 2 Nodes
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Fig. 5.7. MPI 4 Nodes
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Fig. 5.8. Speedup 4 Nodes
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Fig. 5.9. MPI 8 Nodes
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Fig. 5.10. Speedup 8 Nodes
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Fig. 5.11. MPI times
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As can be seen, the MPI implementation exhibits poor scalability with respect to the number of nodes (i.e.,
sequential time divided by the time for n nodes using all 16 cores), even when using all 16 cores. However, it
is not true that the best time for a given number of nodes used corresponds to 16 processes (cores). But even
using the best times, speedups with respect to the number of nodes is almost flat, as shown in Table 5.2 for an
image of size 1024× 1024.

Table 5.2

Speedup (1024×1024)

Speedup (1024×1024)
1 node/ 16 processes 14.1429884
2 nodes/ 32 processes 18.7097302
4 nodes/ 64 processes 19.9331964
8 nodes/ 128 processes 17.5811589

On the other hand, when we compute speedups with respect to the number of processes (i.e., for a fixed
number of nodes, the sequential time divided by the time for the number of processes), the best scalability
occurs when we use just one node. In fact in this case as shown in the Table 5.3 we have superlinear speedup
for 2 and 4 processes, except for size 4096×4096.

Table 5.3

Speedup (1 Node)

Speedup
processes 512×512 1024×1024 2048×2048 4096×4096 8192×8192

2 2.18684251 2.155103 2.110129 1.835898 2.037115
4 4.16952721 4.189678 4.1226 3.545565 4.100949
8 7.41785612 7.7622 7.600967 6.62734 7.605353
16 13.0625843 14.14299 12.80332 11.70284 13.42

5.3. OpenMP vs MPI. In cf. Fig. 5.13 through 5.17 we compare the performance of OpenMP for 2, 4, 8
and 16 threads with MPI on one node for 2, 4, 8, and 16 tasks, respectively and we see that the performance of
the two are nearly the same up to 8 threads/tasks. For 16 threads/tasks, MPI wins for sizes up to 4096×4096,
but the gap narrows for increasing image size and OpenMP wins by a very narrow margin for image size
8192×8192.
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5.4. Hybrid. We developed a hybrid OpenMPMPI program in the standard way, by starting with the MPI
version and distributing strips of 8×8 blocks of pixels among the nodes just as we did in the MPI version except
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.

that now each node does its work in parallel using OpenMP as in the OpenMP-only version. Unfortunately, this
version under performed both the OpenMP and MPI versions. This is really not surprising. Indeed, there are
well known cases (see e.g., [3]) where hybrid is slower than OpenMP and MPI. Hybrid improves performance
by reducing communications between nodes and increasing opportunites for parallelism and neither of these
opportunities exist in the MPI version of our algorithm. Furthermore, it turns out that the scatter and gather
operations are many times slower in the hybrid version than in the MPI version when applied to the same sets
of data.

5.5. CUDA Results. For the CUDA code, we used the optimized code of kernel2 described in [9] for
computing the 8×8 DCT on a NVIDIA GeForce 6800. We added kernels for embedding the watermark. Further
experiments are needed in order to determine if performance on the NVDIA K20 can be improved even further
by manipulating block sizes. Comparisons between the four implementations are depicted in cf. Fig. 5.18. Our
CUDA implementation on just one GPU was many times faster than both OpenMP and MPI on any number
of nodes up to 8.

Table 5.4 gives the times for 4096×4096 images for the four different versions on just one node, where
OpenMP uses 16 threads and MPI uses 16 processes.

Thus, on just one node, CUDA is 287 times faster than the sequential version, 42 times faster than OpenMP,
and 24 times faster than MPI. The fastest time, .0448525 sec, for MPI occurred on 8 nodes using 128 processes.
Thus CUDA on just one node is 14 times faster than MPI on 8 nodes.

5.6. Watermark Quality. There are several metrics that are commonly used to measure the the quality of
watermark algorithms. The Peak Signal to Noise Ratio (PSNR) evaluates image degradation or reconstruction
fidelity. It is defined for two images I and Z of size M ×N as:
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Fig. 5.18. Cuda-MPI-OpenMP 4096×4096 image

Table 5.4

Times for 4096×4096 images for the four different versions on one node (OpenMP uses 16 threads, MPI uses 16 processes)

Version Time (Seconds)
Sequential 0.903651
OpenMP 0.131847
MPI 0.0772164
CUDA 0.0031519

PSNR(I, Z) = 20 log10
max(I)

√

MSE(I, Z)
(5.1)

where I is the original image and Z is the reconstructed image, max(I) is the maximum pixel value in I, and
MSE is the mean square error between I and Z.

MSE(I, Z) =
1

M

1

N

M−1
∑

i=0

N−1
∑

j=0

∥I(i, j)− Z(i, j)∥2 (5.2)

In image reconstruction the PSNR values vary between [30, 50]. A PSNR value of 50 or more indicates
that the images are almost identical.

Robustness represents the resistance of a watermark against attacks, such as compression, scaling, cropping,
rotation, smoothing, etc. The Normalized Correlation (NC) measures the correlation between the original
watermark and the extracted watermark after attack. It is defined by

NC =

∑N−1
i=0

∑N−1
j=0 [W (i, j)W ′(i, j)]

∑N−1
i=0

∑N−1
j=0 [W (i, j)]2

(5.3)

A value of NC equal to 1 indicates that the original and extracted watermark are exactly the same.
The quality of an α − β algorithm depends on the method for computing α and β. Our interest in this

work has been focused on the computational aspects of α− β algorithms and we chose for our experiments the
simplest representative, in which α and β are constant over all DCT blocks. Although we would not expect
the quality for this representative to compare the most favorably with other members of the α− β family, it is
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nevertheless of interest to determine values of PSNR and NC for this case. To this end, we used the software
StirMark to determine the robustness for our algorithm using the values α = 0.9 and β = 0.2.

Table 5.5 shows the results of applying the software StirMark [12] [13] to the watermarked image in Fig.
4.1 (c) of size 1024×1024 produced by our algorithm and subjected to the indicated attacks.

Table 5.5

The results of applying the software StirMark to the watermarked image

Image PSNR NC
Watermarked

image
36.72 0.97

Compressed image 34.20 1.45
Smooth image 33.86 1.44

Rotated+scaling image 33.53 1.04
Randomly distorted

image
30.21 1.09

The values of PSNR compare well with other watermarked image (e.g., [14]), in spite of the simplicity of
our algorithm. On the other hand, we would expect values of NC closer to one for other more specialized α− β

algorithms

5.7. Conclusions. We have shown how a commonly used family of watermarking algorithms in the fre-
quency domain can be implemented in parallel and we compared the OpenMP, MPI, CUDA implementations of
a simple representative of the α−β family of algorithms. We found that the CUDA implementation on just one
GPU runs many times faster than the OpenMP version and the MPI version even when executed on 8 nodes.
Thus the fastest implementation runs on just one node equipped with one GPU. For one node without a GPU,
there are only slight differences between OpenMP and MPI, with OpenMP winning only for large images and
MPI exhibiting a more regular speedup.

We observed that in spite of its simplicity, the chosen representative is resistant to attacks such as com-
pression, distortion, rotation plus scaling, and smoothing.

The same method developed here for implementing this simple case could be applied to any α−β algorithm.
Of course, the running times of all implementations will vary depending on the complexity of the calculations
of the αij and βij .
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