
Scalable Computing: Practice and Experience

Volume 16, Number 4, pp. 449–466. http://www.scpe.org

DOI 10.12694/scpe.v16i4.1133
ISSN 1895-1767
c⃝ 2015 SCPE

AN ENERGY-AWARE ALGORITHM FOR LARGE SCALE FORAGING SYSTEMS

OUARDA ZEDADRA∗, HAMID SERIDI†, NICOLAS JOUANDEAU‡, AND GIANCARLO FORTINO§

Abstract. The foraging task is one of the canonical testbeds for cooperative robotics, in which a collection of coordinated
robots have to find and transport one or more objects to one or more specific storage points. Swarm robotics has been widely
considered in such situations, due to its strengths such as robustness, simplicity and scalability. Typical multi-robot foraging systems
currently consider tens to hundreds of agents. This paper presents a new algorithm called Energy-aware Cooperative Switching
Algorithm for Foraging (EC-SAF) that manages thousands of robots. We investigate therefore the scalability of EC-SAF algorithm
and the parameters that can affect energy efficiency overtime. Results indicate that EC-SAF is scalable and effective in reducing
swarm energy consumption compared to an energy-aware version of the reference well-known c-marking algorithm (Ec-marking).

Key words: Swarm intelligence, swarm robotics, multi-agent foraging, energy awareness, energy efficiency.

AMS subject classifications. 68W05

1. Introduction. Swarm Intelligence comes from biological insights related to the capabilities that social
insects possess to solve daily-life problems within their colonies [1]. Social insects (ants, bees, termites) provide
complex collective behavior to accomplish complex tasks that can exceed individual capacities [2]. They usually
lack sophisticated communication capabilities as well as sensor information [3], in opposite to intelligent and
proactive individuals which are provided with sophisticated communication tools and sensors [7]. Inspirations
from these biological systems known as pheromone-based coordination mechanisms have been presented for
patrolling [8], localization [9] and mapping and exploration [10]. Swarm robotic is interested in the implementa-
tion of systems which are composed of thousands simple robots rather than one single complex robot [11] [12].
The simplicity of these individuals presents a highly structured social organization which can accomplish com-
plex tasks that in far exceed the individual capacities of a single individual [13] [14]. The collection carries
out complex tasks based on simple rules, without spending much computational power and much energy [15].
Behavior-based algorithms have been developed to manage homogeneously swarms of individuals and to achieve
more complex tasks that can involve dynamic hierarchies [16] [17].

Foraging is a benchmark problem widely studied by swarm robotics: it is a complex task involving the
coordination of several sub-tasks including efficient exploration, physical collection, transport, homing and
depositing [18]. Foraging can be achieved by one single robot or by a collection of cooperative robots. By
contrast, some animals are foraging individually for food [19] [20]; while others (as social insects) are foraging
and recruiting collaborators by sharing information via stigmergy [21] [22] or direct signalling [23] [3]. In a
foraging task, robots repeatedly collect objects from unknown locations and drop them of at another location.
To work for long periods, they must have a means of obtaining more energy when their stored energy is
exhausted. Time spent in searching, homing, recharging and returning to work can contain useless additional
time and a current challenge in multi-robot foraging is to minimize it.

We investigate in this paper the energy problem within multi-agent foraging task through the analysis of
our energy-aware algorithm (EC-SAF algorithm [4]). We tested it in large-scale foraging systems with hundreds
and thousands of agents where we consider a wider range of system sizes than the ones considered in literature
works and in our previous work [4]. In comparison to the literature works, we contributed at:(1) reducing the
time spent in search by using our search algorithm (Stigmergic Multi-Ant Search Area algorithm–S-MASA [5])
which provides large dispersion, thus quick search and shortest paths relaying food to nest location for homing,
(2) reducing the time needed for transporting food by allowing recruitment to found food defined in our previous
foraging algorithm (C-SAF algorithm [6]).

The remainder of the paper is organized as follows: background works are presented in Section 2. Then

∗LabSTIC, 8 may 1945 University, P.O.Box 401, 24000 Guelma. Department of computer science Badji Mokhtar, Annaba
University, P.O.Box 12, 23000 Annaba, Algeria(zedadra nawel1@yahoo.fr).

†LabSTIC, 8 may 1945 University, P.O.Box 401, 24000 Guelma, Algeria
‡LIASD, Paris 8 University, Saint Denis 93526, France
§DIMES, Universita’ della Calabria, Via P. Bucci, cubo 41c - 87036 - Rende (CS) - Italy

449

450 O. Zedadra, H. Seridi, N. Jouandeau and G. Fortino

EC-SAF and Ec-marking algorithms are presented in Section 3. In Section 4, we define the performance indices,
describe simulation scenarios and compare the results of the two algorithms. Finally, Section 5 concludes the
paper and shows some future works.

2. Background. The most common strategies for powering long-lived autonomous robots are capturing
ambient energy and managing energy from recharging stations.

Capturing ambient energy directly from the environment, also known as energy scavenging [24]. A robot
have to choose between searching and resting to conserve some energy and it accumulates some units of energy
for each retrieved food. Krieger and Billeter [25] adopt a threshold-based approach to allocate foraging or resting
tasks. They distinguish nest and robots energies. If nest energy is under a predefined threshold, then robots
search for food. If one robot energy is under a predefined threshold, then it stays in the nest to recharge. Labella
et al. [26] propose an adaptive approach to change the ratio of foragers to resters by adjusting the probability of
leaving home. Liu et al. [27] consider collisions and object retrieval. The successes are accounted for individuals
and teams in [26]. Efficient foraging is a special case, in which several types of objects, each provides a specific
amount of energy are scattered in the environment and robots should choose between transporting a found food
or continue searching for another that provides more energy. In [28] authors design a mathematical model of
multi-foraging that predicts with a good confidence the optimal behavior of the robots that leads to maximize
the energy of the group.

Transferring energy from a recharging station. Several options are possible in this case: (i) Working robots
perform their work until their energy falls below a given threshold. At this time, they return to recharging
station. Such decision can also be achieved with a behavior model [3]. While in [29], authors propose a
distributed behavioral model for foraging regarding role division and search space division for improving energy
efficiency; (ii) Working robots can stay at the working site permanently, while special dock robots visit them
periodically to provide them with energy. In [30], a dock station is an autonomous robot with unlimited
energy store, that searches gradually to improve its position regarding the position of working robots. In [31],
the on-board recharging electronics and intelligent docking stations enable the robots to perform autonomous
recharging; and (iii) Robots could transfer the energy also between them by comparing their energy’s level.
Robots could transfer the energy between each other in a trophallaxis-like manner, where robots with higher
energy status can share energy with others having lower energy status [32].

In the following subsections, we present the background works for the energy-aware algorithms proposed in
this paper: S-MASA algorithm [5], C-SAF algorithm [6] and c-marking algorithm [33] (Section 2.1, Section 2.2
and Section 2.3 respectively).

2.1. S-MASA Algorithm. The S-MASA algorithm is an exploration strategy inspired by the behavior
of ants and water vortex dynamics. It was first applied to multi-target search and coverage tasks [5], and to
multi-agent foraging tasks in [34] [6]. Using S-MASA algorithm as a search strategy has contributed to: (1)
speed up the exploration by avoiding the already visited cells (cells containing pheromone), and (2) speed up
the homing process, because optimal paths are simultaneously built while agents explore their environment (a
wavefront of pheromone concentration is created). According to the coordination rules of S-MASA algorithm
in Fig. 2.1, the agent changes its heading if there is no pheromone in its right cell (cell not yet visited), else it
keeps going in the current heading.

(a) (b) (c) (d)

Fig. 2.1. S-MASA coordination principle represents the changing headings: (a) from 180 to 270 (b) from 270 to 0 (c) from
0 to 90 (d) from 90 to 180, where white crosses represent already visited cells

An Energy-Aware Algorithm for Large Scale Foraging Systems 451

2.2. C-SAF Algorithm. C-SAF algorithm [6] is a multi-agent foraging algorithm that uses S-MASA as
search strategy. Agents in C-SAF algorithm use a three layered subsumption architecture [35] where each layer
implements a particular behavior: Environment exploration is the lowest priority layer in this architecture. It
consists in exploring the environment, therefore, it includes the states Choose-Next-Patch and Look-for-Food.
Food exploitation consists in exploiting food when it is found, it envelops the states Pick-Food, Return-to-
Nest, Return-and-Color, At-Home, Climb and Remove-Trail. Obstacle avoidance is the higher priority layer, it
implements the obstacle avoidance behavior. Higher priority layers are able to subsume lower levels in order to
create viable behavior (see Fig. 2.2 for an illustration of the architecture). The behavioral model of the C-SAF
foraging agents is depicted by Fig. 2.3, without the bold guards and the dashed transitions.

P
er

ce
p

ti
o

n
s

ActionsObstacle Avoidance

Food Exploitation

Environment Exploration

Fig. 2.2. Subsumption architecture of C-SAF foraging agents

2.3. The c-marking Foraging Algorithm. The c-marking foraging algorithm is a distributed parame-
ter-free algorithm for multi-agent foraging [33]. It is a distributed and asynchronous version of wavefront
algorithm [36]. It allows agents to build non optimal paths simultaneously while exploring by computing a
wavefront expansion from the base station (sink). Agents use this wavefront to return to the sink. They move
at each step to the cell with the smallest Artificial Potential Field (APF) value. Pseudo random walk is used
by agents as a search strategy. Agents try to move to a non neighboring marked cell. If all neighboring cells
are marked, then they move randomly. Unfortunately, the convergence of APF to its optimal values takes huge
time. Agents therefore need to visit the same cell several times. The c-marking foraging algorithm have multiple
advantages: (1) agents build simultaneously paths when they explore and (2) it is very robust to agents’ failure
and to complex environments. However, it provides some drawbacks: (1) paths are of long length specially
when the number of agents is not sufficient to sustain the cells corresponding to the wavefront, this will increase
dramatically the foraging time, (2) revisiting already visited cells in static environments costs in number of
steps. The behavioral model of the c-marking foraging agents is depicted by Fig. 2.4, without the filled state,
bold guards and the transitions (dashed arrows).

3. An Energy-aware Multi-Agent Foraging Algorithm. In this Section, we present the EC-SAF
(Energy-aware Cooperative Switching Algorithm for Foraging) algorithm. Specifically, we model the behavior
of foraging agents as a finite state machine. We also present the Ec-marking algorithm, which is an energy-
aware version of the well-known c-marking algorithm [33]. EC-SAF and Ec-marking will be compared through
simulations in Section 4.

3.1. Modeling of the Components. The components of the two multi-agent systems (environment,
agent and pheromone) were modeled as in below:

• Environment Model: The search space is an N x N grid world with several food locations, one or
multiple sinks (nest), obstacles and pheromone markings. It is divided into equal squares in a Cartesian
coordinate system. Grid maps are thought to an efficient metric for navigation in large-scale. In robotics,
it is often used for solving tasks like path planning [37], localization [38] and search and surveillance
in dynamic environments [39]. It is efficient that the full grid is square and all cells are the same size
of an agent. N food with M items (we refer to it as concentration) are located randomly on grids.
Obstacles with rectangular or square shapes take place on some fixed cells, the nest is at the center (in
a multi-sink space, sinks take specific positions to guarantee the completeness of the algorithms).

• Agent Model: All agents of the colony are homogeneous with limited sensing and actuation capabilities.
They start all from a predefined position (the nest) and headings (0, 90, 180 and 270). An agent can

452 O. Zedadra, H. Seridi, N. Jouandeau and G. Fortino

Look-for-Food

Return-to-Nest

E <= E
c min

Pick-Food

do/ [Ec > Emin]/ Pick-Food

Choose-Next-Patch

c min
& food > 0?

Yes

No

Return-and-Color
Trail ? No

Yes

At-Home

do/ [Ec <= Emin]/ recharge

Home reached

Climb

Remove-Trail

Food >0 & trail

Food = 0 & no-trail

Food = 0 & trail

E <= E
c min

E <= E
c min

No trail & E > E
c min

No trail & E > E
c min

E >= E

Fig. 2.3. the state machine of a foraging agent. Dashed arrows (transitions), bold guards and the internal actions in the
states represent the energy-aware behavior of agents

SEARCH & CLIMB TRAILS

LOADING

RETURN & COLOR TRAIL

RETURN TO BASE

RETURN & REMOVE TRAIL

UNLOADING

do/ [Ec <= Emin]/ Recharge
Base reached

REMOVE RECHARGING TRAIL

Recharging = true ?

Yes

No

Yes & trail No & no-trail

(No & trail) or (yes & no-trail)

Food = 0?

E <= E
c min

E <= E
c min

No trail

Trail

Food > 0 & E <= E
c min

Fig. 2.4. State transition diagram of an Ec-marking agent, where colored state, dashed arrows (transitions) and bold guards
are related to energy-aware behavior of agents

carry out the following sequence of actions:
– Senses whether a food item exists on the current cell and if there exists a pheromone in the four

neighboring cells, whether it is at the nest, and it recognized whether it is carrying food or not.
– Deposits a limited amount of pheromone in the current cell.
– Picks up (loads) or puts down (unloads) a food item, when it is at food and carries no food, and

when it is at nest and carrying food respectively.
– Selects and carries out actions according to the surrounding events. The agent have four different

behaviors corresponding to the four models (C-SAF, c-marking, EC-SAF and Ec-marking) and
the set of actions to execute differ from a model to another.

• Pheromone Releasing and Evaporation: The agent is able to secrete several types of pheromone, which

An Energy-Aware Algorithm for Large Scale Foraging Systems 453

did not affect each other, at the same cell in the environment. Each forager is capable of depositing three
types of pheromone. The first type, is dynamic and subsequently gradually evaporates (according to
Eq. 3.1), used to mark already visited cells. The two others, are static with no diffusion and evaporation
properties, one is used to keep track of the food location (food trails in yellow color) and the other to
attract other agents to food locations (recruitment trails in brown color).

Γi(t+ 1) = γi(t)− p ∗ γi(t) (3.1)

where p is a coefficient which represents the evaporation rate of trail between time t and (t+1).

3.2. EC-SAF Algorithm. The EC-SAF algorithm extends the C-SAF algorithm [6] to consider energy
limitation in a foraging system, where agents use the existing set of states (equivalent to return and color /
remove trails) with some additional transitions and guards. We added a layer in the previous subsumption
architecture (Fig. 2.2), called Recharging energy layer which envelops the set of states that allow agents to
return home to recharge when their energy falls below a given threshold, it includes the states Return-to-Nest,
Return-and-Color, Remove-Trail and At-Home (see Fig. 3.1 for the subsumption architecture with the new
layer). The behavior of our energy-aware foraging agents is shown by the state machine in Fig. 2.3 where
dashed arrows (transitions), bold guards and actions in the states are used when the current energy of an agent
(Ec) falls below the fixed threshold (Emin). States are described below and the EC-SAF Algorithm is given by
Algorithm 1.

P
er

ce
p

ti
o

n
s

Actions

Recharging Energy

Obstacle Avoidance

Food Exploitation

Environment Exploration

Fig. 3.1. Subsumption architecture of EC-SAF foraging agents

Look-for-Food: If Ec > Emin and there exists a food here, agent executes Pick-Food state, while if there
exists no food it executes Choose-Next-Patch state. If there exists a trail and its Ec <= Emin, it turns to
Return-to-Nest state, or to Return-and-Color state, if there exists no trail.

Choose-Next-Patch: If an obstacle is detected, the agent calls the procedure Avoid Obstacle(). If no
obstacle is there, the agent climbs the brown trail to reach the food location if there exists one, it spreads
then the information to its left cell. It lays a limited amount of pheromone in current cell, adjusts its heading
by executing S-MASA Algorithm [5] and moves one step forward. It turns automatically when finished to
Look-for-Food state.

Pick-Food: If Ec > Emin, agent picks a given amount of food and spreads the information to its left cell.
However, if Ec <= Emin it does not pick food. It executes in the two cases Return-to-Nest state, if there exists
a trail or Return-and-Color state if there exists no trail.

Return-to-Nest: The agent moves to one of colored neighboring cells with the lowest pheromone value.
It remains in this state until home is reached, it turns then to At-Home state. ;

Return-and-Color: The agent moves to one of the four neighboring cells with the lowest pheromone value
and marks its trail with yellow and remains in this state until it reaches the home; it turns then to the At-Home
state.

At-Home: The agent unloads food if it carries one. If its current energy (Ec) is below (Emin), it recharges
its energy to the maximum amount Emax. It goes to Climb state if there exists a trail and the amount of food is
> 0. If amount of food is = 0 and there is a trail, it executes Remove-Trail state, else it turns to Look-for-Food
state.

454 O. Zedadra, H. Seridi, N. Jouandeau and G. Fortino

Look-for-Food
if (Ec <= Emin) then

if (∃ trail) then goto Return-to-Nest ;
else goto Return-and-Color ;

else
if (food > 0) then Diffuse(P); goto Pick-Food ;
else goto Choose-Next-Patch;

Choose-Next-Patch
if (obstacle detected) then Avoid Obstacle();
else

if (brown P here) and (brown P in right cell) then
Diffuse(P); move to food location using brown cells;

else
if (brown P here) and (no brown P in right cell) then

remove brown trail;

else
Lay(P);Detect And Adjust Heading() Update(P); Move();

goto Look-for-Food ;

Pick-Food
if (Ec > Emin) then pick up a given amount of food; Diffuse(P);
if (∃ trail) then goto Return-to-Nest ;
else goto Return-and-Color ;

Return-to-Nest
while home not reached do

move to a colored neighboring cell with the lowest P ;

goto AT-HOME ;

Return-and-Color

while home not reached do
move to a neighboring cell with the lowest P Color that cell to a specific trail color (yellow);

goto At-Home

At-Home
unload food if (Ec <= Emin) then recharge Ec to Emax;
if (∃ trail and food > 0) then goto Climb;
else if (∃ trail and food = 0) then goto Remove-Trail ;
else goto Look-for-Food ;

Climb
while ∃ trail do

if (Ec <= Emin) then goto Return-to-Nest ;
else move to neighboring colored cell with the greater value of P ;

goto Look-for-Food ;

Remove-Trail
while ∃ trail do

if (Ec <= Emin) then goto Return-and-Color ;
else move to neighboring colored cell with the greater value of P and update its color to the default
one (black);

goto Look-for-Food ;

Algorithm 1: EC-SAF Algorithm, where pheromone is noted P

An Energy-Aware Algorithm for Large Scale Foraging Systems 455

Climb: Agent moves to one of its four colored neighbors with a pheromone value greater than the pheromone
value of the current cell. It remains in this state until no colored cell (yellow trail) exists and its Ec > Emin,
it turns then to the Look-for-Food state. If its Ec <= Emin and since there exists a trail, it executes the
Return-to-Nest state in order to return home for recharging its energy.

Remove-Trail: The agent moves to a colored cell with the greatest pheromone value and resets its color
to the default color (black). It remains in this state until no colored cell is found and Ec > Emin, it turns
then to the Look-for-Food state. If Ec <= Emin, the agent returns to home to recharge and executes the
Return-and-Color state since it already removed the existing trail and to keep track of the last position from
where it will continue removing after it recharges its energy.

3.3. Ec-marking Algorithm. The Ec-marking algorithm extends the c-marking algorithm [33] to deal
with energy limitation. Ec-marking agents behavior is given by Fig. 2.4 (the extensions made are represented by
filled states, dashed transitions and bold guards), while using the rules in Algorithm 2. Agents while exploring
the environment build simultaneously paths between food and nest which results in building an ascending
Artificial Potential Field (APF) incrementally [33]. Agents use pseudo random walk as search strategy, which
results in non-optimal paths and makes the convergence of the APF to its optimal value very slow. We use the
same set of states as in c-marking to return home for recharging (states corresponding to return and color or
return to base), while for removing the energy trails, we define a new state called REMOVE RECHARGING
TRAIL. This last state is activated when agents finish recharging their energy from home, they climb then the
trail and remove until there is no trail, they resume then their search process.

4. Performance Evaluation. In this Section, we discuss the performance of the four algorithms (EC-
SAF [Algorithm 1], C-SAF [6], c-marking [33] and Ec-marking [Algorithm 2]) in obstacle-free and obstacle
environments. We present in Section 4.1 the performance indices and simulation parameters used to evaluate
the algorithms. On the basis of analysis of an execution example for the four algorithms in Section 4.2, we
compared only E-C-SAF and Ec-marking algorithms in Section 4.4, we describe the scenarios used for simulations
in Section 4.3.

In each simulation several parameters are to be set:
• Agent parameters: the number of agents that participate at each simulation (agent number) and the
amount of food (in units) that an agent can transport at each time (agent capacity).

• World parameters: include the dimension of the search space which is a grid of N × N cells (world
size). World complexity which can be obstacle-free or obstacle environment. Sink number which is the
number of the home or base stations to where agents return food and recharge energy.

• Food parameters: the number of food locations (food density) which are located at fixed positions.
Each food location contains a limited amount of food called food concentration.

• Emax: is the maximum value that an agent can recharge when it reaches home and its Ec is below the
threshold Emin. An analysis of the effect of different Emax on overall search time and the total energy
consumed in EC-SAF algorithm is given in Table 4.1. When Emax is set to smaller value (1000 and
3000 units) agents return home several times to recharge (18 to 5 times), increasing the search time and
the energy consumed, thus the search becomes inefficient. It is set to 5000 energy units, since number
of returns to recharge is small (2 times) thus doesn’t consume much energy and search time.

• Ec: represents the current energy that an agent have at time (t). It is set initially to Emax that is 5000
energy units. When Ec <= Emin, agents need to return home to recharge energy.

• Emin: is the threshold that activates the return to home and recharge energy behaviors. It is fixed
experimentally to a value that allows agents to get home before their death (Ec = 0) (Table 4.2). With
100 units, agents can’t reach home because the path is longer and needs more energy units. When we
increased Emin to 200 units, agents could reach the home the first return, but in the second return they
couldn’t reach it. We increased then energy to 300 units and it was sufficient to return home for 2 times
to recharge (and food is reached in this stage). The pseudo random walk in Ec-marking makes the
measuring of the Emin very difficult, sometimes food is rapidly located and paths are close to optimal,
thus the 300 energy units are sufficient to return home to recharge, but in other cases, paths are not
optimal and agents need more than 300 energy units to reach home. To deal with such cases, we fixed
the Emin to 500 units.

456 O. Zedadra, H. Seridi, N. Jouandeau and G. Fortino

SEARCH & CLIMB TRAIL(Repeat)
if (Ec <= Emin) then

if (∃ trail) then goto RETURN TO BASE ;
else goto RETURN & COLOR TRAIL;

else
if (food exist in neighboring cell) then

move into that cell; goto LOADING ;

else
if (∃ trail) then

move to the highest valued colored neighboring cell;

else goto EXPLORATION & APF CONSTRUCTION ;

LOADING
if (Ec <= Emin) then

if (∃ trail) then goto RETURN TO BASE ;
else goto RETURN & COLOR TRAIL;

else
Pick up a quantity Qmax of food;
if (food is not exhausted) then

if (∃ trail) then goto RETURN TO BASE ;
else goto RETURN & COLOR TRAIL;

else goto RETURN-AND-REMOVE-TRAIL;

RETURN & COLOR TRAIL
color the cell in a specific color and update value;
if (base reached) then goto UNLOADING ;
else move to a neighboring cell with the smallest APF value;

RETURN & REMOVE TRAIL
if (cell has the trail color) then remove this color and UPDATE VALUE ;
if (base is reached) then goto UNLOADING ;
if (there exists a neighboring cell with trail color) then

move to neighboring trail cell;

else move to the smallest valued neighboring cell;

UNLOADING
unload food;
if (Ec <= Emin) then recharge a limited amount of energy;
if (recharging = true) then goto REMOVE RECHARGING TRAIL;
else goto SEARCH & CLIMB TRAIL;

REMOVE RECHARGING TRAIL
while ∃ trail do

if (Ec <= Emin) then goto RETURN & COLOR;
else move to neighboring colored cell with the highest APF value;

goto SEARCH & CLIMB TRAIL;

Algorithm 2: Ec-marking Algorithm

4.1. Performance Indices and Simulation Parameters. We analyze in this Section the performances
of the two algorithms in large-scale systems within the foraging task. We used therefore, large number of agents
and large environment sizes with the aim to: (1) test and conclude the benefit of providing agents with energy-

An Energy-Aware Algorithm for Large Scale Foraging Systems 457

Table 4.1

Emax Analysis

1000 3000 5000 7000 9000

Search time 7761,4 5771,3 2530,1 2231,4 2030,1
Energy Consumed 12475 10550 10125 9935 6095
Number of returns 18 5 2 1 0

Table 4.2

Emin Analysis

100 200 300 400 500

Number of returns 0 1 2 2 2
Success to get home? No No Yes Yes Yes

aware behaviors to sense and manage their energy, thus go to an energy-aware version of the C-SAF algorithm,
(2) test the efficiency of the proposed algorithm through the total amount of energy consumption regarding the
amount of food foraged, and (3) observe the evolution of energy consumed by the swarm overtime. We used
the performance indices Total Food Returned, Energy Efficiency [29], Energy Efficiency overtime, Total Energy
Consumed and Finish foraging time.

• Total Food Returned: is the total amount of food (in units) returned over a given elapsed time.
• Total Energy Consumed: is the total energy spent by all agents to search and exhaust all the food
locations.

• Energy Efficiency: is the average energy consumed for foraging food. It is calculated according to
Eq. 4.1. Since the Total Energy Consumed increases with the time, if Eeff1 > Eeff2, it means that
Eeff2 is better.

Eeff =
TotalEnergyConsumed

TotalFoodReturned
(4.1)

• Energy Efficiency Overtime: is the average energy consumed until time t to forage an amount of
food units until time t. It is calculated according to Eq. 4.2.

Eeff (t) =
TotalEnergyConsumed(t)

TotalFoodReturned(t)
(4.2)

where: TotalEnergyConsumed(t) is the total energy consumed until a given elapsed time t [0..t] and
TotalFoodReturned(t) is the number of food Foraged until a given elapsed time t [0..t].

• Finish foraging time (Tforag): The amount of time in seconds needed to finish the foraging mission.
It is when all the food sites are discovered and exhausted.

The energy consumption of an agent at each state is defined as estimation of the power of real robot
equipment (such as motor, sensor and processor) required to achieve that state. It is inspired by the B-swarm
model [3]. The energy consumption settings of a robot are described in Table 4.3 for the two energy-aware
algorithms.

4.2. Example of Simulation Execution. C-SAF agents have limited energy but no recharging ability, so
after their energy stores are empty they die while EC-SAF agents have limited energy and recharging behaviors,
that allow them to work for long time. Simulation is based on Netlogo [40]. We used a preliminary scenario
to test the benefit of providing agents with energy-aware behaviors when they have limited energy stores. We
used environments with a 1000x1000 cells with: one sink at the center, one food location that contains 500
units of food, to exclude the impact of food position, the food is placed at fixed position for all simulations; 300
agents with a capacity of transport of one unit at each time. We calculated the total amount of food returned

458 O. Zedadra, H. Seridi, N. Jouandeau and G. Fortino

Table 4.3

The agent energy consumption of each state

States Energy consumed
(unit/simulation update)

EC-SAF States
At-Home, Choose-Next-Patch, Pick-Food, 5

Remove-Trail, Return-and-Color 0

Climb, Return-to-Nest 1

Avoid-Obstacle 3

Ec-marking States
SEARCH, LOADING, UNLOADING, 5

RETURN & REMOVE TRAIL 0

RETURN & COLOR TRAIL 0

REMOVE RECHARGING TRAIL 0

CLIMB TRAIL, RETURN TO BASE 1

Avoid-Obstacle 3

until the completion foraging time for the algorithm that takes the longest time (Ec-markings algorithms).
The obtained results with the four algorithms (C-SAF, EC-SAF, c-marking and Ec-marking) are depicted by
Fig. 4.1, where we limited the energy stores in C-SAF and c-marking to 2000 units and the Emin to 500 units.
From Fig. 4.1, we observe that the total food returned increases overtime in the four algorithms when agents
have enough energy. However, when the agent energy is over in algorithms C-SAF and c-marking, agents die
and there will be no changes in Total Food Returned. While in EC-SAF and Ec-marking, they return home after
their energy fall below Emin, recharge and resume their tasks. EC-SAF reaches the total amount of food at
1600 seconds (2100 seconds in obstacle environment), thus it stops search, while Ec-marking reaches it at 2300
seconds (3300 seconds in obstacle environment). Agents spend more time and consume more energy, specially in
c-marking algorithms since paths are not optimal, while in EC-SAF agents use optimal paths, which contributes
at reducing the recharging the overall and the energy consumed.

 0

 100

 200

 300

 400

 500

 1000 1500 2000 2500 3000 3500

T
o

ta
l
F

o
o

d
 R

e
tu

rn
e
d

Time (seconds)

C-SAF free
C-SAF obs

EC-SAF free
EC-SAF obs

c-marking free
c-marking obs

Ec-marking free
Ec-marking obs

Fig. 4.1. Total Food Returned by EC-SAF, C-SAF, Ec-marking and c-marking agents until the finish foraging time in
obstacle-free and obstacle environments

An Energy-Aware Algorithm for Large Scale Foraging Systems 459

(a) (b) (c) (d) (e)

Fig. 4.2. World setups used in simulations. (a) obstacle-free environment, (b) obstacle environment, where red arrows are
agents, green arrows are food locations, gray blocks are obstacles and pink squares are sinks. (c)(d)(e) present samples at different
stages where laden agents are in the middle line, and searcher agents spread themselves diagonally on sides.

Table 4.4

Parameters of scenario 1, scenario 2 and scenario 3

Parameter Value

Scenario 1 Eeff Analysis

World size 100x100 cells –

1000x1000 cells

Number of agents 100 – 1000 agent

Food density 1 – 10 locations

Food concentration 500 units

Agent capacity 1 unit

Sinks number 1 – 64 sink

Scenario 2 Total Energy Consumed Analysis

World size 1000x1000 cells

Number of agents 300 agent

Food density 2 locations

Food concentration 500 units

Agent capacity 1 unit

Sinks number 1 sink

Scenario 3 Scalability Analysis

Agent Density 0.00001– 0.01

Food density 2 location

Food concentration 400 units

Agent capacity 1–10 unit

Sinks number 1 sink

Figure 4.2 shows some of the world setups used in the three scenarios discussed above. An obstacle-free
and obstacle environments with one food location and one sink at the center of world in Figs 4.2(a) and 4.2(b)
respectively. While we present samples of simulation execution in obstacle-free environment with one sink and
one location in Fig. 4.2(c) and with two food locations in Figs 4.2(d) and 4.2(e) where agents in the middle are
transporting food and agents at the sides still searching.

4.3. Simulation Scenarios. Several kinds of simulations are carried out in this paper. The parameters
which we tested and analyzed are reported in Table 4.4. We proposed three fundamental scenarios:

• Scenario 1 is to test which of the parameters presented in Section 4 can affect the Energy Efficiency.
It envelops 5 sub-scenarios. Sub-scenario 1 is to show Eeff (t) pattern overtime. Sub-scenario 2 is to
analyze the impact of agents number on performance, which number gives less Eeff . Sub-scenario 3
is to test how world size can affect the Eeff and is there any minimal size under which a number of
agents can carry efficiently the foraging task. In order to analyze whether clustering the food units in

460 O. Zedadra, H. Seridi, N. Jouandeau and G. Fortino

one location or distributing it over several locations improves performances, we defined sub-scenario 4
where we varied food density from 1 to 10. To test the effect of dividing the environment into smaller
search spaces, we defined sub-scenario 5, in which we varied number of sinks from 1 (one search space)
to 64.

• Scenario 2 is defined to show the Total Energy Consumed by the swarm of agents over the foraging
task.

• Scenario 3 is defined to study the scalability of our algorithm and whether varying the agent density
affects positively or negatively the Eeff . We used three sub-scenarios. Where we define in each one
Agent Density as Number of Agents / World Size. In the first sub-scenario, we kept the agent density
fixed to a given value while varying agents number and world size simultaneously. In the second, we
increase the agent density by keeping agents number fixed and increasing world size. In the third, we
decrease the agent density by increasing the agents number and keeping world size fixed.

4.4. Results Analysis.

4.4.1. Results in Scenario 1. Results in Fig. 4.3 show a decrease in Eeff (t) in the two algorithms. In
EC-SAF, when agents search and depose pheromone, they consume more energy, but when food is located
the amount of food returned increases, thus the ratio decreases. However, in Ec-marking, the Eeff (t) is high
because of the pseudo random walk which slows the search process, after the food is located, Eeff (t) decreases
dramatically overtime since the amount of food returned increases. Results obtained with EC-SAF (also with
Ec-marking) in obstacle-free and obstacle environment are very close and their curves overlap in Fig. 4.4.

✷������

✹������

✻������

✽������

✶�������

✶✷������

✶��� ✶✥�� ✷��� ✷✥�� ✁��� ✁✥��

❊
✂
✄
✂
☎
✆
✝
❊
✞✞
✟✠
✟✂
✄
✠
✝
✡☛
☞

❚✌✍✎ ✏✑✎✒✓✔✕✑✖

✗✘✙✚✛✜ ✢✣✎✎

✗✘✙✚✛✜ ✓✤✑

✗✒✙✍✦✣✧✌✔★ ✢✣✎✎

✗✒✙✍✦✣✧✌✔★ ✓✤✑

Fig. 4.3. Variation of Eeff (t) overtime

Figure 4.4(a) shows the results obtained by EC-SAF and Ec-marking algorithms when varying agent number.
The growth of Eeff in EC-SAF is constant and slow. While, in Ec-marking Eeff is inconstant. It increases
and decreases overtime, higher with 100 agents, where they spend more time in search (finish foraging time is
9907 seconds), thus consume more energy. It is much less with 300 agents (finish foraging time 2325 seconds
only). The quick search provided by S-MASA algorithm [5] in EC-SAF contributes at reducing search time,
thus energy consumption and Eeff .

Eeff in EC-SAF is reduced with each increase in world size. This last affects the results when it couldn’t
hold on the total number of agents, it means that large number of agents can reach rapidly the boundaries

An Energy-Aware Algorithm for Large Scale Foraging Systems 461

 5⋅10
5

 1⋅10
6

 2⋅10
6

 2⋅10
6

 2⋅10
6

 3⋅10
6

 1
0
0

 2
0
0

 3
0
0

 4
0
0

 5
0
0

 6
0
0

 7
0
0

 8
0
0

 9
0
0

 1
0
0
0

E
n

e
rg

y
 E

ff
ic

ie
n

c
y

Agents Number

(a)

EC-SAF free
EC-SAF obs

Ec-marking free
Ec-marking obs

 4⋅10
5

 5⋅10
5

 6⋅10
5

 7⋅10
5

 1
0
0

 2
0
0

 3
0
0

 4
0
0

 5
0
0

 6
0
0

 7
0
0

 8
0
0

 9
0
0

 1
0
0
0

E
n

e
rg

y
 E

ff
ic

ie
n

c
y

Environment Size

(b)

 2⋅10
5

 4⋅10
5 5⋅10
5 6⋅10
5 7⋅10
5

 1 2 3 4 5 6 7 8 9

 1
0

E
n

e
rg

y
 E

ff
ic

ie
n

c
y

Food Density

(c)

 2⋅10
5

 4⋅10
5

 5⋅10
5

 6⋅10
5

 7⋅10
5

 1
0

 2
0

 3
0

 4
0

 5
0

 6
0

E
n

e
rg

y
 E

ff
ic

ie
n

c
y

Sinks Number

(d)

Fig. 4.4. Simulations showing Eeff in world with and without obstacles when varying: (a) agents number, (b) world size, (c)
food density, (d) sink number. Where the legend in (a) is the same for the other Figs

(and stop search) even if food is already found. If the world size is sufficient, more agents will contribute at
transporting food, increasing by the way the total amount of returned food, thus less Eeff . In Ec-marking, the
Eeff changes overtime when world size is 800x800 cells it increases dramatically while it was decreasing with
the other world sizes. Graphical representation of results is in Fig. 4.4(b).

Increasing food density helps in improving results in the two algorithms. It helps in increasing the amount
of foraged food because at each increase in food locations, agents in EC-SAF will be divided between several
locations, thus the paths to traverse are smaller and the energy consumed is lower (see Fig. 4.2(d)). Eeff in
the two algorithms is very close when using one food location, it is because in Ec-marking the food is located
quickly, but with increasing the food locations, results tend to decrease and converge from each other. They are
higher in Ec-marking. Plots in Fig. 4.4(c) present the results obtained by the two algorithms in obstacle-free
and obstacle environments.

In sub-scenario 5, when dividing the environment (by using several sinks rather than one), search space
becomes smaller and paths shorter in both of the algorithms. Eeff is reduced, since energy consumption is less
and returned food is more. In Ec-marking, Eeff is higher than EC-SAF (see Fig. 4.4(d)).

4.4.2. Results in Scenario 2. The growth of Eeff is constant overtime in both of the algorithms. In
EC-SAF, Total Energy Consumed is less because agents avoid unnecessary moves by avoiding already visited
cells, while it is higher in Ec-marking, since agents need to return to already visited cells several times in order to
reach the optimal values of the Artificial Potential Field (APF) (Fig. 4.5). Since results obtained with EC-SAF
in obstacle-free and obstacle environment are very close, their curves overlap in Fig. 4.5.

4.4.3. Results in Scenario 3. When agent density is fixed, the growth in total energy consumed is linear
in EC-SAF algorithm. The foraging time increases which means more search time and more energy consumption

462 O. Zedadra, H. Seridi, N. Jouandeau and G. Fortino

10000000

20000000

30000000

40000000

50000000

60000000

70000000

80000000

90000000

100000000

 1000 1200 1400 1600 1800 2000 2200 2400 2600

T
o

ta
l
E

n
e
rg

y
 C

o
n

s
u

m
e
d

Time (seconds)

EC-SAF free
EC-SAF obs

Ec-marking free
Ec-marking obs

Fig. 4.5. Total Energy Consumed overtime

until agents reach the total amount of food. Varying both parameters (agent number and world size) at the
same time does not affect the growth of Eeff . Table 4.5 and Fig. 4.6(a) present the evolution of Eeff in both
algorithms overtime when fixing agent density. In Ec-marking, the growth Eeff is higher, it starts at decreasing
when food is located. Also in this scenario, results obtained with EC-SAF (also with Ec-marking) in obstacle-
free and obstacle environment are very close and their curves overlap in Figs. 4.6(b) and 4.6(c). The Eeff in
Tables 4.5 and 4.6 is given in kilo.

Table 4.5

Results in scenario 3 when keeping agent density fixed to 0.01

Agent density 0.01 0.01 0.01 0.01

Agent number 100 2500 3600 6400

World size 100x100 500x500 600x600 800x800

Eeff in obstacle-free world
EC-SAF 14 190 394 621

Ec-marking 720 8263 444643 11616

Eeff in obstacle world
EC-SAF 15 206 464 807

Ec-marking 758 16526 444652 20202

When decreasing agent density in sub-scenario 2, Eeff decrease is constant and slow in EC-SAF. When
decreasing agent density, we got a very low decrease in Eeff , since the varying parameter is world size, which
doesn’t influence significantly Eeff . While the growth of Eeff is inconstant in Ec-marking, it grows in linear
until the value density 0.00004, it increases dramatically to higher value, and decreases after that when density
is 0.0001 (see Fig. 4.6(b)).

In sub-scenario 3, in EC-SAF more agents with smaller paths provide fast foraging time and less Eeff . It
reaches its minimum value in 0.0001 density value, over it the increase in agent number provides long paths
to traverse until food location, thus large search time and more Eeff . In Ec-marking, the growth in Eeff is
constant but still very high in comparison to EC-SAF (see Fig. 4.6(c)).

An Energy-Aware Algorithm for Large Scale Foraging Systems 463

 2⋅10
7

 4⋅10
8

 5⋅10
2

 3⋅10
3

 6⋅10
3

 9⋅10
3

E
n

e
rg

y
 E

ff
ic

ie
n

c
y

Time (seconds)

(a)

 2⋅10
4

 6⋅10
4

 8⋅10
4

 1⋅10
5

 2⋅10
5

10
-5

10
-2

E
n

e
rg

y
 E

ff
ic

ie
n

c
y

Agent Density

(b)

EC-SAF free
EC-SAF obs

Ec-marking free
Ec-marking obs

 2⋅10
4

 6⋅10
4

 8⋅10
4

 1⋅10
5

 2⋅10
5

10
-4

10
-3

E
n

e
rg

y
 E

ff
ic

ie
n

c
y

Agent Density

(c)

Fig. 4.6. Simulation results of scenario 3 represents the variations in Eeff when: (a) keeping Agent Density fixed, (b)
decreasing Agent Density, (c) increasing Agent Density. Where the legend in (b) is the same for the other Figs

Table 4.6

Varying Agent Density

Agent density 0,01 0,001 0,0001 0.0004 0.00001 0.00006

Results without obstacle
Eeff EC-SAF 14 159 14 13 101 14

Tforag EC-SAF 100 4245 461 501 2943 775

Eeff Ec-marking 4 161 149 54 158 88

Tforag Ec-marking 453 4232 4232 794 3948 4516

Results with obstacles
Eeff EC-SAF 14 159 14 13 101 14

Tforag EC-SAF 202 4340 565 635 3043 877

Eeff Ec-marking 4 161 149 54 158 88

Tforag Ec-marking 658 2023 4432 105 4184 4713

The growth of Eeff in EC-SAF is constant when varying Agent Density and inconstant in Ec-marking. The
EC-SAF algorithm is scalable, and it can be used for large systems with large number of agents and large world
sizes. However, it presents better results when adjusting some parameters. Table 4.6 presents the obtained
results in terms of Eeff and Tforag for both of the algorithms when varying Agent Density in obstacle-free and
obstacle environment.

464 O. Zedadra, H. Seridi, N. Jouandeau and G. Fortino

4.4.4. Summary of Results. Varying some parameters have trivial results and doesn’t need simulations
such as agent capacity and food concentration. When varying agent capacity, we got a decrease in foraging
time, a decrease in energy consumption (since agents need less visits to food) and increase in the Total Food
Returned (since the agent capacity is increased), thus Eeff (t) decreases dramatically when increasing the agent
capacity. Unfortunately, when increasing food concentration, agents need more visits to exhaust the food, thus
more energy consumption and higher Eeff (t). However, some parameters affect Eeff (t), Eeff and must be
adjusted together in order to improve the performances. Agent number can limit the scalability of the proposed
protocol when using it in small world sizes with one food location. It provides large paths to traverse by agents
and reduces the number of agents participating at the transport task which results in consuming more energy
and reduces the number of food returned. While dividing the environment into smaller sub-spaces provides
shorter paths to food, thus less energy consumption and large amount of food returned. EC-SAF protocol
allows constant growth in results when used with large number of agents and large environment sizes, however,
the influencing parameters need to be adjusted together. Thus, the large number of agents should be used with
more than one food location in order to reduce the length of paths and to increase recruitment of agents (to
transport quickly the food) and under sufficient world size that can allow all agents to participate to transport
task.

5. Conclusion. This paper presents a study of the energy-aware EC-SAF algorithm performances in large-
scale multi-robot foraging systems. It analyzed the parameters which can affect the Energy Efficiency. Different
scenarios were used therefore, and we conclude that the proposed algorithm is scalable and can be used with
large environmental configurations. However, it is influenced by the agent number, world size, food density and
their adjustment together provides better performances. The shortest paths and the avoiding of unnecessary
moves (revisiting already visited cells) provided by S-MASA helps in giving better results than the Ec-marking
algorithm that uses pseudo random walk.

In the future, we intend to explore other environment configurations and examine other possibilities to
reduce the energy consumption in EC-SAF.

REFERENCES

[1] N. El. Zoghby, V. Loscri, E. Natalizio and V. Cherfaoui, Robot cooperation and swarm intelligence, Wireless Sensor
and Robot Networks: From Topology Control to Communication Aspects, 2014, pp. 168–201.

[2] M. Dorigo, E. Bonabeau and G. Theraulaz, Ant algorithms and stigmergy, Future Generation Computer Systems, 16
(2000), pp. 851–871.

[3] L. Pitonakova, R. Crowder and S. Bullock, Understanding the role of recruitment in collective robot foraging, MIT
Press, (2014).

[4] O. Zedadra, N. Jouandeau, H. Seridi and G. Fortino, Energy Expenditure in Multi-Agent Foraging: An Empirical
Analysis, Proceedings of the 2015 Federated Conference on Computer Science and Information Systems (FedCSIS), 2015,
pp. 1773–1778, IEEE.

[5] O. Zedadra, N. Jouandeau, H. Seridi and G. Fortino, S-MASA: A Stigmergy Based Algorithm for Multi-Target Search,
Proceedings of the 2014 Federated Conference on Computer Science and Information Systems, Annals of Computer
Science and Information Systems, 2 (2014), pp. 1477-1485.

[6] O. Zedadra, N. Jouandeau, H. Seridi and G. Fortino, Design and Analysis of Cooperative and Non-Cooperative
Stigmergy-based Models for Foraging, Proceedings of the 19th IEEE International Conference on Computer Supported
Cooperative Work in Design, 2015.

[7] Y. Zhang, Observation-Based Proactive Communication in Multi-Agent Teamwork, Scalable Computing: Practice and Ex-
perience, 8 (2007), pp. 63–77.

[8] F. Pasqualetti, A. Franchi and F. Bullo, On optimal cooperative patrolling, 49th IEEE Conference on Decision and
Control (CDC), 2010, pp. 7153–7158.

[9] J. Stipes, R. Hawthorne, D. Scheidt and D. Pacifico, Cooperative localization and mapping, Proceedings of the 2006
IEEE International Conference on Networking, Sensing and Control, 2006, pp. 596–601.

[10] A. Marjovi, J. G. Nunes, L. Marques and A. de Almeida, Multi-robot exploration and fire searching, IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, 2009, pp. 1929–1934.

[11] M. Brambilla, E. Ferrante, M. Birattari and M. Dorigo, Swarm robotics: a review from the swarm engineering
perspective, Swarm Intelligence, 7 (2013), pp. 1–41

[12] M. Dorigo, M. Birattari and M. Brambilla, Swarm robotics, Scholarpedia, 9 (2014), pp. 1463
[13] S. Konur, C. Dixon and M. Fisher, Analysing robot swarm behaviour via probabilistic model checking, Robotics and

Autonomous Systems, 60 (2012), pp. 199–213

An Energy-Aware Algorithm for Large Scale Foraging Systems 465

[14] A. Saxena, C. Satsangi and A. Saxena, Collective collaboration for optimal path formation and goal hunting through
swarm robot, 5th International Conference on Confluence The Next Generation Information Technology Summit (2014),
pp. 309–312

[15] D. H. Kim, Self-organization for multi-agent groups, International Journal of Control Automation and Systems, 2 (2004),
pp. 333–342

[16] S. Nouyan, R. Groß, M. Bonani, F. Mondada and M. Dorigo, Teamwork in self-organized robot colonies, IEEE Trans-
actions on Evolutionary Computation, 13 (2009), pp. 695–711.

[17] M. Ntika, P. Kefalas and I. Stamatopoulou, Formal modelling and simulation of a multi-agent nano-robotic drug delivery
system, Scalable Computing: Practice and Experience, 15 (2014), pp. 217-230.

[18] A. FT. Winfield,Foraging robots, Encyclopedia of complexity and systems science, pp. 3682–3700, 2009.
[19] K. E. Holekamp, J. E .Smith, C. C. Strelioff, R. C. Van Horn and H. E. Watts, Society, demography and genetic

structure in the spotted hyena, Molecular Ecology, 21 (2012), pp. 613–632.
[20] P. E. Stander and S. D. Albon, Hunting success of lions in a semi-arid environment, Symposia of the Zoological Society

of London, 1993, pp. 127–143.
[21] A. Arab, A. M. Costa-Leonardo and others, Dynamics of foraging and recruitment behavior in the Asian subterranean

termite Coptotermes gestroi (Rhinotermitidae), Psyche: A Journal of Entomology, 2012.
[22] T. Kuyucu, I. Tanev and K. Shimohara, Evolutionary optimization of pheromone-based stigmergic communication, Appli-

cations of Evolutionary Computation, 2012, pp. 63–72.
[23] N. Hoff, R. Wood and R. Nagpal, Distributed Colony-Level Algorithm Switching for Robot Swarm Foraging, Springer

Distributed Autonomous Robotic Systems, 2013, pp. 417-430.
[24] S. P. Beeby, M. J. Tudor and NM. White, Energy harvesting vibration sources for microsystems applications, Measurement

science and technology, 17 (2006), pp. 175.
[25] M. JB. Krieger and JB. Billeter, The call of duty: Self-organised task allocation in a population of up to twelve mobile

robots, Robotics and Autonomous Systems, 30 (2000), pp. 65–84.
[26] T. H. Labella, M. Dorigo and J. L. Deneubourg, Division of labor in a group of robots inspired by ants’ foraging behavior,

ACM Transactions on Autonomous and Adaptive Systems (TAAS), 1 (2006), pp. 4–25.
[27] W. Liu, A. FT. Winfield, J. Sa, J. Chen and L. Dou, Towards energy optimization: Emergent task allocation in a swarm

of foraging robots, Adaptive behavior, 15 (2007), pp. 289–305.
[28] A. Campo and M. Dorigo, Efficient multi-foraging in swarm robotics, Advances in Artificial Life, 2007, pp. 696–705
[29] J. H. Lee, C. W. Ahn and J. An, A honey bee swarm-inspired cooperation algorithm for foraging swarm robots: An empirical

analysis, IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 2013, pp. 489–493
[30] A. Couture-Beiland R. T. Vaughan, Adaptive mobile charging stations for multi-robot systems, IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), 2009, pp. 1363–1368
[31] S. Kernbach and O. Kernbach, Collective energy homeostasis in a large-scale microrobotic swarm, Robotics and Au-

tonomous Systems, 59 (2011), pp. 1090–1101
[32] A. F. Winfield, S. Kernbach and T. Schmickl, Collective foraging: cleaning, energy harvesting and trophallaxis, Handbook

of Collective Robotics: Fundamentals and Challenges, Pan Stanford Publishing, Singapore, 2011, pp. 257–300
[33] O. Simonin, F. Charpillet and E. Thierry, Revisiting wavefront construction with collective agents: an approach to

foraging, Swarm Intelligence, (2014), pp. 113–138.
[34] O. Zedadra, N. Jouandeau, H. Seridi and G. Fortino, A Distributed Foraging Algorithm Based on Artificial Potential

Field, Proceedings of the 12th IEEE International Symposium on Programming and Systems (ISPS), 2015, pp. 1–6.
[35] R. A. Brooks, A robust layered control system for a mobile robot, Journal of Robotics and Automation, 2 (1986), pp. 14–23.
[36] J. Barraquand, B. Langlois and J. -C. Latombe, Numerical potential field techniques for robot path planning, IEEE

Transactions on Systems, Man and Cybernetics, 22 (1992), pp. 224–241.
[37] T. Balch, Grid-based navigation for mobile robots, The Robotics Practitioner, 2 (1996), pp. 6–11.
[38] Y. P. Yean and RM. K. Chetty, An efficient grid based navigation of wheeled mobile robots based on visual perception,

Trends in Intelligent Robotics, Automation, and Manufacturing, 2012, pp. 128–135.
[39] B. Lau, C. Sprunk and W. Burgard, Efficient grid-based spatial representations for robot navigation in dynamic environ-

ments, Robotics and Autonomous Systems, 61 (2013), pp. 1116–1130.
[40] U. Wilensky, NetLogo. http://ccl.northwestern.edu/netlogo/, Center for Connected Learning and Computer-Based Model-

ing, Northwestern University, Evanston, IL, 1999.

Edited by: Dana Petcu
Received: August 27, 2015
Accepted: October 4, 2015

