
Scalable Computing: Practice and Experience
Volume 16, Number 3, pp. 249–269. http://www.scpe.org

DOI 10.12694/scpe.v16i3.1100
ISSN 1895-1767
c⃝ 2015 SCPE

OVERLAY SERVICE COMPUTING - MODULAR AND RECONFIGURABLE

COLLECTIVE ADAPTIVE SYSTEMS

EVANGELOS POURNARAS ∗

Abstract. Distributed software systems that determine virtual communication structures on top of physical networks, the
overlay networks, are a well-established approach to build various applications of collective adaptive systems such as peer-to-
peer file sharing, multimedia multi-casting, aggregation in distributed databases or routing in wireless sensor networks. Despite
the significance of this approach to apply collective adaptive systems in practice, applications based on overlay networks often
result in a complex integration of the operational logic with topological management. This approach results in low abstraction,
modularity and reconfigurability of applications that require one or more overlay networks to operate. This paper challenges this
design approach by introducing the notion of overlay services that provide generic application capabilities of a broad application
scope enabled by one or more overlay networks. This paper contributes the multi-level conceptual architecture of ASMA that
structures and guides the realisation of overlay services by using only a few lines of high-level algorithmic expressions. Two overlay
services realised according to ASMA provide a proof-of-concept for the high abstraction, modularity and reconfigurability achieved
in collective adaptive systems based on overlay networks.

Key words: distributed system, overlay network, overlay service, architecture, middleware, abstraction, modularity, reconfig-
urability

AMS subject classifications. 68M, 68U

1. Introduction. A plethora of collective adaptive systems and applications are build by software that
determines virtual communication structures on top of physical networks such as the Internet, mobile or wireless
sensor networks. These structures are usually referred to as ‘overlay networks’ and they represent interaction pat-
terns or linking of information that mandate the operation and optimisation of a distributed application [21, 34].
For example, IP-multicasting is not widely adopted due to economic and technical factors related with security
and a high protocol complexity for network service providers [5]. On the contrary, network communication can
be structured in an overlay network organised in a tree topology used for multicasting multi-media content in
the application-level.

Applications based on overlay networks often result in a complex integration of the operational logic with
topological management. Such applications deal with topological and organisational complexity as a way to
be dynamic, adaptive and capture information changes during their runtime. For example, the organisation
of a tree overlay network with certain topological properties shall improve the performance of multimedia
multicasting, e.g., tree balancing and constraints in node degrees [34]. This integrating design approach results
in low abstraction, modularity and reconfigurability of applications that require one or more overlay networks
to operate.

The design complexity of overlay networks has also raised an argument about the impact of overlay networks
on the future development of the Internet and its distributed applications. There are two main opposing views in
this argument: The purists view overlay networks as testbeds used for the implementation and experimentation
of novel Internet architectures. Purists do not view overlay networks as viable or coexisting architectural
elements of the future Internet. In contrast, pluralists envision overlay networks as a possible solution to deal
with the heterogeneity of applications and the business challenges of network service providers related to the
development and adoption of technological innovations in the Internet infrastructure. This paper reasons about
“a philosophical revolution in how developers use overlays, rather than a technical alteration in how they build

them” [1]. Given that applications of collective adaptive systems based on overlay networks emerge faster
than the adoption of overlay networks in the Internet infrastructure, it is evident that a higher abstraction,
modularity and reconfigurability for services of overlay network is required as identified in earlier work [11, 17,
20, 18, 33, 4, 16, 41, 42].

This paper introduces the notion of an ‘overlay service’ that is a distributed stand-alone software system,
e.g., middleware, that is based on one or more overlay networks and provides generic application capabilities

∗Professorship of Computational Social Science, ETH Zurich, Zurich, Switzerland (epournaras@ethz.ch).

249

250 E. Pournaras

of a broad application scope. This paper contributes ASMA, the Adaptive Self-organisation in a Multi-level

Architecture that is a new conceptual multi-level architecture to design and prototype overlay services [25]. A
higher abstraction, modularity and reconfigurability are these novel qualitative properties that collective adap-
tive system inherit when designed according to ASMA. The applicability of the ASMA architecture is challenged
by illustrating the modularity and reconfigurability in two architectural realisations of overlay services. These
realisations concern earlier work on large-scale networked systems that perform highly complex functionality in
a fully decentralised and collective fashion. However, in the new context of this paper it is shown how only a few
lines of high-level algorithmic logic defined by ASMA guide and unravel the design and prototyping process of
these complex adaptive systems. In addition, experimental evaluation of the overlay services provides a proof-
of-concept for the high abstraction, modularity and reconfigurability achieved with the ASMA architecture. Yet,
evaluation also dissects the performance trade-offs made as a result of introducing generic collective adaptive
systems.

This paper is outlined as follow: Section 2 defines the main concepts proposed in this paper. Section 3
illustrates an overview of the ASMA architecture. Section 4 introduces the three levels of the ASMA architecture
and their interactions. Section 5 shows how overlay services can be realised by the ASMA architecture. In the
same section, the high abstraction, modularity and reconfigurability of the ASMA overlay services are studied
experimentally. Section 6 compares ASMA with related work. Finally, Section 7 concludes this paper and
outlines future work.

2. Overlay Networks and Services. In the context of this paper, a collective adaptive system of overlay
networks consists of the following computing entities1 as illustrated in Figure 2.1:

1. Host : This entity is a physical machine with a network interface connected to a physical network.
2. Peer : This entity is a software environment that hosts agents and enables their communication.
3. Agent : This entity is a software system that carries out, with some degree of independence or autonomy,

a set of operations defined by a distributed application.
4. Node: This entity is a logical abstraction and representation of an agent in an overlay network.

Fig. 2.1. The four entities defined within the context of collective adaptive systems built with overlay networks: (i) host, (ii)
peer, (iii) agent and (iv) node.

An overlay network is defined in this paper as a graph representation of information managed by the agents
of a collective adaptive system. Peers and agents can be part of a middleware system or integral parts of

1These overloaded terms may be used in different ways in various computing areas such as middleware, peer-to-peer, multi-agent
and telecommunication systems. For example, overlay networks are built by virtual nodes that appear to be related to ‘peers’,
‘agents’, ‘hosting machines’ or ‘software clients’ in literature.

Overlay Service Computing - Modular and Reconfigurable Collective Adaptive Systems 251

distributed applications. As shown in Figure 2.1, a host may contain more than one peer that each may also
contain multiple agents. Finally, note that an overlay network is defined by agent memberships: Every agent
in a network stores unique network identifiers and other information of other agents in a limited (partial) set.
The memberships known to an agent are its partial view of the system.

This paper studies collective adaptive systems of overlay networks designed to serve a wide range of dis-
tributed applications. These generic systems are referred to in this paper as overlay services2. An overlay service

is defined as a decentralised software system that provides a number of collective intelligence capabilities of a
broad application scope enabled by one or more overlay networks. Overlay services can be realised as distributed
middleware systems. Section 5 illustrates two representative examples of overlay services: (i) self-organisation
of overlay networks in tree topologies [30] and (ii) aggregation of dynamically changing information distributed
in the network [29].

An overlay service is characterised by its quality. The quality of an overlay service is defined as a measurable
metric that quantifies the degree to which this overlay service can meet certain application objectives [19], for
instance, the average response time [22] of queries to a directory service that relies on an overlay network.

3. An Architecture for Overlay Services. This paper introduces ASMA, the Adaptive Self-organisation
in a Multi-level Architecture. ASMA is a conceptual self-organisation architecture with which different generic
overlay services can be designed. The implementation of an individual overlay service in the ASMA architecture
is referred to as architectural realisation. An architectural realisation entails the realisations of tasks defined in
ASMA.

ASMA addresses the challenges of abstraction, modularity and reconfigurability in overlay services by in-
troducing (i) a multi-level architecture and (ii) inter-level interactions. The complexity of a collective adaptive
system is managed by multiple application-independent levels, each with a specific self-organisation goal. Each
level in ASMA supports the level above and configures the level below. These bottom-up and top-down inter-level
interactions tune the self-organisation operations in each level to improve the quality of an overlay service.

Figure 3.1 illustrates the ASMA architecture positioned in a single peer. The design of an overlay service in
ASMA is defined by sets of (i) criteria and (ii) samples within three application-independent reconfigurable self-
organisation levels: (i) the discovery level, (ii) the structuring level and (iii) the coordination level. A criterion

is runtime feedback information that parametrises the operation of a level. A sample is continuously updated
information required for the operation of a level in the ASMA architecture. For each set of criteria at each level
in the architecture, a set of samples is generated. The discovery level discovers required information in the
network. The structuring level structures this information. Finally the coordination level uses the structured
information to build and provide the intended functionality to an application.

Each level of this architecture is managed by one or more autonomous agents. Two corresponding levels
in two different peers are able to communicate remotely. In other words, agents of the same type are able to
remotely interact. ASMA defines two types of interactions: (i) vertical and (ii) horizontal. A vertical interaction

is the (local) exchange of criteria and samples between two different levels of ASMA located within the same
peer. In contrast, a horizontal interaction is the (remote) exchange of criteria and samples between the same
two levels of ASMA located within two different peers.

Criteria are provided in a top-down fashion in vertical interactions: from each level to the level below. In
horizontal interactions, criteria are provided by a remote corresponding level. A criterion is generated based on
some given samples. For example, criteria can be generated by a change in the value of a monitored metric,
changes in the underlying network or the result of an agent negotiation. ASMA defines three types of criteria
in its vertical interactions:

• Organisational criteria: These are criteria that parametrise the self-organisation operation of an overlay
service. They are externally provided by an application as input to the coordination level.

2In contrast to overlay services as defined in this section, service overlay networks (SONs), introduced by [39], refer to a number
of dedicated hosts in ISPs that explicitly allocate resources for peer-to-peer or other decentralised systems. Bandwidth resources of
certain quality are provisioned based on SLAs. SONs provide a generic model for the allocation of Internet resources to decentralised
systems and applications rather than a methodology of how to provide generic application capabilities enabled by overlay networks.
Note that this distinction is identified in earlier work [12] that refers to overlay services as overlay-based services. Overlay services
can coexist on top of SONs. In this case, SONs provide a business model for the Internet resource allocation required for overlay
services and their applications [6].

252 E. Pournaras

Fig. 3.1. The three levels of the ASMA architecture in a peer.

• Structuring criteria: These are criteria that parametrise the structuring of samples to improve the
quality of an overlay service. They are provided by the coordination level to the structuring level.

• Discovery criteria: These are criteria that parametrise the dissemination and collection of samples in a
network. They are provided by the structuring level to the discovery level.

Samples are provided in a bottom-up fashion in vertical interactions: from each level to the level above.
In horizontal interactions, samples are provided by a remote corresponding level. A sample is defined within
the context of an overlay service and may represent a wide range of information related to any of the entities
of Figure 2.1: from information about the local host, such as its IP address or its geographic location, to
information about the user, such as his/her reputation and trust in an online community. This information
is usually abstracted from the application. For example, the reputation of a user in an online community can
be represented as an abstract rank value of a node in the overlay network of this community. Three types of
samples are defined in the vertical interactions of ASMA:

• Discovered samples: These are samples discovered in the network that are locally provided to the
structuring level in which they are managed.

• Structured samples: These are discovered samples required for building an overlay service. They are
provided by the structuring level to the coordination level.

• Organised samples: These are the output samples achieving a certain quality of an overlay service.
They are provided by the coordination level to applications.

The criteria and samples illustrated above are application-independent and are abstracted from the appli-
cation. Samples are provided from the one level to the other if a condition is satisfied. Criteria are feedback
parametrisation triggered by the consumption of samples in a level of the architecture. The criteria and samples

exchanged in horizontal interactions are referred to as (i) incoming criteria, (ii) incoming samples, (iii) outgoing
criteria and (iv) outgoing samples. The semantic of these samples and criteria is defined by an architectural
realisation.

In the rest of this paper, the ASMA architecture and its realisations are illustrated via high level algorithmic
expressions that aim at guiding the prototyping process and structuring the different interactive levels in an
overlay service and their interactions3.

3The exact algorithms concerning the functionality of the overlay services are out of the scope of this paper and are illustrated
in earlier work about these overlay services.

Overlay Service Computing - Modular and Reconfigurable Collective Adaptive Systems 253

4. Architectural Levels. Each individual level of ASMA is defined according to Figure 4.1. Algorithms 1
and 2 provide an abstraction for the event generations and reactions in each ASMA level. A realisation of these
algorithms is illustrated in Algorithms 3 and 4 of Section 4.1. Assume an arbitrary ASMA level that (i) generates
some arbitrary output criteria and samples and (ii) reacts to some arbitrary input criteria and samples. Input
criteria trigger execution of the adapt task that generates the output samples. Similarly, input samples trigger
execution of the consume task that generates output criteria. The provide task sends the output samples to
the level above and the configure task sends the output criteria to the level below. Samples and criteria can
also be sent to a remote corresponding level in a horizontal interaction. However, the provide task may call
the consume task of the same level instead of the one in the level above, suggesting in this way the possibility
of internal feedback loops within each level. Similarly, the configure task may call the adapt task of the same
level instead of the one in the level below. These internal calls, within a level, are possible options defined within
a realisation of an ASMA level. The realisation of a level is defined by the implementation and scheduling of its
tasks.

Fig. 4.1. The executed tasks of an abstract ASMA level.

Algorithm 1 Generations of output events in an ASMA level.
1: while a condition is satisfied do

2: provide(samples)
3: end while

Ensure: output

Algorithm 2 Reactions of input events in an ASMA level.
Require: input
1: if input=criteria then

2: samples=adapt(criteria)
3: else // input=samples

4: criteria=consume(samples)
5: configure(criteria)
6: end if

The three levels of ASMA are summarised as follows: The discovery level, positioned at the bottom of the
architecture, performs discovery of remote samples required by an overlay service. Sample discovery is achieved
by horizontal interactions that disseminate outgoing criteria and trigger the remote collection of incoming

samples from the network. The dissemination and collection of samples is parametrised by the discovery

254 E. Pournaras

criteria received from the structuring level. The structuring level structures the discovered samples provided
by the discovery level or other incoming samples received by horizontal interactions. The structuring criteria

customise the structuring and selection of the structured samples provided to the coordination level. Finally, the
coordination level coordinates the main functionality of an overlay service according to a set of organisational
criteria. The coordination level uses the structured samples or other incoming samples received by horizontal
interactions to update the organised samples provided to an application. The quality of an overlay service
achieved with certain structured samples is evaluated resulting in a new set of structuring criteria that improve
structured samples. The organised samples are a result of a continuous inter-level interactions and adaptations
between the three levels of ASMA.

To certain extent, the multi-level architecture of ASMA resembles the simple architectural principle of OSI
layering. However, collective adaptive systems built at the application level with overlay networks continue to
integrate topological management with their main operational logic resulting in limited abstraction, modularity
and reconfigurability. Therefore an OSI-like architectural principle with self-adaptive levels [43, 44] is a promising
novel design approach to tackle this challenge. The modularity of the ASMA architecture could be extended
to more than three levels assembled in various architectural patterns as shown in earlier work [32]. Each
architectural level of ASMA is abstracted as shown in Figure 4.1, therefore, more levels could be added in the
ASMA stack. This paper focuses on three levels as the overlay service realisations illustrated in Section 5 show
empirically that three levels are a cost-effective compromise to model the complexity of collective adaptive
systems operating in decentralised networked environments. The rest of this section illustrates each level of the
ASMA architecture in detail.

4.1. The discovery level. The discovery level is responsible for the distribution and availability of sam-

ples to every peer of the hosts of a network providing the abstraction of sample discovery in the structuring level.
The dissemination of outgoing samples in the network is performed using outgoing criteria and the configure
task. Symmetrically, the collection of remote incoming samples triggers the consume task. Furthermore, the
execution of the adapt task is triggered by incoming criteria and by the discovery criteria that configure the
dissemination and collection of samples in favour of the structuring level. Remote communication between peers
is possible as the samples disseminated and collected in the network contain routing information, e.g. the IP
address and port number.

Making distributed samples locally available to the peers of a network is challenging and crucial for building
decentralised overlay services. Middleware systems based on centralised information lookup or distributed
lookup mechanisms designed with specific applications types in mind cannot always support scalable and generic
overlay services. ASMA introduces the discovery level in the foundations of the architecture to bridge the
information gap of decentralisation in overlay networks.

This paper focuses on a gossip-based realisation of the discovery level4. Gossiping is a simple and generic
probabilistic communication model according to which agents exchange samples in a ‘push’, ‘pull’, or ‘push-pull’
fashion [14]. The exchange of samples is random to certain degree but other more intelligent policies can be
applied as well. Gossiping information is spread in an epidemic fashion within a network [36, 35]. Furthermore,
gossiping is able to prevent clustering of a network by cascading failures of its hosts.

Algorithm 3 and 4 illustrate a high-level description of a ‘push-pull’ gossiping protocol that realises the
horizontal interactions of the discovery level. The outgoing criteria represent a ‘push’ message and the incoming

samples represent a ‘pull’ message. Both contain local discovered samples exchanged in a gossiping fashion. A
gossip-based discovery level periodically sends outgoing criteria to a remote discovery level of a selected peer
defined within these criteria (line 3 of Algorithm 3). The discovered samples are also provided periodically
to the structuring level (line 2 of Algorithm 3). Furthermore, the discovery level reacts to incoming criteria

by adapting its discovered samples and providing in return outgoing samples (line 2-3 of Algorithm 4). The
incoming samples are consumed and generate the next outgoing criteria (line 5 of Algorithm 4).

The core gossiping operations are performed in the adapt and consume tasks illustrated in Algorithm 5
and 6. The adapt task (i) handles incoming criteria that are actual ‘push’ gossiping messages and (ii) generates

4Gossiping is chosen because of its robustness properties and the rapid dissemination of information in distributed networks.
These properties benefit the overlay services studied in this paper. Other mechanisms can be employed as well, e.g., flooding [15],
random walks [8] and DHT overlays [38].

Overlay Service Computing - Modular and Reconfigurable Collective Adaptive Systems 255

Algorithm 3 Event generations by a gossip-based discovery level.
1: loop // periodically
2: provide(discovered samples)
3: configure(outgoing criteria)
4: end loop

Ensure: output

Algorithm 4 Event reactions by a gossip-based discovery level.
Require: input
1: if input=incoming criteria then

2: outgoing samples=adapt(incoming criteria)
3: provide(outgoing samples)
4: else // input=incoming samples

5: outgoing criteria=consume(incoming samples)
6: end if

outgoing samples that are actual ‘pull’ gossiping messages (line 1-5 of Algorithm 5). The discovery criteria

parametrise gossiping by, for example, selecting policies [14] that tune the dissemination of samples under various
network conditions, e.g. failures in hosts. The consume task updates the discovered samples with incoming

samples (line 1 of Algorithm 6) and selects outgoing samples to disseminate from the discovered samples (line
2 of Algorithm 6).

Algorithm 5 The adapt task in a gossip-based discovery level.
Require: criteria

1: if criteria=incoming criteria then

2: outgoing samples=selectToDisseminate(discovered samples)
3: incoming samples=getSamples(incoming criteria)
4: outgoing criteria=consume(incoming samples)
5: return outgoing samples

6: else // criteria=discovery criteria

7: // Parametrises gossiping [14]:
8: // ‘peer selection’, ‘view propagation’ and ‘view selection’ policies
9: return discovered samples

10: end if

Ensure: samples

Algorithm 6 The consume task in a gossip-based discovery level.
Require: incoming samples

1: discovered samples=selectToCollect(incoming samples)
2: outgoing samples=selectToDisseminate(discovered samples)
3: outgoing criteria=getCriteria(outgoing samples)
4: return outgoing criteria

Ensure: outgoing criteria

Finally, the selectToCollect and selectToDisseminate tasks (line 1 and 2 of Algorithm 6) implement
the push-pull gossiping interactions and correspond to the respective selection tasks of the peer sampling ser-
vice [14]. The getCriteria task performs the selection of the agent to gossip with (line 3 of Algorithm 6)
and the getSamples task simply derives the incoming samples included in a set of incoming criteria (line 3 of
Algorithm 5).

4.2. The structuring level. The structuring level is responsible for the management of discovered sam-

ples, providing in this way an abstraction to the coordination level. More specifically, the structuring level

performs (i) structuring, such as sorting, clustering and classification of the discovered samples received from
the discovery level and (ii) selection of the structured samples provided to the coordination level.

Structuring and selection are based on criteria defined by an adaptation strategy. The following three
examples illustrate some adaptation strategies:

• Sorting a list of ranked samples in an ascending order and selecting the first sample from the list.
• Clustering a set of ranked samples based on their ranking distance and selecting the highest or lowest
ranked sample in each cluster.

256 E. Pournaras

• Classifying a set of samples in a number of classes and selecting the most recently added sample from
each class.

There is a wide range of adaptation strategies that can be designed regarding a certain self-organisation
goal of an overlay service. Adaptation strategies provide dynamic management of samples as:

• Multiple adaptation strategies can be adopted dynamically during runtime.
• The parameters of an adaptation strategy that define the structuring and selection of samples can be
reconfigured during runtime.

Both approaches are based on feedback received within the structuring criteria from the coordination level.
The structuring criteria result in new structured samples that potentially improve the quality of an overlay
service. In this case, the structuring criteria are an actual feedback about the provided structured samples that
can be used by the structuring level for either (i) switching to a different adaptation strategy or (ii) reconfiguring
the parameters that define a certain adaptation strategy.

Algorithms 7 and 8 illustrate the event generations and reactions in the structuring level. The tasks executed
by the structuring level are specialisations of an abstract ASMA level. Optionally, criteria and samples can be
exchanged via horizontal interactions.

Algorithm 7 Event generations by the structuring level.
1: while a condition is satisfied do

2: provide(structured samples)
3: provide(outgoing samples) // Optional, defined in a level realisation
4: configure(outgoing criteria) // Optional, defined in a level realisation
5: end while

Ensure: output

Algorithm 8 Event reactions by the structuring level.
Require: input
1: if input=structuring criteria then

2: structured samples=adapt(structuring criteria)
3: else if input=discovered samples then

4: discovery criteria=consume(discovered samples)
5: configure(discovery criteria)
6: else // input=incoming criteria or incoming samples

7: // Optional, defined in a level realisation
8: end if

Algorithms 9 and 10 illustrate the adapt and consume task in the structuring level. The adapt task
is based on two subtasks, the adopt and selectToProvide. The first subtask is responsible for the choice
and reconfiguration of the adaptation strategy based on which the structured samples are selected (line 2 of
Algorithm 9). A learning or rule-based system may be used to correlate certain feedback information contained in
the structuring criteria with a number of adaptation strategies supported by the structuring level. Furthermore,
the selectToProvide subtask selects a number of structured samples provided to the coordination level (line 3
of Algorithm 9). The selection of structured samples is performed based on criteria defined within the adopted
adaptation strategy. The consume task defines the structuring of the discovered samples, such as sorting,
clustering, classification, etc., based on the adopted adaptation strategy (line 2 of Algorithm 10). The adopt,
selectToProvide and structure subtasks are realised by each overlay service and therefore their definition is
subject of an architectural realisation

Algorithm 9 The adapt task in the structuring level.
Require: criteria

1: if criteria=structuring criteria then

2: strategy=adopt(structuring criteria)
3: structured samples=selectToProvide(strategy)
4: return structured samples

5: else if criteria=incoming criteria then

6: // Optional, defined in a level realisation
7: end if

Ensure: structured samples

Overlay Service Computing - Modular and Reconfigurable Collective Adaptive Systems 257

Algorithm 10 The consume task in the structuring level.
Require: samples

1: if samples=discovered samples then

2: discovery criteria=structure(strategy, discovered samples)
3: return discovery criteria

4: else if samples=incoming samples then

5: // Optional, defined in a level realisation
6: end if

Ensure: discovery criteria

Adaptation strategies introduce a modularity level in the design phase of an overlay service. By adopting
multiple adaptation strategies or by reconfiguring a certain strategy, self-organisation provides a flexible com-
positional environment for meeting complex organisational goals related to various criteria of complex adaptive
systems.

4.3. The coordination level. The coordination level is responsible for the continuous organisational
update of the organised samples provided to an application. The update of the organised samples is based
on the structured samples provided by the structuring level and the organisational criteria provided by an
application. Updating the organised samples may require some coordination between remote agents of the
coordination level. These agents are defined within the structured samples. Coordination may concern the
exchange of samples required for the operation of an overlay service, a negotiation between two agents about
their required samples, a query, or some other type of remote interaction and operation.

The organised samples can be tuned by a fitness function [23] or another evaluation scheme that maximises
the quality of an overlay service. This process generates a set of structuring criteria containing feedback for
the structuring level to trigger the next structured samples that improve the quality of an overlay service.
Therefore, the exchange of samples and criteria between the structuring level and the coordination level is a
continuous and iterative optimisation process of the quality of an overlay service.

Algorithm 11 illustrates the event generations in the coordination level. The delivery of the organised

samples to the application is governed by the organisational criteria (line 1 and 2 in Algorithm 11). The
organisational criteria related with this delivery may concern a certain quality of an overlay service, or an
elapsed runtime period.

Algorithm 11 Event generations by the coordination level.
1: while a condition is satisfied do

2: provide(organised samples)
3: end while

Ensure: organised samples

Algorithm 12 shows the event reactions in the coordination level. A simple coordination scenario of horizon-
tal interactions is assumed in which an agent of the coordination level sends a set of outgoing criteria containing
some outgoing samples and receives back incoming samples. This scenario corresponds to coordination based on
an information exchange. Consuming structured samples triggers the outgoing criteria (line 2 in Algorithm 12)
and a set of incoming criteria results in providing outgoing samples to the agent from which these criteria are
received (line 8 and 9 in Algorithm 12). Receiving incoming samples completes the coordination by sending a
set of structuring criteria to the structuring level (line 5 and 6 in Algorithm 12). Finally, the organisational

criteria adapt the organised samples (line 11 in Algorithm 12) by parametrising the operation of an overlay
service.

Algorithm 13 illustrates the adapt task. The adapt task performs the parametrisation of the coordination

level as defined in the organisational criteria (line 2 in Algorithm 13). It also handles coordination by (i)
consuming the incoming samples contained in a set of received incoming criteria, (ii) configuring the structuring
level with the structuring criteria and (iii) generating the outgoing samples that is sent back to the agent that
initiates coordination (line 4-9 in Algorithm 13).

The consume task, illustrated in Algorithm 14, (i) initiates the coordination by generating outgoing cri-

teria (line 2 in Algorithm 14) and (ii) organises the organised samples provided to the application (line 5 in

258 E. Pournaras

Algorithm 12 Event reactions by the coordination level.
Require: input
1: if input=structured samples then

2: outgoing criteria=consume(structured samples)
3: configure(outgoing criteria)
4: else if input=incoming samples then

5: structuring criteria=consume(incoming samples)
6: configure(structuring criteria)
7: else if input=incoming criteria then

8: outgoing samples=adapt(incoming criteria)
9: provide(outgoing samples)
10: else // input=organisational criteria

11: organised samples=adapt(organisational criteria)
12: end if

Algorithm 13 The adapt task in the coordination level.
Require: criteria

1: if criteria=organisational criteria then

2: organised samples=parameterise(organisational criteria)
3: return organised samples

4: else if criteria=incoming criteria then

5: incoming samples=getSamples(incoming criteria)
6: structuring criteria=consume(incoming samples)
7: configure(structuring criteria)
8: outgoing samples=finaliseCoordination(structuring criteria)
9: return outgoing samples

10: end if

Ensure: samples

Algorithm 14). This task results in the structuring criteria provided to the structuring level as feedback for the
improvement of the quality of an overlay service.

Algorithm 14 The consume task in the coordination level.
Require: samples

1: if samples=structured samples then

2: outgoing criteria=initialiseCoordination(structured samples)
3: return outgoing criteria

4: else // samples=incoming samples

5: structuring criteria=organise(incoming samples)
6: return structuring criteria

7: end if

Ensure: criteria

The adapt and consume tasks show that coordination is an actual response of outgoing samples to a set of
incoming criteria based on the structuring criteria (line 8 in Algorithm 13) and structured samples (line 2 in
Algorithm 14) respectively. Note that the initialiseCoordination, finaliseCoordination, organise and
parameterise subtasks are realised within an overlay service.

5. Architectural Realisations. This section illustrates two overlay services designed and realised ac-
cording to the ASMA architecture:

• AETOS, the Adaptive Epidemic Tree Overlay Service [30].
• DIAS, the Dynamic Intelligent Aggregation Service [29].

These two overlay services have a generic application scope, yet, earlier work illustrates evidence about their
applicability in the domain of demand-side energy management [25, 28, 31]. Figure 5.1 illustrates the realized
architectures of these overlay services. Both architectures follow the design paradigm of ASMA illustrated in
Figure 3.1.

AETOS self-organises overlay networks in various tree topologies to meet different application requirements.
Trees are used for operations such as decision-making, aggregation, information dissemination etc., with an
applicability in a wide range of distributed applications, e.g., distributed databases [40, 9] and multimedia
multicasting [34]. The three levels of ASMA are relevant to model the complexity of such an overlay ser-
vice: (i) discovery for accessing every possible peer in the network, (ii) structuring and selecting candidate
parents/children according to the intended built topology and (iii) coordination between the parents/children

Overlay Service Computing - Modular and Reconfigurable Collective Adaptive Systems 259

(a) The AETOS overlay service (b) The DIAS overlay service.

Fig. 5.1. Two overlay service realisations of the ASMA architecture.

to form bidirectional links. Building and maintenance of a tree topology is entirely performed by the AETOS

overlay service without involvement of applications that use it.
DIAS computes aggregates, such as average, summation, maximum, and standard deviation, of dy-

namically changing values distributed in every peer of an unstructured overlay network. Collective computation
of aggregates benefits a wide range of distributed applications as aggregates are used for load-balancing [26],
data mining [37], sensor networks [3] and other. Accurate computations of aggregates are achieved as values
that are duplicate or locally changing are detected within the three-level architecture of ASMA: (i) discovery
of information from every possible peer, (ii) structuring this information as exploited (duplicate information),
unexploited (new information) or outdated (changed information) and (iii) using this information for coordi-
nating accurate computations of aggregates between peers. Periodic computations of system-wide aggregate
information are entirely performed by the DIAS overlay service without involvement of applications that use it.

This paper shows how the collective adaptive processes of each of AETOS and DIAS are dissected and
realised within the defined tasks of the ASMA architecture. In other words, these overlay services are used as
case studies of ASMA. Although the main functionality of AETOS and DIAS is illustrated in earlier work, this
paper contributes the novel design approach of ASMA that justifies the higher modularity and reconfigurability
in both of these overlay services. This section recalls experimental results of AETOS and DIAS to show how the
design methodology of ASMA empirically justifies the high modularity and reconfigurability of these overlay
services. Therefore, the earlier experimental results provide new findings in the new context of this paper.
These results validate the reconfigurability of overlay services realised according to ASMA architecture and they
also provide evidence of how the modularity concept of ASMA is applied in practice. For example, it is shown
how results about the performance trade-offs observed in AETOS and DIAS are justified by the reconfigurability
engineered in ASMA. Similarly, the performance results of the adaptation strategies provide evidence that
overlay services can provide a broad range of modular application capabilities.

The overlay services are implemented and evaluated in the Protopeer prototyping toolkit according to the
ASMA architecture [7]. Protopeer is set up to simulate networks of 1500 peers. Each peer hosts three agents5

that implement the architectural levels of ASMA. Each experiment has a duration calculated in epochs. Each
epoch in Protopeer lasts 1000 ms.

5.1. AETOS: The Adaptive Epidemic Tree Overlay Service. The discovery level of AETOS is re-
alised by the gossiping protocol of the peer sampling service [14] as illustrated in Section 4.1. Gossiping guar-
antees that a tree topology can reconnect after single node failures as agents continuously exchange information

5The peerlets of Protopeer implement the agents of each ASMA level.

260 E. Pournaras

to discover each other. The nodes of AETOS are ranked with a weight to order their positioning in the formed
tree. The weight of the nodes, together with the IP address and the port number, are part of the discovered

samples.

The structuring level clusters discovered samples received from the discovery level into a proximity view

vi(proximity) that is a list of candidate parents and children. Eight adaptation strategies [27] define criteria for
clustering based on the proximity of the node, e.g., minimum or maximum euclidean distance of their weights.
In addition, adaptation strategies periodically select and provide the candidate parent and children with the
closest proximity to the coordination level. Their quality is evaluated by the coordination level and feedback
is provided to the structuring level via organisational criteria. Event generations of the structuring level are
time-based as shown in line 1 of Algorithm 7.

Clustering is tuned by employing the T-MAN mechanism [13], that introduces horizontal interactions be-
tween the agents of the structuring level. The main intuition behind the introduction of T-MAN is to improve
the quality of clustering by letting close proximity agents exchange their discovered samples in which they share
interest. Algorithms 15 and 16 illustrate the T-MAN functionality embedded in the adapt and consume task
of the structuring level. The functionality of T-MAN is injected in the optional blocks of Algorithm 9 and 10.
Furthermore, the event generations of T-MAN are periodic, meaning that the configure(outgoing criteria) at
line 4 of Algorithm 7 is executed periodically.

Algorithm 15 T-MAN functionality embedded in the adapt task of the structuring level in AETOS.
Require: criteria

1: if criteria=incoming criteria then

2: incoming samples=getSamples(incoming criteria)
3: discovery criteria=structure(strategy, incoming samples)
4: configure(discovery criteria)
5: outgoing samples=selectToCluster(vi(proximity))
6: return outgoing samples

7: end if

Ensure: outgoing samples

Outgoing criteria and outgoing samples contain the exchanged proximity views. The selectToCluster

subtask selects the ranked node with which the proximity views are exchanged. It also embeds the proximity
view in the outgoing samples (line 5 and 3 of Algorithm 15 and 16). The structure subtask (line 3 and 2 of
Algorithm 15 and 16) fills the proximity view according to the adopted adaptation strategy [27].

Algorithm 16 T-MAN functionality embedded in the consume task of the structuring level in AETOS.
Require: samples

1: if samples=incoming samples then

2: discovery criteria=structure(strategy, incoming samples)
3: outgoing samples=selectToCluster(vi(proximity))
4: outgoing criteria=getCriteria(outgoing samples)
5: return discovery criteria

6: end if

Ensure: discovery criteria

The coordination level is responsible for building and maintaining the tree topology. Agents negotiate
the formation of bidirectional links with the candidate parents and children received from the structuring level.
Four types of messages are exchanged that realise horizontal interactions between the agents of the coordination
level: request, acknowledgment, rejection and removal. The request/removal messages are used as outgoing

criteria and the acknowledgment/rejection messages as outgoing samples. In both cases, the weights of the
communicating agents are included using the getCriteria and getSamples subtasks. The establishment of a
link results in structuring criteria with a positive feedback to the structuring level. In contrast, the rejection of
a request or the removal of a link results in negative feedback. Based on this feedback, the clustering performed
in the structuring level is tuned to provide candidate parents and children that improve the performance
of AETOS [30]. The protocol interactions are realised within the initialiseCoordination and finalise-

Coordination subtasks of Algorithm 14 and 13. Finally, the organise subtask of Algorithm 14 facilitates the
coordination logic by reacting to the received messages.

Overlay Service Computing - Modular and Reconfigurable Collective Adaptive Systems 261

Figure 5.2 illustrates performance trade-offs between three adaptation strategies of AETOS6: bottom-up,
humble and top-down. Four performance metrics are shown that measure the quality of the AETOS overlay
service: (i) connectedness, (ii) connectivity, (iii) fitness and (iv) communication cost. Connectedness measures
how well connected nodes are in a single tree, whereas, connectivity measures the extent to which nodes establish
the maximum number of links (children) that their resources allow. Fitness evaluates the sorting of the nodes
in a tree and the communication cost counts the number of messages exchanged at the coordination level.

(a) Connectedness. (b) Connectivity.

(c) Fitness. (d) Communication cost.

Fig. 5.2. Performance trade-offs for three adaptation strategies of AETOS: bottom-up, humble and top-down [30].

Figure 5.2a and 5.2b show that all three strategies build a well-connected tree topology within a few epochs.
However, top-down has the highest fitness of over 0.95 as shown in Figure 5.2c. Humble and bottom-up
follow with a fitness of 0.87 and 0.65 respectively. The high fitness of top-down comes at a high communication
cost of over 5000 messages per epoch as shown in Figure 5.2d. Humble and bottom-up converge to 2000 and
0 messages per epoch respectively.

Figure 5.3 illustrates snapshots7 of the tree topologies built by the adaptation strategies on the 350th epoch.
The snapshots show visually the effect of high fitness in the tree topology built by top-down.

These experimental results show that the ASMA architecture provides a high modularity and reconfigura-
bility in the overlay service of AETOS. The performance of each architectural level can be separately studied
and tuned, e.g., communication cost of the coordination level as shown in Figure 5.2d. A number of adaptation
strategies provide different performance trade-offs. For example, in a network with limited bandwidth resources,
bottom-up is the most effective, whereas, if network resources are not a constraint, a significantly higher fitness
is achievable by top-down.

The vertical interactions defined within the ASMA architecture can be used to manage and control these

6The adaptation strategies define the candidate parent and/or children with which each agent chooses to connect. bottom-up:
the lowest ranked candidate parent; humble: the lowest ranked candidate parent and children; top-down: the highest ranked
candidate children.

7Visualisations are performed with the JUNG library [24] available at: http://jung.sourceforge.net (last accessed: December
2014)

262 E. Pournaras

(a) bottom-up. (b) humble. (c) top-down.

Fig. 5.3. Visualisation of three adaptation strategies of AETOS on the 350th epoch [30].

performance trade-offs. This section illustrates a scenario in which two adaptation strategies8, presbyopic and
bottom-up, are combined in such a way that a new strategy, hybrid-03, inherits the high performance of each
individual one without their limitations. The adaptation strategies are combined via a dynamic adoption scheme
in which agents of the structuring level change from presbyopic to bottom-up during runtime. Switching can
be performed automatically by monitoring the convergence of one of the performance metrics at the coordination
level. If the monitored metric has converged, meaning its deviations are significantly lower than the ones during
system startup, a switching signal can be included in the structuring criteria. This section shows the feasibility
of designing hybrid strategies by empirically defining the switching time point on the 250th epoch and measuring
the change of fitness and communication cost. Figure 5.4 illustrates the performance of hybrid-03 under this
scenario.

Fig. 5.4. Perfromance of AETOS before and after switching from presbyopic to bottom-up on the 250th epoch [30].

After switching from presbyopic to bottom-up, fitness increases 8% whereas, the number of messages
drop from 5300 to 700 messages per epoch. Figure 5.5 illustrates the visualisation of the tree topology before
and after switching strategies. Connectedness and connectivity are maximised. A higher fitness results in a
higher number of nodes connected closer to the root of the tree after adopting bottom-up.

These performance enhancements are achieved without changing any architectural element of AETOS.
Each layer realisation of ASMA retains its objective in each of the scenarios shown. ASMA provides a flexible,
structured and modular architectural concept to realise and make manageable the complex system behaviour
of AETOS.

8The agents choose to connect with the candidate parent and/or children as follows: presbyopic: the highest ranked candidate
parent and the lowest ranked candidate children; bottom-up: the lowest ranked candidate parent.

Overlay Service Computing - Modular and Reconfigurable Collective Adaptive Systems 263

(a) 245th epoch. (b) 255th epoch. (c) 380th epoch.

Fig. 5.5. Visualisation of hybrid-03 before and after switching from presbyopic to bottom-up on the 250th epoch [30].

5.2. DIAS: The Dynamic Intelligent Aggregation Service. DIAS performs decentralised aggregation
by computing aggregation functions that receive as input states distributed in the peers of a network. A state

represents a (aggregation) value of an application parameter at a specific point in time. A node may contain the
selected state s′i that is the one aggregated by nodes. During system runtime, the selected state s′i may change
and is equal to one and only one state from a finite number v of locally unique possible states s′i = s0i |s

1
i |...|s

v−1
i .

As the selected state changes, an earlier selected state is indicated as ŝi. Each node i contains an aggregator

Ai, a disseminator Di or both. An aggregator computes aggregation functions as f(s′0, s
′

1, ..., s
′

n−1), whereas a
disseminator provides the selected state to aggregators.

The discovery level of DIAS is realised by the gossiping protocol of the peer sampling service [14] as
illustrated in Section 4.1. Gossiping guarantees that information is disseminated to all peers in a network to
achieve accurate computations of aggregation functions. Agents disseminate and collect the IP address and
port number of aggregators to which disseminators send their selected state.

The structuring level classifies aggregator samples received from the discovery level into three classes: (i)
exploited, (ii) unexploited and (iii) outdated. The exploited aggregators of a disseminator Di are the ones that
have aggregated its earliest selected state s′i. The unexploited aggregators of a disseminator Di are the ones
with which aggregation has not been performed and therefore, Di has not provided any of its selected states
to these aggregators. Finally, the outdated aggregators of a disseminator Di are the ones that have aggregated
a selected state of this disseminator earlier but since then the selected state has changed. Two adaptation
strategies, exploitation and update, provide to the coordination level with priority either unexploited or
outdated aggregators respectively. A third adaptation strategy, random, performs a random selection between
unexploited and outdated.

Classification in these three classes is possible via local storage of aggregation memberships that is a rep-
resentation of the information required to perform accurate aggregation. Accuracy indicates the quality of the
DIAS overlay service and concerns the computation of aggregation functions without counting twice states or
counting outdated states. An aggregation membership Mgroup(member) of a certain ‘member’ to a certain
‘group’ is either positive or negative. Each agent of the structuring level in a peer i stores unique identifiers
of possible states S0i , ..., S

v−1
i corresponding to the actual possible states s0i , ..., s

v−1
i . Respectively, S′i and Ŝi

refer to the unique identifiers of the selected s′i and outdated ŝi state in peer i. The structuring level stores a
representation of the local states, their unique identifiers, and the coordination level stores the actual states,
e.g., numerical or other type. The structuring level also uses the local unique peer identifier to map the local
aggregator Ai and disseminator Di. Therefore, Ai = Di. An aggregator Aj and a disseminator Di in two peers
i and j perform horizontal interactions to exchange the required state information for aggregation. Four local
aggregation memberships are involved in the aggregation performed:

Membership 1 (MDi
(Aj)). Membership of an aggregator in a disseminator.

A disseminator Di stores the identifier of an aggregator Aj to which it has disseminated its selected state

264 E. Pournaras

at least once during an aggregation.
Membership 2 (MSu

i
(Aj)). Membership of an aggregator in a possible state.

A disseminator Di stores the identifier of an aggregator Aj for each possible state identified as Sui aggregated
by this aggregator.

Membership 3 (MAj
(Di)). Membership of a disseminator in an aggregator.

An aggregator Aj stores the identifier of a disseminator Di from which it has aggregated its selected state
at least once during an aggregation.

Membership 4 (MAj
(S′i)). Membership of a selected state in an aggregate.

An aggregator Aj stores the identifier of a selected state S′i aggregated from a disseminator Di.
The structuring level efficiently stores these aggregation memberships in bloom filters. A bloom filter is

a probabilistic data structure that efficiently stores membership information at a cost of false positives. The
structuring level is able to detect and prevent inconsistencies in the aggregation originated from false positives
by using mutual aggregation memberships between an aggregator and a disseminator, e.g., MSu

i
(Aj)-MAj

(Di)
and MSu

i
(Aj)-MAj

(S′i) are mutual as they are representation of the same information.
Algorithm 17 and 18 illustrate the interactions of an aggregator Ai with a disseminator Dj . These interac-

tions refer to the optional parts of the adapt and consume tasks in Algorithm 9 and 10 respectively. Aggregation
is initiated by the selectToProvide subtask. Before a selected aggregator Ai is provided to the coordination

level, a set of outgoing criteria is sent to Ai to make its aggregation memberships consistent to the memberships
of disseminator Dj . Lines 1-7 of Algorithm 17 illustrate the update of the aggregation memberships by aggre-

gator Ai. Update of the memberships is performed according the classification outcome of Ai by disseminator

Dj . Aggregator Ai adds the memberships MAi
(Dj) and MAi

(S′j) if it is classified as unexploited by Dj and addi-

tionally removes membership MAi
(Ŝj) if it is classified as outdated. Aggregation is performed unidirectionally

(flag=‘uni’), however, a bidirectional aggregation is performed if there is an aggregator Aj and a disseminator

Di (flag=‘uni-bi’). This option is checked in lines 9-18 of Algorithm 17.

Algorithm 17 Aggregation operations embedded in the adapt task of the structuring level in DIAS.

Require: incoming criteria: flag, class, Dj , S
′

j , Ŝj

1: add MAi
(S′

j)
2: if class=unexploited then

3: add MAi
(Dj)

4: end if

5: if class=outdated then

6: remove MAi
(Ŝj)

7: end if

8: if flag=‘uni’ then
9: if MDi

(Aj) : negative then

10: outgoing criteria=getCriteria(‘bi’, unexploited, Di, S
′

i, Ŝi)
11: outgoing samples=getSamples(‘uni-bi’, class, Ai, outgoing criteria)
12: else if MDi

(Aj) : positive and MS′
i
(Aj) : negative then

13: outgoing criteria=getCriteria(‘bi’, outdated, Di, S
′

i, Ŝi)
14: outgoing samples=getSamples(‘uni-bi’, class, Ai, outgoing criteria)
15: else // MDi

(Aj) : positive and MS′
i
(Aj) : positive

16: outgoing samples=getSamples(‘uni’, class, Ai)
17: end if

18: return outgoing samples

19: else // flag=‘bi’
20: outgoing samples=getSamples(‘bi’, class, Ai)
21: return outgoing samples

22: end if

Ensure: outgoing samples

Similarly, the receipt of incoming samples by disseminator Di triggers the update of its aggregation mem-
berships as shown in lines 1-7 of Algorithm 18. Disseminator Di adds the memberships MDi

(Aj) and MS′

i
(Aj) if

aggregator Aj is unexploited and additionally removes the membership M
Ŝi
(Aj) if Aj is outdated. This completes

a unidirectional aggregation. If a bidirectional aggregation is performed, the adapt task is executed with the
incoming criteria as an input (line 9 of Algorithm 18).

The coordination level is responsible for the computation of aggregates. An aggregate is continuously com-
puted based on an aggregation function provided by the aggregation criteria. The parameterise subtask of

Overlay Service Computing - Modular and Reconfigurable Collective Adaptive Systems 265

Algorithm 18 Aggregation operations embedded in the consume task of the structuring level in DIAS.
Require: incoming samples: flag, class, Aj , incoming criteria

1: add MS′
i
(Aj)

2: if class=unexploited then

3: add MDi
(Aj)

4: end if

5: if class=outdated then

6: remove M
Ŝi
(Aj)

7: end if

8: if flag=‘uni-bi’ then
9: adapt(incoming criteria)
10: end if

Algorithm 13 provides the aggregation function. Aggregates are updated by sending the value of the selected
state to aggregators provided by the structuring level and classified as unexploited. If the provided aggregators

are classified as outdated, the earlier selected state is sent as well. The initialiseCoordination subtask initi-
ates this communication, the finaliseCoordination subtasks completes it and the organise subtask realises
the computation of the aggregation functions as defined in Algorithm 13 and 14 of the ASMA architecture.

The coordination level forms an overlay network between aggregators and disseminators linked with over-
lay links that have two possible semantic values: unexploited or outdated but not exploited. Therefore, the
aggregation functions computed exclude overlay links from the coordination level that result in duplicate aggre-
gation values (exploited aggregators). The aggregation memberships, the classification process, the selections
of aggregators are all complexity that is hidden from the aggregation process of the coordination level. Adap-
tation strategies tune the aggregation process in favour of (i) discovering new selected states in the system
(exploitation strategy) or (ii) updating the aggregates with the most recent selected states (update strat-
egy). The coordination level has to only provide the classification criteria that trigger this optimisation and
inform about changes in the selected state. Therefore, the coordination level remains agnostic about the details
of the optimisation. The aggregation criteria define how the aggregates are provided to applications, e.g., pe-
riodic delivery or delivery when aggregates converge to the actual aggregate values by monitoring a minimum
deviation threshold.

Figure 5.6 illustrates performance trade-offs between accuracy and communication cost for the adaptation
strategies of DIAS. The accuracy measures how close the estimates of the aggregates, e.g., summation, is to
the actual values [29]. Two scenarios are illustrated regarding how selected states change during runtime: (i)
synchronous and (ii) asynchronous changes. In synchronous changes, the selected states of all peers in the
network change simultaneously. In contrast, asynchronous changes occur arbitrary over time. In the illustrated
experiments, synchronous changes occur every 200 epochs whereas in asynchronous changes, 420 selected states
probabilistically change on average every 10 epochs.

Figure 5.6a and 5.6b show that after a synchronous change, accuracy drops dramatically and is restored to
maximum within 100 epochs. This adaptation of aggregates causes a maximum of 45000 messages per epoch
that drop to zero during the convergence period of 100 epochs. However, the communication cost of 45000
messages per epoch is constant for the random strategy.

Figure 5.6c and 5.6d show that despite the continuous changes of selected states every 10 epochs, DIAS is
capable of maintaining a high accuracy after the initial convergence at system startup. However, a constant
communication cost of 38000 messages per epoch is required to maintain this high accuracy that is yet lower
than the 45000 messages per epoch of the random strategy.

DIAS can compute a wide range of aggregation functions at a performance comparable with the one shown
in this section. In contrast to related methodologies reviewed in earlier work [29], DIAS does not require any
architectural changes to compute a different aggregation function. It is because of the ASMA architectural
modularity that the aggregation process is separated from routing. The two adaptation strategies provide a
high reconfigurability in different networks settings. For example, during network scaling, exploitation is
more effective than update. However, for a stable network with frequent changes, update is superior.

6. Comparison with Related Work. In earlier work [10, 11], the idea of ‘open overlays’ is introduced
supported by a generic framework for overlay networks and their applications. This framework receives plug-

266 E. Pournaras

(a) Synchronous changes. (b) Synchronous changes.

(c) Asynchronous changes. (d) Asynchronous changes.

Fig. 5.6. Performance trade-offs for the three adaptation strategies of DIAS: exploitation, update and random [29].

in overlays defined by three components: ‘Forwarding’, ‘state’ and ‘control’. These components are, in some
aspects, similar to the three levels of ASMA. Applications are also introduced as plug-ins and are associated with
possible overlay plug-ins that can support them. A plug-in can be positioned in the framework as independent
or stacked with other plug-ins. Similarly with ASMA, top-down configurations are applied during deployment
starting from the application plug-ins to the lower level network plug-ins. However, the number of possible
combinations defined by the top-down configurations between the available overlay plug-ins can be large resulting
in complex compositions.

Although dealing with overlay plug-ins is a generic, extensible and highly modular approach, the devel-
opment of the three overlay components may be blended and cannot always be intuitive enough [10, 11].
Furthermore, the framework of overlay plug-ins does not define any high-level semantic of the component inter-
actions. In contrast, ASMA provides a narrower defined context and objective for every self-organisation level.
It also shows how these objectives are mutually supported via the exchange of criteria and samples.

Some related work [17, 20] focuses on supporting multiple overlays network capabilities as an IP-layer
solution instead of a middleware solution that ASMA proposes for its realisations. OCALA [17] positions the
‘overlay convergence’ layer, built by an overlay-independent and an overlay-dependent component, under the
transport layer. These layers provide a level of routing and lookup transparency between physical machines
belonging to different overlay networks. However, there is a plethora of problems and open issues related to the
support of existing IP-based applications, security, efficiency and access to overlay functions beyond routing.
MOSAIC [20] is a declarative methodology for the composition of ‘horizontal’ (bridged via gateways) or ‘vertical’
(layered similarly to ASMA) overlay networks. Although this methodology provides a highly configurable and
reasoning compositional environment for overlay networks, a large amount of information must be known a
priori for each individual peer of the network. In addition, MOSAIC is highly dependent on a directory
service that supports the composition process. It is unclear how changes to the directory service can be
automatically reflected in the composed overlay networks. MOSAIC also faces the restrictions of an IP-layer
solution similarly with OCALA. These approaches could in theory function complementary to ASMA overlay
services for supporting communication between heterogeneous networks, e.g., wireless and wired networks.

Overlay Service Computing - Modular and Reconfigurable Collective Adaptive Systems 267

iOverlay [18] provides an interface for building overlay networks and their applications. This interface
is rather limited as it only supports overlay communication leaving excessive freedom to the developer. In
comparison with ASMA, the main functionality of iOverlay corresponds to the discovery level of ASMA. A
similar approach with iOverlay is followed by MACEDON [33]. Opus [4] is based on a backbone service to
optimise the resource allocation for different applications. Therefore, the scope of this approach is limited
compared to ASMA and the other approaches illustrated in this section. A multi-level economic framework for
Grid services and resource allocation is earlier introduced [16]. Self-organisation is engaged for the discovery of
agents that negotiate for resources. An overlay abstraction is provided to the agents. The system is designed
based on web service technologies and therefore some of its components remain centralised. In contrast, ASMA

introduces multiple self-organisation levels for system discovery, structuring and coordination without centralised
components but in a collective fashion.

7. Conclusion and Future Work. This paper shows that collective adaptive systems can be designed
and prototyped to provide modular and reconfigurable capabilities of a broad application scope: the overlay
services. This paper contributes the ASMA conceptual architecture that guides realisations of complex overlay
services via a few lines of high-level algorithmic expressions. The realisation of two overlay services according
to ASMA together with the earlier experimental results illustrated in the new context of this paper empirically
justify their higher abstraction, modularity and reconfigurability.

AETOS builds and maintains collectively different tree topologies with different topological properties that
meet several application requirements. Topological reconfigurations in the self-organisation process are ex-
clusively managed by plugged-in adaptation strategies that can be dynamically combined during runtime to
improve performance under various scenarios such as node failures or network scaling. Similarly, DIAS computes
almost any aggregation function that receives for input dynamically changing values distributed in a network.
Adaptation strategies configure aggregation to compute in priority uncounted or outdated values depending
on various network scenarios in which new nodes enter the network or regularly change their values. In both
overlay services, the three levels of ASMA provide an intuitive and structured pathway to dissect the complex
functionality of these systems in stand-alone, modular and reconfigurable subsystems. Although it is inevitable
that this generic distributed computing approach has an impact on performance, e.g., high communication cost,
overlay services allow reconfigurability with trade-offs. For example, the eight adaptation strategies of AETOS
provide a spectrum of choices between high or low communication cost and performance. The dynamic adoption
of adaptation strategies provide the option to explore this spectrum to improve the overall cost-effectiveness of
overlay services.

Future work concerns the further realisation of overlay services according to ASMA. Usability case-studies
and development scenarios shall strengthen the potential of a new distributed computing paradigm for collective
adaptive systems based on overlay services.

Acknowledgements. The author would like to recall all people acknowledged in the preface of his PhD
thesis [25] for making this research possible.

REFERENCES

[1] T. Anderson, L. Peterson, S. Shenker, and J. Turner, Overcoming the Internet Impasse through Virtualization, Com-
puter, 38 (2005), pp. 34–41.

[2] S. Balsamo, A. Di Marco, P. Inverardi, and M. Simeoni, Model-Based Performance Prediction in Software Development:
A Survey, IEEE Transactions on Software Engineering, 30 (2004), pp. 295–310.

[3] A. Boulis, S. Ganeriwal, and M. B. Srivastava, Aggregation in sensor networks: an energy-accuracy trade-off, Ad Hoc
Networks, 1 (2003), pp. 317–331.

[4] R. Braynard, D. Kostic, A. Rodriguez, J. Chase, and A. Vahdat, Opus: an Overlay Peer Utility Service, in Proceedings
of Open Architectures and Network Programming, OPENARCH 2002, Los Alamitos, CA, USA, Jan. 2002, IEEE, pp. 167–
178.

[5] C. Diot, B. Levine, B. Lyles, H. Kassem, and D. Balensiefen, Deployment Issues for the IP Multicast Service and
Architecture, IEEE Network, 14 (2000), pp. 78–88.

[6] J. Fan and M. H. Ammar, Dynamic Topology Configuration in Service Overlay Networks: A Study of Reconfiguration
Policies, in Proceedings of the 25th International Conference on Computer Communications, INFOCOM 2006, Los
Alamitos, CA, USA, Apr. 2006, IEEE, pp. 1–12.

268 E. Pournaras

[7] W. Galuba, K. Aberer, Z. Despotovic, and W. Kellerer, ProtoPeer: A P2P Toolkit Bridging the Gap Between Simula-
tion and Live Deployement, in Proceedings of the Second International Conference on Simulation Tools and Techniques,
ICST 2009, Gent, Belgium, Mar. 2009, ACM, pp. 1–9.

[8] C. Gkantsidis, M. Mihail, and S. Saberi, Random walks in peer-to-peer networks: Algorithms and evaluation, Performance
Evaluation, 63 (2006), pp. 241–263.

[9] A. González-Beltrán, P. Milligan, and P. Sage, Range queries over skip tree graphs, Computer Communications, 31
(2008), pp. 358–374.

[10] P. Grace, G. Coulson, G. S. Blair, L. Mathy, W. Kit Yeung, W. Cai, D. A. Duce, and C. S. Cooper, GRIDKIT:
Pluggable Overlay Networks for Grid Computing., in Proceedings of Cooperative Information Systems, CoopIS 2004,
vol. 3291 of Lecture Notes in Computer Science, Heidelberg, Oct. 2004, Springer-Verlag Berlin, pp. 1463–1481.

[11] P. Grace, D. Hughes, B. Porter, G. S. Blair, G. Coulson, and F. Taiani, Experiences with Open Overlays: A Mid-
dleware Approach to Network Heterogeneity, in Proceedings of the 3rd European Conference on Computer Systems,
SIGOPS/EuroSys 2008, New York, USA, Apr. 2008, ACM, pp. 123–136.

[12] D. Haage, R. Holz, H. Niedermayer, and P. Laskov, CLIO - A Cross-Layer Information Service for Overlay Network
Optimization, in Kommunikation in Verteilten Systemen (KiVS), Informatik aktuell, Heidelberg, Mar. 2009, Springer-
Verlag Berlin, pp. 279–284.

[13] M. Jelasity, A. Montresor, and O. Babaoglu, T-Man: Gossip-based fast overlay topology construction, Computer Net-
works, 53 (2009), pp. 2321–2339.

[14] M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Kermarrec, and M. van Steen, Gossip-based Peer Sampling, ACM
Transactions on Computer Systems, 25 (2007).

[15] S. Jiang, L. Guo, and X. Zhang, LightFlood: an Efficient Flooding Scheme for File Search in Unstructured Peer-to-Peer
Systems, in Proceedings of the 2003 International Conference on Parallel Processing, ICPP 2003, Los Alamitos, CA, USA,
Oct. 2003, IEEE, pp. 627–635.

[16] L. Joita, O. F. Rana, P. Chaćın, I. Chao, F. Freitag, L. Navarro, and O. Ardaiz, Application deployment using
catallactic Grid middleware, in Proceedings of the 3rd International Workshop on Middleware for Grid Computing, MGC
2005, New York, USA, Nov. 2005, ACM Press, pp. 1–6.

[17] D. Joseph, J. Kannan, A. Kubota, K. Lakshminarayanan, I. Stoica, and K. Wehrle, OCALA: An Architecture for
Supporting Legacy Applications over Overlays, in Proceedings of the 3rd International Conference on Networked Systems
Design & Implementation, NSDI 2006, Berkeley, CA, USA, May 2006, USENIX Association, p. 20.

[18] B. Li, J. Guo, and M. Wang, iOverlay: A Lightweight Middleware Infrastructure for Overlay Application Implementations,
in Proceedings of the 5th ACM/IFIP/USENIX International Conference on Middleware, Middleware 2004, vol. 3231 of
Lecture Notes in Computer Science, New York, USA, Oct. 2004, Springer-Verlag New York, pp. 135–154.

[19] S. P. Mahambre, M. Kumar S.D., and U. Bellur, A Taxonomy of QoS-Aware, Adaptive Event-Dissemination Middleware,
IEEE Internet Computing, 11 (2007), pp. 35–44.

[20] Y. Mao, B. T. Loo, Z. Ives, and J. M. Smith, MOSAIC: Unified Declarative Platform for Dynamic Overlay Composition,
in Proceedings of the International Conference on Emerging Networking Experiments and Technologies, CONEXT 2008,
New York, USA, Dec. 2008, ACM Press, pp. 1–12.

[21] R. Matei, A. Iamnitchi, and P. Foster, Mapping the Gnutella network, IEEE Internet Computing, 6 (2002), pp. 50–57.
[22] K. Nahrstedt, R. Chang, and C. Ward, QoS-Assured Service Composition in Managed Service Overlay Networks, in

Proceedings of the 23rd International Conference on Distributed Computing Systems, ICDCS 2003, Los Alamitos, CA,
USA, May 2003, IEEE, pp. 194–201.

[23] A. L. Nelson, G. J. Barlow, and L. Doitsidis, Fitness functions in evolutionary robotics: A survey and analysis, Robotics
and Autonomous Systems, 57 (2009), pp. 345–370.

[24] J. O’Madadhain, D. Fisher, P. Smyth, S. White, and Y.-B. Boey, Analysis and Visualization of Network Data using
JUNG, Journal of Statistical Software, 10 (2005), pp. 1–35.

[25] E. Pournaras, Multi-level Reconfigurable Self-organization in Overlay Services, PhD thesis, Delft University of Technology,
March 2013.

[26] E. Pournaras, G. Exarchakos, and N. Antonopoulos, Load-driven neighbourhood reconfiguration of Gnutella overlay,
Computer Communications, 31 (2008), pp. 3030–3039.

[27] E. Pournaras, M. Warnier, and F. M. T. Brazier, Adaptation Strategies for Self-management of Tree Overlay Networks,
in Proceedings of the 11th IEEE/ACM International Conference on Grid Computing, Grid 2010, Los Alamitos, CA, USA,
Oct. 2010, IEEE, pp. 401–409.

[28] E. Pournaras, M. Warnier, and F. M. T. Brazier, Local Agent-based Self-stabilisation in Global Resource Utilisation,
International Journal of Autonomic Computing, 1 (2010), pp. 350 – 373.

[29] E. Pournaras, M. Warnier, and F. M. T. Brazier, A generic and adaptive aggregation service for large-scale decentralized
networks, Complex Adaptive Systems Modeling, 1 (2013).

[30] E. Pournaras, M. Warnier, and F. M. T. Brazier, Adaptive self-organization in distributed tree topologies, International
Journal of Distributed Systems and Technologies, 5 (2014).

[31] E. Pournaras, M. Warnier, and F. M. T. Brazier, Peer-to-peer aggregation for dynamic adjustments in power demand,
Peer-to-Peer Networking and Applications, 8 (2014), pp. 189 – 202.

[32] M. Puviani, G. Cabri, and F. Zambonelli, A taxonomy of architectural patterns for self-adaptive systems, in Proceedings
of the International C* Conference on Computer Science and Software Engineering, C3S2E ’13, New York, NY, USA,
2013, ACM, pp. 77–85.

[33] A. Rodriguez, C. Killian, S. Bhat, D. Kostić, and A. Vahdat, MACEDON: Methodology for Automatically Creating,
Evaluating, and Designing Overlay Networks, in Proceedings of the 1st International Conference on Networked Systems

Overlay Service Computing - Modular and Reconfigurable Collective Adaptive Systems 269

Design and Implementation, NSDI 2004, Berkeley, CA, USA, Mar. 2004, USENIX Association, pp. 267–280.
[34] G. Tan, S. A. Jarvis, X. Chen, D. P. Spooner, and G. R. Nudd, Performance Analysis and Improvement of Overlay

Construction for Peer-to-Peer Live Media Streaming, Simulation, 82 (2005), pp. 169–178.
[35] S. Tang, E. Jaho, I. Stavrakakis, I. Koukoutsidis, and P. V. Mieghem, Modeling gossip-based content dissemination and

search in distributed networking, Computer Communications, 34 (2011), pp. 765–779.
[36] P. Van Mieghem, J. Omic, and R. Kooij, Virus spread in networks, IEEE/ACM Transactions on Networking, 17 (2009),

pp. 1–14.
[37] R. Van Renesse, K. P. Birman, and W. Vogels, Astrolabe: A Robust and Scalable Technology For Distributed System

Monitoring, Management, and Data Mining, ACM Transactions on Computer Systems, 21 (2003), pp. 164–206.
[38] J. Yuh-Jzer, F. Chien-Tse, and Y. Li-Wei, Keyword Search in DHT-Based Peer-to-Peer Networks, in Proceedings of the

25th IEEE International Conference on Distributed Computing Systems, ICDCS 2005, Los Alamitos, CA, USA, Jan.
2005, IEEE, pp. 339–348.

[39] D. Zhenhai, Z. Zhi-Li, and Y. Hou, Service Overlay Networks: SLAs, QoS and Bandwidth Provisioning, IEEE/ACM
Transactions on Networking, 11 (2003), pp. 870–883.

[40] H. Zhuge and L. Feng, Distributed Suffix Tree Overlay for Peer-to-Peer Search, IEEE Transactions on Knowledge and Data
Engineering, 20 (2008), pp. 276–285.

[41] M. Wirsing, M. Hölzl, M. Tribastone, and F. Zambonelli, ASCENS: Engineering Autonomic Service-Component En-
sembles, in Proceedings of the 10th International Symposium of Formal Methods for Components and Objects, FMCO
2011, (2013), Springer.

[42] M. Amoretti, Introducing Artificial Evolution into Peer-to-Peer Networks with the Distributed Remodeling Framework,
Genetic Programming and Evolvable Machines, 2, (2013), pp 127–153, Springer.

[43] R. Bruni, A. Corradini, F. Gadducci, A. Lluch Lafuente, A. Vandin, A Conceptual framework for adaptation, in
Proceedings of the 15th International Conference on the Fundamentals of Software Engineering, FASE 2012, Tallinn,
Estonia, (2012), Springer.

[44] M. Amoretti, Evolutionary strategies for ultra-large-scale autonomic systems, Information Sciences, 274. (2014), pp. 1–16.

Edited by: Giacomo Cabri and Emma Hart
Received: Dec 15, 2014
Accepted: Jul 15, 2015

