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Abstract. Extreme Data is an incarnation of Big Data concept distinguished by the massive amounts of data that must be
queried, communicated and analyzed in near real-time by using a very large number of memory or storage elements and exascale
computing systems. Immediate examples are the scientific data produced at a rate of hundreds of gigabits-per-second that must be
stored, filtered and analyzed, the millions of images per day that must be analyzed in parallel, the one billion of social data posts
queried in real-time on an in-memory components database. Traditional disks or commercial storage nowadays cannot handle the
extreme scale of such application data.

Following the need of improvement of current concepts and technologies, we focus in this paper on the needs of data intensive
applications running on systems composed of up to millions of computing elements (exascale systems). We propose in this paper
a methodology to advance the state-of-the-art. The starting point is the definition of new programming paradigms, APIs, runtime
tools and methodologies for expressing data-intensive tasks on exascale systems. This will pave the way for the exploitation of
massive parallelism over a simplified model of the system architecture, thus promoting high performance and efficiency, offering
powerful operations and mechanisms for processing extreme data sources at high speed and/or real time.
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1. Introduction. Inheriting the characteristics of Big Data, Extreme Data has at least three main dimen-
sions, Volume, Variety and Velocity. However, the Extreme attribute is associated with a virulence of the Vs
and their strong inter-relationship. The Volume dimension is well explained by the Big Data concept describing
the data size or weight. However, in the context of scientific computing, the extreme data processing has a high
degree of complexity due to the tighter interactions among different parts of the dataset during processing. As
a result, the volume that can be processed is currently limited and existing abstractions such as the MapReduce
model applicable to Big Data are insufficient. New programming paradigms are needed to be specially tailored
to increase the volume of the scientific data processed by HPC systems.

The processing is complicated by data Variety: e.g. the simple requirement of adding and processing data
from various streaming sources is not yet supported by the current HPC tools in the context of new types
appearing every day. Furthermore, the challenge is not only storing the data, but also getting data in and out
of store from the data centers and offering support for reproducibility and data provenance assurance.

The Velocity express how rapidly one can move data from a data volume to a user. Extreme velocity is
crucial for real-time advanced data visualization and analytics (embedded analytics into the databases is the
only current solution).
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In addition to the above three dimensions inherited from Big Data, we consider relevant for extreme data
a fourth dimension, Value. The Value can be obtained by analyzing datasets and so extracting knowledge
from them. Part of the research work is dedicated to the design and development of methods and tools
for programming extreme data mining applications and extracting value from extreme data. The Value is
mentioned also as a fourth dimension in High Performance Data Analysis (HPDA, [18]) concept. HPDA needs
HPC resources and smart algorithms to offer solutions in near-real time, implies search and pattern discovery,
simulation and analytics, and deals with regular and irregular data patterns, as well as partitionable and non-
partitionable problems.

In this paper we propose a roadmap to developing new programming models for extreme data applications
and ensure their take-up. More precisely, in order to offer support to the extreme data processing through
HPC, we propose to change the current programming paradigms by following a data-driven model (to increase
the Volume), the heterogeneous data access mechanisms (to increase the Variety), and the methods for data
analytics/mining (to increase the Value). The scale of the changes on the three dimensions (Volume, Value,
Variety) should be finally estimated through the redesign and reimplementation of existing scientific applications,
dealing with large volumes of data. We are not discussing in this paper how the velocity can be increased, as
being currently subject of co-design techniques.

The proposed roadmap is aligned with the challenges identified by PRACE [75], HiPEAC [39], Plan-
etHPC [74] and ETP4HPC [28]. As underlined by the PRACE report ”The Scientific Case for High-performance
Computing in Europe 2012–2020”, handling large data volumes generated by research is both a major challenge
and opportunity for future HPC systems, and integrated environments for compute and data are expected to
emerge. Another identified challenge is the end-to-end management of, and fast access to, large and diverse
data sets through the infrastructure hierarchy; most application areas foresee the need to run several long-time
jobs at sustained high performance to generate core datasets and many shorter-time jobs at lower performance
for pre- and post-processing. The HiPEAC initiative recommends to address the issues of efficiency (maxi-
mizing power efficiency and performance through heterogeneous computer system design and catering for data
locality), dependability and applications (bridging the gap between the growth of data and processing power;
safety, predictability and ubiquitous availability of systems). The main technological challenges identified by
PlanetHPC are data locality (i.e., the proximity of data to the processing location), new programming models
and tools (for massively parallel and heterogeneous systems), technologies supporting new and emerging appli-
cations that require robust HPC with real-time capability, data-intensive HPC and low-energy computing from
both an architectural and application perspective. ETP4HPC SRA (Strategic Research Agenda) underlines
that important trends or needs are efficient communication and data movements at all levels and on different
flavors and levels of architectures.

The Japanese JST-CREST on-going programme Extreme Big Data (EBD) aims to achieve the convergence
of Supercomputing and Big Data [63]. EBD is now focusing on the hierarchical use of new generation non-
volatile memories and processor-in-memory technologies, hierarchical management of memory objects and their
high resiliency, and resource management to accommodate complex workflows being able to minimize data
movement. EBD advocates the need for a convergent SW/HW architecture and their software stack will be
implemented in the next generation of Japanese supercomputers (including also new strategies for scaling on
the Velocity dimension using new interconnection network topologies). The co-design EBD applications include
climate simulation with real-time data assimilation to predict extreme weather phenomena.

In this paper we advocate for an extended level of support for the development, deployment and execution
of extreme data application using the current HPC facilities, while we do not exclude the fact that co-design
techniques can follow the proposed approach. The four pillars of the proposed roadmap are the following:

1. Design and develop new HPC programming and energy models for extreme data applications. Design-
ing and developing programming paradigms and mechanisms is needed to better support the imple-
mentation of scalable algorithms and applications on exascale computing systems. Models for energy
consumption estimation are needed at an application level, as well as efficient runtime mechanisms
for supporting the workload executions expected to scale on very large computing systems, including
support to cope with the dynamic variability in the required or available resources.

2. Build new tools for monitoring and data-analysis for extreme data applications. Designing and de-
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veloping scalable monitoring and data analysis tools should include low-level instrumentation, data
collection, mining and data-centric online performance analysis with the ability to perform at the exas-
cale level. Beyond the use of performance metrics, the efficiency needs to be targeted through advanced
modelling and correlation heuristics aiming to understand their inter-relationships, essential for online
optimisation and tuning.

3. Adapt the data management and storage techniques to the extreme scale. Providing high-performance
and reliable support for I/O, storage and data-throughput, as well as resilience capabilities are needed.
The strategies to enhance an application’s data locality need to be coupled with dynamic I/O config-
urations by restructuring the I/O stack functionalities, and by providing predictive and adaptive data
allocation strategies. The resilience problem in the I/O stack needs to be treated by sharing cross-
cutting issues and highly scalable and energy-efficient cross-layer checkpointing strategies, using the
I/O hierarchy and memory storage greedily. Object-based file systems and scalable data stores need to
be promoted for efficient and durable storage structures for exascale applications.

4. Validate the concepts and tools usefulness through extreme data applications. Two main directions are
considered in this paper: environmental science (particularly Earth observation, weather forecasting
and urban computing fields) and dynamic systems simulations.

Section 2 discusses how the state of the art in processing large datasets should be advanced in order to reach
the exascale dimension. Section 3 introduces an approach to the proposed advances. We draw the conclusions
in the closing section.

2. Advancing the state of the art. We follow in this section the topics related to exascale systems from
the ETP4HPC Strategic Research Agenda [28], selecting those connected to the extreme data processing field:

1. Programming Environments: Non-conventional parallel programming; APIs for auto-tuning perfor-
mance or energy; Inspection of data locality at Exascale level; New metrics, analysis techniques and
models;

2. System Software and Management: On-the-fly data analysis, data mining; Fault-tolerant MPI and
checkpointing;

3. Balancing Compute Subsystem, I/O and storage performance: Hardware resilient Exascale storage
demo; Big Data + HPC integrated software stack;

4. Big Data and HPC Usage Models: Problem-solving environments for large data.
More precisely, in this section we try to identify the limitations of the current approaches for data processing

using HPC in the conditions of Extreme Data, as well as potential paths to overpass these limitations.

2.1. Advancing the Programming Environments.

2.1.1. Non-conventional parallel programming. A parallel programming model provides a set of ab-
stractions that simplifies and structures the way a programmer thinks about and expresses a parallel algorithm.
High-level programming models help programmers access and use resources abstracted from physical entities
(cores or memory). This is done to facilitate programming and to improve the software portability and to
increase the productivity. The use of high-level programming abstractions also helps by using a reduced set of
programming patterns that limits errors, reduces programming time and facilitates resource exploitation.

Programming paradigms traditionally used in parallel and distributed systems, like MPI, Map-Reduce,
OpenMP, and OpenCL are not sufficient for developing codes designed to run on systems composed of a massive
amount of processing nodes. To reach exascale requires the definition of new programming paradigms combining
abstraction with scalability and performance. Hybrid approaches (shared/distributed memory) and subsets of
communication mechanisms based on locality and grouping are currently investigated. The approaches proposed
until now are based on the adaptation of traditional parallel programming languages and hybrid solutions. This
incremental approach is too conservative, often resulting in very complicated code with the risk of limiting the
scalability of programs on millions of cores.

Approaches based on a partitioned global address space (PGAS) memory model appear to be more suited
in meeting the exascale challenge. Today, they are investigated as a potential solution that may limit the cost
of shared memory access, however load balancing is still an open question. Many current parallel programming
solutions contain an implicit trade-off between simplicity and performance; those which abstract the programmer
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from the lower level parallel details often sacrifice performance and scalability in the name of simplicity, and
vice versa. Many current implementations of the PGAS model are no exception to this and unfortunately,
limited progress has been done in last few years toward the implementation of simple models that can be
used to program at any scale and performance. The need for scalable programming models continues and the
emergence of new hardware architectures makes this need more urgent.

MPI offers low programmability due to the fragmented view of data it offers. This resulted in the proposal
of the PGAS model, whose current implementations (e.g. UPC [95], CAF [73], Global Arrays [71]) inherit the
SPMD model due to their multi-threaded view and they have no support for hierarchical decomposition, which
is key for exascale computing. Additionally, these tools only focus on communication, leaving to the user all
the issues related to the management of large volumes of data that appear in exascale problems.

Novel, complex abstract structures are needed for extreme data application support. The MapReduce
model is often oversold; although frequently used on clusters and Cloud-based applications, additional research
is needed to develop scalable higher-level models and tools. Defining new programming paradigms and APIs
to represent data-intensive tasks on exascale systems will allow the exploitation of massive parallelism in a way
that provides an abstraction of the system architecture, promotes the high performance and efficiency, and offers
powerful operations and mechanisms for processing extreme data in reduced and/or real time. Such strategy
can open the way to implement many data-intensive applications in several application domains both in science
and business.

Heterogeneity is crucial to achieve exascale computing and it is in fact being increasingly adopted in high-
performance petascale systems, as the first entries of the TOP500 show. For instance, the June 2014 list includes
62 systems with accelerators, a 17% raise comparing to 53 in the previous list. These platforms require the
cooperation of thousands of nodes, with MPI being the state-of-the-art, sometimes complemented by other tools
such as OpenMP for intra-node communication, completed by a variety of APIs for managing the accelerators,
OpenCL being the most portable solution.

There are previous attempts for novel data processing languages such as DISPEL [20], which is an im-
perative workflow-based scripting language aimed at supporting analysis of streamed data. The programmer
describes workflows for data intensive applications, a workflow being a knowledge discovery activity, where data
is streamed through and transformed into higher level knowledge. Apart from requiring the data scientist to
learn a variety of new concepts, this language is heavily integrated with the ADMIRE platform and requires the
features and workflow provided by the platform. The use of DISPEL is supported in the seismology e-science
data analysis environment of the VERCE [96] project. DISPEL was ported from the ADMIRE platform to
Python and dispel4py [21] was created, which shares the same concepts as DISPEL but it is integrated with
a platform familiar to seismologists. This approach of building abstractions on top of an already familiar pro-
gramming language has many advantages, such as an easy integration with existing tools, or a wider acceptance
by community. The R [78] language is designed for statistical computing and graphics, one of its strengths
being the integrated support for data manipulation and calculation; for instance, effective data storage and
calculations on matrices. As a functional language, R might require, to some extent, the data community to
learn new concepts, which may impact its acceptability. The SPRINT [85] project has developed an easy to use
parallel version of R, aimed at the bioinformatics community. This technology allows the addition of parallel
functions, without requiring in depth parallel programming knowledge. SPRINT has been very successful in
this domain, but it is not designed for exascale and, although it works well on a thousand of cores, it is not
designed to scale up to hundreds of thousands or millions of cores.

We argue that libraries are needed to support abstract data types (ADTs) that represent global explicitly-
distributed objects in a widely spread object-oriented language (the main focus can be on arrays because
of their ubiquitousness). Since objects contain both data and the key semantics of their management, the
methods of ADT can provide users with optimized implementation of common operations and underlying
support for requirements for exascale applications. The ADT methods can provide data-parallel semantics, and
can encapsulate abstractions that allow for hierarchical decomposition of the data and the representation of
irregular problems and operations. The meta-information within ADTs, together with the high-level semantics
of its operation, can allow one to optimize its operation in exascale environments while strongly reducing the
code complexity. Finally, the usage of a widely-adopted language can favor code reuse and the gradual migration
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of legacy code to exascale systems on top of these ADTs.
The availability of many accelerators (GPUs, Phi, FPGAs etc.) with different APIs to manage them and

no clear winner at this point leads to possibility of many more appearing in the future. The usage of OpenCL
in exascale applications, which is the only portable approach that avoids lock-ins and code rewrites, seems to
be a promising choice. Unfortunately, the OpenCL API is too low level [72], resulting in code verbosity and low
productivity of programmers, who need to manually perform buffer allocations, data transfers, synchronizations
etc. High level annotations [81, 2] or embedded languages [97] built on top of OpenCL that automate these
tasks and hide their complexity are a better approach. Several authors have considered the programmability of
accelerators on top of OpenCL across a cluster [7, 35]; however, existing solutions only abstract away some com-
plexities of OpenCL but still expose other low-level details or restrict the non-accelerator part of an application
to a single node.

In order to exploit all the available hardware in exascale systems, we need to extend and evolve the high-
level programming of accelerators (e.g., [81, 97, 2]) into high-productivity seamless approaches, for instance,
through the natural integration with the ADT previously described.

2.1.2. APIs for auto-tuning performance or energy. At the moment, most monitoring tools of HPC
systems directly measure only metrics of performance. Classical monitoring tools, such as Ganglia or Nagios,
track the processor and memory load, the network bandwidth and the communication pattern. But this approach
can only improve one key metric, the raw performance. In a more realistic world, multiple conflicting objectives
need to be achieved. Indeed, in some cases the improvement of performance or energy consumption is a
difficult choice because the optimization of the one may have a negative impact on the other. In order to reach
an efficient state, any runtime for optimizing energy and performance requires in-depth information about the
system state along with the ability to predict the impact of possible choices. Several tools already exist [19, 9] to
evaluate the power consumption of servers or applications without specialized hardware, only using information
of resource consumption at the system level. However, the current solutions either are imprecise or consume
resources intensively. In an HPC environment, we need to optimize both the performance and energy through
the improvement of current approaches. One way is to design and implement adaptive prediction tools. Indeed,
a decision system for auto-tuning the performance and energy needs to predict the impact of its decision in order
to provide efficiency. At the moment, most models [62] are only considering instantaneous power consumption,
while not trying to predict its evolution.

2.1.3. Inspection of data locality at Exascale level. Data locality is a major concern for I/O in
current Petaflop machines. Nowdays, data locality is managed independently at various levels such as the
application, middleware, or file system. At the lowest level of the I/O stack, parallel file systems such as
GPFS [42], Orange/PVFS [77] or Lustre [60] manage block-based or object-based storage through parallel
servers running on storage nodes. These parallel file systems strive to comply with the POSIX requirements.
However, one main critique for POSIX is that it does not expose data locality, even though researchers agree
that locality-awareness is a key factor for building exascale systems [79].

Other scalable file systems such as GFS [34] have dropped the POSIX interface and been co-designed with
processing frameworks such as MapReduce [22]. Although these frameworks simplify programming for a class
of embarrassingly parallel data-intensive computations based on best-effort strategies to co-locate computation
and data, they are not generic enough to efficiently address the needs of scientific applications and have not been
widely adopted on the High End Computing (HEC) infrastructure. The main take-outs from their experience
are co-design and locality-aware computing [24].

The most widely used middleware in HEC systems is the MPI-IO [68]. The standard MPI-IO data operations
are not locality-aware. Additionally, there are no mechanisms allowing data accesses to take advantage of data
layout in the file system (e.g. I/O caching, data distribution over servers, block alignment). Some applications
are using high-level I/O libraries, such as HDF5 [37] and ParallelNetCDF [55] that map application data models
to storage data models through MPI-IO. However, these libraries often require experience to achieve reasonable
performance and scalability.

2.1.4. New metrics, analysis techniques and models. Over the last years, a large number of perfor-
mance measurement and analysis tools (like the ones described in [82, 67, 65]) have been created for the new
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heterogeneous, many-core, parallel computing architectures and systems. These tools support low-level instru-
mentation, performance measurement and analysis; they are based on hardware counters, time measurements,
call graphs, and tools for tracing the operating system or measuring the performance of specific programming
models; and they cover, for instance, multi-threaded, OpenMP, and MPI programs. A major drawback of these
tools is that they operate at the process or thread level which will clearly do not scale to the exascale level.

In order to avoid such major bottlenecks in exascale systems, we argue that a new tool design is needed
shifting the focus from single thread and regions to the distribution and layout of data.

The first issue is whether performance analysis should be done in an online or offline manner. The online
approach implies that the application is still executing while performance data is processed to support the on-the-
fly optimization of an application for given objectives. This is usually considered more difficult in comparison
to offline analysis, since the analysis consumes resources in parallel to the investigated application (possibly
causing perturbation). A further difficulty is the processing of data streams rather than full data sets, i.e. the
analysis must work on a subset with missing —potentially important— information that might appear later.
Offline analysis on the other hand does not cause any performance perturbation for the application and has
the entire data set available. However, it usually requires more storage space and inherently lacks support for
on-the-fly optimizations. Existing tools mostly focus on offline analysis, while online analysis is only addressed
in isolated efforts [67].

An important issue involved in performance analysis at the exascale level is the reduction of the amount
of data involved. Ideally, we should minimize the required storage space —and the amount of input data for
analysis— at maximum retained information. There are several methods and techniques that try to balance
this trade-off such as clustering of data [32, 57] or pattern extraction [31]. Thus, they reduce the amount of
performance data but provide a higher level of information in comparison to other techniques of performance
instrumentation and measurement, such as sampling or profiling, that only give summary information. Never-
theless, few tools employ such techniques by default and, despite their applicability, they have never been used
for online performance analysis.

The lossless compression methods that are widely available may have unsuitable compression ratio or
excessive overhead, and do not affect the amount of data that needs to be analyzed. In addition, some tools
like TAU [82] or Paradyn [67] support self-limitation of instrumentation perturbation, e.g., by estimating the
overhead caused by instrumentation function calls and stopping instrumentation if that overhead reaches a
certain threshold. By decreasing the instrumentation and analysis overhead, this also increases the scalability
of the tools. Although this approach is successful in reducing the amount of produced performance data, it also
limits its usefulness because there might be program phases that are not represented by any performance data.
Once the data is analyzed, the issue of sophisticated visualization remains. In particular, subgraph folding [80]
addresses the visualization of large-scale data by merging multiple subgraphs of similar information into a single,
composite subgraph.

Measurement and analysis tools for non-functional parameters (NFPs, including execution time, memory
usage and energy consumption) should be analyzed. Holistic views of NFPs (including a novel data-centric
view to replace the traditional region-centric ones) characterizing applications, components, runtime system
and computing system behaviour are needed. The tools need to correlate NFPs across these views. Measure-
ment techniques need to ensure correct and accurate mappings of NFPs from the computing system level to
the application level. In particular, measurement techniques should be selectively used for different parts of
applications and computing systems to control the measurement overhead and accuracy.

In order to support dynamic performance optimization at exascale, scalable measurement and analysis tech-
niques should target the on-the-fly classification and frequent pattern algorithms, NFP estimation techniques,
and comprehensive analysis patterns for detecting and understanding performance problems. Tools that enable
domain experts to control the granularity and accuracy of performance analysis are needed.

There are also approaches that compute the Pareto frontier to represent the correlation between different
conflicting objectives. Examples targeting two objectives refer to time and operational cost [104] or to execution
time and energy consumption [76] but without considering costs and utilisation. For instance, [12] employs the
hyper-volume metric for pruning the trade-off solutions generated in each step, at cost that is exponential with
the number of objectives. On the other hand, genetic algorithms can provide better solutions [100, 89]; however,
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it is well-known that their performance unacceptably degrades beyond three objectives [51]. Few approaches
target three objectives, like the ones from [49, 83]. All of them are nature-inspired algorithms that require a long
time for convergence to high-quality solutions. All these approaches do not target data-intensive applications
and do not apply energy modelling and prediction techniques.

Another important aspect to be considered is the use of GPGPU (CUDA, OpenCL) for many multi-objective
optimization problems. GPGPUs are attractive for their processing power and cost effectiveness [64]. Their
main drawback is that not all methods are suitable for this type of architecture and most algorithms need to
be redesigned and reimplemented. Different optimization techniques have been implemented for a variety of
problem types [58, 59] and also for real world applications with stringent time and computational constraints [93].
The advantages and disadvantages of this approach need to be analyzed, when applied to exascale problems
and data.

2.2. Advancing the System Software and Management.

2.2.1. On-the-fly data analysis and data mining. Data analysis tasks usually involve a large amount
of variables that are recorded or sampled. The problems caused by anomalous values in exascale data can be
disastrous from a data-analytic point of view. In order to obtain a coherent analysis, the detection of outlying
observations is paramount. Outliers can in some instances carry important information (e.g. a century flooding
event with occurring probability of 1%). However outliers depend heavily on the nature of the data and the
expected outcome of the analysis. These outliers are candidates for potentially aberrant data that ultimately
can lead to poor sample-based performance or model degradation/misspecification. Outliers detection should
happen before modeling and data analysis. However, not only pre-processing (in particular outliers detection)
but also stream data analysis encounters difficulties in on-line extraction of models from data streams.

There are several types of anomaly detection mechanisms. Classification techniques require labeled data
(distance-based kNN). These types of methods make the assumption that ’normal’ data occurs in dense neigh-
borhoods while anomalies happen far from these. There are of course other methods which can be of some value,
such as artificial neural networks [87, 69], SVM [103], Bayesian Networks [45] or Decision Trees [53]. In the
case of unsupervised learning methods, outliers are considered part of no cluster, while normal instances of data
are part of a cluster. Clustering methods include DBSCAN [17], SNN [3], k-Means, SOM, HMM, WaveCluster,
FindOUT or FSM [88]. Anomaly detection can be used to in filtering significant features out from data sets.
These features can represent a wide variety of events ranging from unwanted behavior to identifying new data.
Thus, it can be used to process data as well as the behavior of complex systems.

The ADMIRE [4] platform is a software stack that implements an architecture where a wide range of data
analytics tools are connected together through specific interaction points known as gateways. Although this
approach has delivered some success, three years after project completion it has not gained significant traction
in the wider area of data analysis. One of the reasons might be the fact that ADMIRE uses technologies such
as REST and WSDL. This makes the architecture seem more suited towards cloud/cluster analytics, rather
than HPC data analytics at exascale. Weka [99] is a collection of machine learning algorithms for data mining
tasks. There are a variety of tools such as data pre-processing, classification and visualization which can be used
directly or called from Java code. The fact that this is a Java library limits the suitability to HPC. Moreover, we
must mention that distributed versions of the Weka framework have been developed (e.g., Weka4WS [94]), but
they are suitable for small/medium size Grids or Cloud platforms, not for extreme computing systems where a
massive degree of parallelism must be exploited.

Multivariate exascale data poses a significant problem for data mining and visualization methodologies. This
type of data requires many degrees of freedom which can lead to poor data comprehension, and visualization
amplifies this problem [26]. The ability to generate data will by far outweigh the ability to store this data.
Also, the movement of the data in large quantities through the memory hierarchy to more permanent storage
is extremely costly in terms of power [26]. The development of on-the-fly analysis methodologies can provide
important advantages, such as data comprehension and improved prediction/classification performance.

Dimensionality reduction and feature selection can happen as early as possible in the data processing
workflow. Identifying the most important features in a particular data set can help prevent potentially large
execution times of data mining algorithms as well as costly data storage and transfer operations [15]. Dimen-
sionality reduction methodologies that are good candidates for further investigations and potentially further
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improvements are Principal Component Analysis [5, 103], Wrapper Methods [90, 40, 47] and others [101, 43, 102].
The idiosyncrasies of each method have to be taken into consideration in order to effectively work on exascale
systems.

2.2.2. Fault-tolerant MPI and checkpointing. Pure hardware solutions are not enough to deal with
the number of failures of large systems. For this reason, hardware failures must be tolerated by the applications
to ensure that not all computation done is lost on machine failures. Checkpointing and rollback recovery is one
of the most popular techniques to provide fault tolerance support to MPI parallel applications. It periodically
saves the computation state to stable storage, so that the application execution can be resumed by restoring
such state.

In case of failure, most of the current checkpointing and rollback solutions restart all the processes from
their last checkpoint. However, a complete restart is unnecessary, since most of the nodes will still be alive.
Moreover, it has important drawbacks. Firstly, full restart implies a job re-queuing, with the consequent loss
of time. Secondly, the assigned set of execution nodes is generally different from the original one. As a result,
checkpoint data must be moved across the interconnection network in order to restart the computation. This
usually causes significant network contention and therefore high overheads. All these limitations should be
overcome through the support for malleable jobs, that is, parallel programs that are able to modify the number
of required processors at run-time. This feature allows the automatic adaptation of the parallel execution to
the available resources, coping with hardware errors and avoiding the restart of the whole application.

The literature includes several proposals for transforming MPI applications into malleable jobs. However,
most of them are very restrictive with respect to the kind of supported applications. Indeed, only iterative or
master-slave applications are considered (e.g., [61, 86, 14]), because in these cases the modification of the number
of processes is much easier than in a general application. Furthermore, in these approaches reconfiguration can
only take place in very specific points within the applications. Thus, new solutions are needed to implement
MPI malleable applications in a general and scalable way.

Malleability not only offers advantages from the fault-tolerance point of view [33]. It also provides a higher
productivity and a better response time [11, 41]. These characteristics allow to improve the usage of resources,
which will have a direct effect on the energy consumption of application execution, resulting in both cost savings
and a greener computing.

2.3. Advancing the Balance of Compute, I/O and Storage Performance.

2.3.1. Hardware resilient Exascale storage demo. Traditionally I/O is an activity that is performed
before or after the main simulation, analysis computation, or periodically for activities such as checkpointing.
Instead, the I/O should be regarded as an integral activity which must be optimized while architecting the
underlying software [25]. As HPC systems are becoming larger, the overall system resilience decreases. The
resilience of an application in an exascale system depends significantly on the I/O system because saving
the state of the application through checkpoint/restart remains an essential component of the global system
resilience [23]. The overhead for performing checkpoints and the consumed energy can both be optimized by
leveraging new non-volatile memory [29].

We believe that new memory and storage hierarchies can drastically impact performance and resilience.
Therefore, we consider worth investigating the integration of non-volatile memory within nodes, interconnects
and networks or within I/O storage nodes. Seamless data migration between the multiple tiers of memory and
storage is key to achieving the exascale. New technologies, such as flash memory (SSD), phase-change RAM and
accelerators, will provide new opportunities to achieve both the above properties (stable local storage, faster
checkpointing, faster checkpoint compression etc).

The traditional homogeneous I/O interfaces do not explicitly consider the type of an I/O operation. How-
ever, a checkpointing I/O activity is different from an I/O activity. Therefore, we need purpose-driven I/O
software layers and cross-layer data management that is specialized for resilience [44], such as checkpointing in
memory, hierarchical checkpointing, and checkpointing that leverages the data layout. To achieve resilience and
integrity, objects should be replicated in physically separate zones [6]. An example in this direction is VIDAS,
an object-based virtualized data sharing for High Performance Storage I/O [56]. Using fast memory (RAM,
NVRAM, SSD, etc.) at intermediate storage levels in the hierarchy is becoming more and more popular. Thus,
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some cached parallel file systems are now available as powerful I/O tools such as memcachedFS and Panache [27].
Nonetheless, resilience requires a system-wide approach. A cross-layer mechanism with clear failure semantics
can support the design of resilient techniques and optimizations at different stack layers. However, it is also
important to provide isolation between global/local storage, so that there can be a timely notification and
avoidance of failures to ensure data integrity.

2.3.2. Big Data + HPC integrated SW stack. A recent study characterized the storage I/O of
computational scientific applications handling large amounts of data, including jobs in Earth science, nuclear
physics, energy, and climate [13]. It has been found that the majority of applications prefer to use POSIX
interfaces rather than the MPI-IO interface or high-level libraries. Additionally, processes accessed either
unique files, shared files, partially shared files or zero files. A surprising amount of data is stored on small files
in the range 64KiB-128KiB, and 86% of the files have size below 1MiB. The read and write size was 100KiB
to 1MiB across most jobs, although two specific jobs biased the most popular write size between 100B and
1KiB. Checkpointing is recognized as the primary storage driver. Current requirements are specifying that a
checkpoint of up to 64PB should complete in 300s.

Another recent study introduced methods to automatically identify I/O patterns at the block level and
utilized them to manage the metadata indexing and support data prefetching in physics and geoscience applica-
tions [38]. Statistical analysis of NetCDF scientific datasets was successfully explored over the Hadoop platform
developed for big data applications [10]. Another study identified several common characteristics between the
PVFS distributed file-system used in high-performance computing, and HDFS used in big data analytics [91].
Quality of service in shared storage servers has been previously investigated in the context of transactional and
analytical workloads. Promising techniques include automated configuration of prefetch and writeback I/O size
along with quanta-based device scheduling [98]. The latest approaches proactively manage quality objectives
across multiple resources (e.g., network and storage) but are far from handling exascale data in the complex
scientific processing [106].

Based on prior research, we recognize the challenge of managing exascale data in scientific applications and
their peculiarities with respect to big data processing for analytical purposes. However, the characterization
of I/O requirements of an application can include system services such as monitoring. One way to address
current bottlenecks emerging from the handling of numerous files or small I/O requests is through support
for storage and network I/O aggregation at the client side. Quality of service in exascale I/O performance is
important in this context. The guaranteed performance obtained from shared storage servers can be improved
through the exploitation of caching at the client side and efficient storage management at the server. The
durability restrictions can be overcome with persistent caching over high-performance storage devices. The
main advancement from existing methods can be the native incorporation of the proposed improvements within
the distributed filesystem or datastore rather than adding the aggregation support in middleware layers between
the client and the storage backend.

2.4. Advancing the Big Data and HPC Usage Models: Problem-solving environments for large
data. While there is much debate about the programming models used to program exascale computing systems,
the main requirements of the applications targeting this extreme scale are clear: a very large number of threads,
limited communication (in space and time) and synchronization, tolerance for execution time variance, scalable
data access and low energy consumption [36]. New applications must be written to satisfy these requirements.
Scaling up applications to exascale will require programming efforts even if new programming models prove to be
adequate for instance handling limited data exchange asynchronously will require new algorithms. Therefore,
programmer productivity also matters. Writing efficient programs for a large scale computing platform is a
difficult engineering endeavor that requires a lot of knowledge and experience also because complex engineering
tasks are not easy to automate [84]. High-level and efficient programming environments will help in achieving
this objective.

Exascale-ready problem-solving environments (PSE) should consider computing, data flows, and energy
efficiency when determining how to execute pipelined tasks; for exascale computing, measuring and acting upon
the computing performance alone is insufficient [30]. Since the constituents of PSE can act as data producers
or data consumers, the optimization of data-flow between them is a task that should be handled by the PSE.

For example, global monitoring from space requires new platforms that will ensure the correct exploitation
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of data. This unprecedented large volume of data brings new constraints in terms of discovery, access, exploita-
tion, and visualization. How these new volumes of Earth Observation data are integrated in data-intensive
applications frameworks define the next generation of Earth Science services. Likewise, even if user and appli-
cation communities share the original data, we will observe an even more diversification and specialization with
new requirements, methods and protocols giving origin to innovative services.

2.5. Overview of the limitations and the paths to overcome them. Table 2.1 summarises the
discussions from the previous subsections. They list the main limitations on large data processing and report
on possible solution paths.

3. Proposed approach and methodology. In this section we follow the paths proposed in the previous
section to overcome the current limitations in extreme data processing by proposing concrete actions.

3.1. Design and develop new HPC programming and energy models for extreme data appli-
cations. Exascale computing faces many challenges as parallel codes will need to control millions of threads
running on many cores. Such programs will need to avoid synchronization, use less communication and memory,
failures could be more frequent, and power management is needed. Whilst these considerations are critically
important to the scalability of future codes, the programmers themselves typically want to concentrate on their
own application and not have to deal with these lower level, tricky, details. Today no available programming
models and languages provide solutions to these issues. Therefore, new programming models are required to
handle these challenges.

3.1.1. Programming paradigms and models. High-level programming can help application developers
to access and use resources without the need to manage low-level architectural entities, as a parallel programming
model defines a set of programming abstractions that simplify the way by which the programmer structures
and expresses his or her algorithm.

To effectively support the development of data intensive algorithms and applications on exascale systems,
we consider that is urgent to design a simple but scalable programming model (e.g. a SPMD programming
model) based on basic operations for data intensive/data-driven applications to deal with the use of a massive
amount of processing elements and develop an API based on that model which includes operations for data
access, data communication and data processing on groups of cores. The model must be able to manage a very
large amount of parallelism and to implement reduced communication and synchronization.

At the extreme scale, the cost of accessing, moving, and processing data across a parallel system is enormous.
This requires mechanisms, techniques and operations for efficient data access, placement and querying. In
addition, scalable operations must be designed in such a way to avoid global synchronizations, centralized
control and global communications. Many data scientists want to be abstracted away from these tricky, lower
level, aspects of HPC until at least they have their code working and then potentially to tweak communication
and distribution choices in a high level manner in order to further tune their code.

Interoperability and integration with the MapReduce model and MPI must be investigated with the main
goal of achieving scalability on large-scale data processing.

3.1.2. Productive exascale heterogeneity exploitation. Exascale data-extreme applications require
large clusters of distributed memory systems, including often heterogeneous devices of very different natures.
The programming of these systems is mostly based on relatively low level standards, such as CUDA and
OpenCL for the exploitation of heterogeneity, or MPI for managing communication among computing nodes,
which hugely reduces the productivity of programmers.

Different data-centric abstractions can be integrated in order to provide a unified programming model
and API that allows the productive programming of both heterogeneous and distributed memory systems. A
software implementation can take the form of a library. Its application to reference benchmarks (like Graph500
- the data-intensive benchmark - or hpcchallenge.org) allows to gather feedback that will lead to improvements
in the prototype.

In order to simplify the development of applications in heterogeneous distributed memory environments,
large scale data-parallelism can be exploited on top of the abstraction of n-dimensional arrays subdivided in
tiles, so that different tiles are placed on different computing nodes that process in parallel the tiles they own.
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Table 2.1: Limitations on large data processing and paths to overcome them

Category Limitations Paths to overcome the limitations

Non-conventional
parallel program-
ming

Lack of abstract representation of data-
intensive tasks; exascale computing cannot be
reach without considering the heterogeneity of
the systems; MPI limitations in what concern
data types; PGAS do not support hierarchical
decomposition; MPI and PGAS implementa-
tions focus on communications rather on man-
agement of large volumes of data.

Build abstractions on top of an already fa-
miliar programming language; new libraries to
support abstract data types for explicitly dis-
tributed objects; high level annotations build
on top of APIs for accelerators and evolve
the low-level programming of accelerators into
high productivity approaches through integra-
tion with the abstract data types.

APIs for auto-
tuning perfor-
mance or energy

Current monitoring tools are measuring raw
performance; current tools for evaluation of
power consumption use system level informa-
tion, leading to an intensive consumption; in-
stantaneous power consumption is considered.

Implement adaptive prediction tools for deci-
sion systems for auto-tuning the performance
and energy.

Inspection of data
locality at Exascale
level

Data locality is managed independently at ap-
plication, middleware and file system levels;
scalable file systems are not widely adopted
by HEC; MPI-IO data operations are not
locality-aware.

Design high-level I/O libraries to map hier-
archical data models to storage data models
with scalability and performance in mind.

New metrics, anal-
ysis techniques and
models

Current performance and analysis tools op-
erate at process or thread level (not scal-
able); existing tools focus on offline analy-
sis; approaches for representing correlation be-
tween conflicting optimization objectives are
not targeting data-intensive applications and
do not apply energy modeling or prediction
techniques.

Build new tools to operate at the level of
the distribution and layout of data; target
the on-the-fly classification and frequent pat-
tern algorithms, non-functional parameters es-
timation techniques; use of GPGPU for many
multi-objective optimization problems.

On-the-fly data
analysis, data
mining

Current data analysis tools are designed for
distributed systems and not for HPC systems;
preprocessing (in particular outliers detection)
and stream data analysis encounters difficul-
ties in on-line extraction of models from data
streams; multivariate exascale data have too
many degrees of freedom which can lead to
poor data comprehension.

Outliers detection before modeling and data
analysis by using of anomaly detection mech-
anisms; development of on-the-fly analysis
methodologies to improve data comprehen-
sion; dimensionality reduction and feature se-
lection to reduce execution and transfer times.

Fault-tolerant MPI
and checkpointing

Full restart in case of faults creates job re-
queuing and huge checkpoint data transfers.

Implement malleable job mechanisms to be
able to modify the number of required pro-
cessors at run-time.

Hardware resilient
exascale storage
demo

The resilience of an application in an exascale
system depends on the I/O system; the cur-
rent I/O interfaces do not consider the type of
an I/O operation (e.g. checkpointing vs. other
I/O acivities)

Overhead for performing checkpoints can be
optimized by leveraging non-volatile memory
techniques; design I/O software layers and
cross-layer data management specialized for
resilience, such as checkpointing in memory,
hierarchical checkpointing.

Big Data + HPC
integrated software
stack

Bootleneck in handling numerous files or small
I/O requests.

Storage and network I/O aggregation at client
side; caching at client side, persistent caching
over high-performance storage devices.

Problem-solving
environments for
large data

PSE are usually not considering data flows or
energy efficiency when determining how to ex-
ecute pipelined tasks.

Optimize the data-flow between the data pro-
ducers or data consumers inside the PSE.
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Such an approach allows one to easily process the tiles at each node in either regular CPUs or in any of the
heterogeneous systems available (GPUs, Xeon Phi coprocessors, etc.) using a unified API and runtime that
hides the complexity of the underlying process. This abstraction should be supported by abstract data types
provided by libraries, so that they can be easily integrated in existing applications.

Another issue is the gap between users with HPC needs and experts with the skills to make the most of these
technologies. An appropriate directive-based approach can be to design, implement and evaluate a compiler
framework that allows generic translations from high-level languages to exascale heterogeneous platforms. A
programming model should be designed at a level that is higher than that of standards, such as OpenCL. The
model should enable the rapid development with reduced effort for different heterogeneous platforms. These
heterogeneous platforms need to include low energy architectures and mobile devices. The new model should
allow a preliminary evaluation of results on the target architectures.

3.1.3. Energy awareness. On exascale systems, it becomes impossible to assume that each component
of applications will behave exactly the same. To manipulate tasks and components efficiently, different types of
information are required. Most of the time, only resource-related information is manipulated.

In exascale systems, energy-related information is of utmost importance. Such information cannot be
directly measured at the application level, therefore it must be obtained by using higher-level models of appli-
cations. The resource consumption of applications must be tracked during their execution in order to evaluate
bottlenecks – when manipulating data-intensive applications these bottlenecks become even more important.
Thus resource and energy consumption models need to be temporal. Either during design phase or by runtime-
detection, we can model and then predict the resource and energy consumption of each particular component.
Reference benchmarks (like the ones from Green Graph 500) allows one to gather feedback leading to improve-
ments in the models.

Using this high level information, a runtime will be able to take informed decisions and thus will reduce
energy consumption and prevent bottlenecks.

3.1.4. Runtime support. The programming models previously described need to be supported by a
runtime system. The runtime system is responsible for managing, coordinating and scheduling the execution of
an application by deciding when, where and how its constituent components should be executed.

The execution can be based on data-driven, dynamic DAG scheduling mechanisms, where a component in
the DAG will be ready for execution once all of its required input parameters have become available. In this
case the runtime system is expected to control and optimize the execution of the applications in an optimized
internal representation as a dynamic DAG: the nodes represent computational components and the edges track
the data dependencies between components. Once a component is ready to execute, the runtime will choose
the potentially best implementation variant, depending on the available hardware resources, the estimated
performance, energy and efficiency aspects, the dynamic feedback of the program and system behavior, and the
user-specified optimization goals.

Such a runtime can be a rule-based system with event-condition actions. The event specifies the rule that
is triggered after which the condition part is queried to see the best suites on which the application should
run. When particular conditions are met, the rule fires and the appropriate actions are executed. There
are several advantages to this method compared to encoding such rules into an application code. Firstly the
rules are organized into a knowledge base which makes them more modular and expendable. It also improves
maintenance and a knowledge base is well suited for analysis and optimization of the rules it contains. Lastly
an embedded rule-base is much more specific to a certain type of reactive behavior and in our scenario the
rule-base is a much more generic mechanism.

In addition, extreme data applications often involve dynamic workflows that demand a changing amount
of resources. Moreover, exascale systems aggregate a very large number of computational resources with a
high rate of variation in their availability and load state. Thus, applications should be able to dynamically
adapt to these changing conditions. Nowadays, many parallel applications are written using the traditional
MPI programming paradigm. However, MPI does not provide explicit support for malleability. Thus, MPI
should be extended with libraries and run-time support to implement malleable applications. The solution can
be based on checkpointing and be implemented at the application-level to improve portability and efficiency.
Two different solutions can be explored. First, a virtual malleable approach, where the number of processes
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is preserved and the application adapts to changes in the amount of resources by oversubscribing processors.
As the number of processes is preserved, this solution has not restrictions on the type of applications allowed.
Second, a scalable data redistribution approach to achieve an efficient reconfiguration of the number of processes.
An incremental procedure can be followed in this case having as starting point regular data distributions and
iterative applications, and extending the application’s field in every new step.

3.2. Build new tools for monitoring and data-analysis for extreme data applications.

3.2.1. Extreme data mining techniques. A novel set of mechanisms and resources needs to be inte-
grated into high-level operations and tools. These should be provided to programmers or data mining researchers
for developing, configuring, and running data mining applications targeting at reaching the exascale. The novel
set of operations and resources needed to address the areas of accessing, exchanging, transforming, and mining
big data sets. The high-level operations should allow a user to compose the novel exascale programming mecha-
nisms in order to access, filter, pre-process, and mine data in parallel using data analysis graphs that correspond
to scalable data mining applications. These scalable tools based on novel programming paradigms should be
used to design scalable codes that support the implementation of large-scale data mining applications.

Dimensionality reduction of exascale data is an important consideration which can help make near real-time
analysis possible by reducing the size of the data necessary for analysis tasks thus reducing computational and
ultimately energy requirements.

Another important consideration is that high data throughput is prone to errors. These errors are detrimen-
tal to any data mining application or algorithm, thus a method to detect anomalies or outliers in the incoming
data needs to be investigated.

3.2.2. Extreme data collection and monitoring. Instrumentation, monitoring and measurement tech-
niques should be tuned for data-intensive applications in order to provide fine-granular performance and en-
ergy information with low-overhead at the exascale level. Scalable, low overhead measurement and analysis
techniques should enable trade-offs between measurement perturbation, measurement data accuracy, analysis
response time and overall benefit. An analysis of such techniques should be based on lightweight messages
between measurement/analysis threads and the run-time system that selectively applies tracing, profiling or
sampling to measure individual non-functional parameters (NFP) for different parts of the application or com-
puting system to control measurement accuracy and program perturbation. To achieve this, an investigation
can be done on upgrading options based on techniques such as the Erlang component isolation [1] or subgraph
folding algorithms [80]. For collecting measurements, statically and dynamically instrumentation is needed for
the dynamic code representation in the run-time system.

To deal with missing data (e.g., energy measurements not available on a code region basis) or for compressing
it, analysis techniques based on Hoeffding Tree, adaptive Bayes, classification, and frequent pattern algorithms
(i.e., to find memory usage patterns that require less storage compared to simple, time-sampled data) should be
investigated. The estimation of NFPs can be exploited for specific architecture parts and application components
or regions with incomplete measurements based on sophisticated event processing and analysis patterns (e.g.
analyse correlation between execution time and energy consumption) applied to different parallel patterns.

Scalable event processing analysis techniques should allow performance experts to spend their time on
developing reusable patterns for NFPs and detecting performance problems, rather than on specific performance
analysis features that are hardly reusable for new parallel applications and architectures. The necessary storage
infrastructure need to be investigated to address the concurrency needs of monitoring and event processing at
large scale. According to the requirements of the implemented operators, memory and disk resources need to
support real-time processing and historical data access at low cost.

Existing energy monitoring software is based on specific acquisition devices or performance counters and
no standard exists on how to energy profile a HPC application. Standard metrics and profile grain has to be
defined, which depends on the capabilities of each power metering device. The different types of energy metering
devices available should be identified and a common interface for energy metering needs of exascale HPC should
be proposed. The automatic discovery of the necessary libraries and available devices at runtime should be a
mandatory feature in this context.
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3.2.3. Scalable data analysis. Existing performance analysis tools are instruction-centric and offer a
code region-based profile of the application. Thus they may hide important sources of bottlenecks related, for
example, to an inefficient data distribution or to some misaligned memory addresses causing false sharing. This
problem is caused by the focus on processing rather than locality which is a central reason for performance
problems in contemporary parallel architectures. A data-centric analysis tool should be therefore designed (in
addition to the classical region-based view) exposing the complete global application address space and associ-
ating the collected metrics with program variables rather than instructions and code regions. The key insight
behind such an approach is that a source of a bottleneck in a HPC application is often not the affected code
fragment where it is detected (i.e. where the data is processed with a high communication or thrashing over-
head), but where it is allocated. The tool can drive and filter the required instrumentation and data collection
described before required for the analysis. The analysis and visualization requirements will be supported by the
necessary storage facility with schema support for the operators of data insertion and retrieval involved.

3.2.4. Automatized correlation analysis. Understanding possible correlations between conflicting pa-
rameters such as execution time, energy consumption, and efficiency at the exascale level may significantly
reduce the search space for extreme data mining or runtime optimization purposes at the exascale level. There-
fore, search strategies should be investigated to approximate the set of Pareto-optimal solutions. For this kind
of search, techniques such as ranked Pareto dominance, crowding, and other techniques with a proven track
record in challenging multicriterial search problems like NSGA-II and PAES can be used. These techniques can
be enhanced with theoretical results, for example from elementary landscape theory to reduce the search time.

In order to guide dynamic optimization and reduce the search overhead, performance and energy models
associated with components that are automatically generated by the runtime system or by the user are needed.
To enable dynamic optimization with minimal overhead, the optimization logic can become an HPC problem,
distributed among the otherwise inefficiently used resources in a highly malleable fashion.

3.3. Adapt the data management and storage techniques to the extreme scale.

3.3.1. Predictive and adaptive data layout strategies. In the software storage I/O stack of current
petaflop machines, data locality is managed independently at various levels such as application, middleware,
or file systems, thus, data locality is not exposed or propagated. Understanding the relationship between the
different layers of the I/O stack is critical to providing locality-awareness in every layer, which is a key factor
for building exascale systems. Therefore strategies and mechanisms required to provide predictive and adaptive
data layout strategies need to be investigated. It is needed to advance the best-effort strategies that co-locate
computation and data towards predictive techniques implemented in cooperation with the system scheduler.
However, in the current state-of-the-art software stack data locality cannot be dynamically controlled on the
data path from application to storage. This may cause inefficient accesses due to various factors such as data
redundancies, lost optimization opportunities, and unnecessary data reorganization. One way to overcome
these limitations is to adopt adaptive data-layout strategies that dynamically adjust their behavior to fit the
application and storage data layout.

One of the major problems in exascale I/O is the lack of data distribution strategies that can increase data
locality by taking into account application behavior. Current I/O systems are mostly statically configured and
cannot provide dynamic features to applications and a methodology for profiling and analyzing data-intensive
applications for identifying opportunities for exploiting data locality is needed. Such a methodology should
allow the study of the dynamics of data movement and layout throughout the whole data storage I/O path from
the back-end storage up to the application in order to understand the requirements for building mechanisms for
exposing and exploiting data locality. Then, techniques for providing dynamic configurations of the I/O system
can be designed and developed to enhance the whole data life-cycle by reflecting applications I/O patterns,
restructuring the I/O stack functionalities, and providing predictive and adaptive data allocation strategies.

3.3.2. Resilience through cross-layer data management. A cross-layer data management and strate-
gies for resilience should allow checkpointing in memory, hierarchical checkpointing, and should leverage the
data layout checkpointing. To achieve resilience and integrity objects can be replicated in physically separate
memory zones using an object-based virtualized data sharing for high performance storage I/O. Using fast
memory (RAM, NVRAM, SSD, etc.) at the intermediate storage levels of the hierarchy is instrumental to
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providing resilience through replication and checkpointing, while maintaining scalability and energy efficiency.
As resilience requires a system-wide approach, a cross-layer mechanism with failure semantics to support the
design of resilient techniques and optimizations at different stack layers is needed. This mechanism should
provide isolation between global and local storage so that there can be a timely notification and avoidance of
failures to ensure data integrity.

Supporting the development of I/O software through cross-layer mechanisms will contribute to: enhancing
energy efficiency by reducing the communication through a better exploitation of data locality and layout;
improving resilience by providing isolation between global/local storage so that there can be a timely notification
and avoidance of failures to ensure data integrity; exploiting data locality and concurrency to hide the latencies,
avoid congestion, and identify and bypass failures in an early stage. This development of the I/O software
also allows the users to express some key aspect of what they want to do with their data, and lets the users
know what happened with the management of their data. This bi-directional path of meta-information will
provide better information for optimization and the goal is to express this meta-information in a clear way for
developers.

3.3.3. Storage structures for exascale I/O. For several years, I/O-intensive HPC has been primarily
based on distributed object-based filesystems that separate data from metadata management and allow each
client to communicate in parallel directly with multiple storage servers. Exascale I/O raises the throughput and
storage capacity requirements by several orders of magnitude, therefore methods that can manage the network
and storage resources accordingly are needed. The systems already developed for Big Data analytics are not
directly applicable to HPC due to the fine-granularity I/O involved in scientific applications. Another weakness
of existing systems is the semantic gap between the application requests and the way they are managed at the
block level by the storage backend.

The storage bottlenecks of the well known data-intensive applications should be analyzed when scaling
the size of the processed dataset and the generated output, or the frequency of the obtained checkpoints.
Approaches to aggregate the I/O requirements at the client need to be identified, as well as methodologies
for providing the necessary storage support at the backend. The supported concurrency should be increased
through a combination of a simple I/O interface, algorithms for both data and metadata indexing, and methods
of heterogeneous device management.

Exascale data processing stresses the storage infrastructure in terms of resource utilization, reliability and
performance. Therefore appropriate storage structures that rely on object-based filesystems and scalable datas-
tores are needed. Issues that have to be examined include the degree of replication according to fault-tolerance
guarantees, caching at different system components for performance at low cost, and concurrency level for par-
allel data processing. The proposed solutions can take advantage of the latest advances in storage and hardware
technology to provide through extreme parallelism improved data throughput, low latency, and durable storage
in HPC application execution – experimental software based on production-grade open-source file/storage/data
management systems can be built.

An important aspect in those new exascale I/O management techniques will be avoiding metadata man-
agement, because metadata generates almost 70% of the I/O operations in most systems – small control I/O
operations – usually on shared data structures, which limits global scalability. The requirements of an efficient
and fault tolerant metadata service for exascale I/O need to be analyzed, and generic scalable metadata service
to use in the storage structure of exascale I/O systems need to be designed and implemented.

3.4. Validate the concepts and tools usefulness through extreme data applications. Extreme
data is encountered as input, output or intermediate data in multiple data-intensive applications, in fields such
as environmental sciences or dynamic system simulations. Applications in these areas are able to measure the
advances in processing data on the three dimensions introduced in Section 1, Volume, Value and Variety. We
discuss in what follows some candidates for such validations.

3.4.1. Earth Observation. Earth Observation (EO) from satellites produces vast amounts of data and
is playing an increasingly important role as a regular and reliable high-quality data source for scientific, public
sector and commercial activities. The Landsat archive alone corresponds to more than five million images of
the Earth’s land surface (roughly 1 petabyte of data). From 2014 onwards, new satellites from Europe, USA,
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China, Brazil, and India will each produce in a year as much new data as one Landsat satellite has acquired in
ten years. This unprecedented amount of data made available for research and operational use will open new
challenges.

For more than two decades, the European space industry has developed remote sensing sensors and launched
them on robust platforms to assure regular and near-real-time provision of key parameters for the monitoring of
land, ocean, ice and atmosphere. The recent data hiatus from ENVISAT’s abrupt end of mission will be overcome
with the new Sentinel and Earth Explorer programs operated by ESA and the European Global Monitoring for
Environment and Security/Copernicus Program Contributing Missions. The above and third-party missions
will be combined with data from the long-term EO archive (e.g. ERS, Envisat), in-situ networks and models.
Thus, they will provide routine monitoring capabilities of the environment at a global scale and unprecedented
insight into how oceans, atmosphere, land and ice operate and interact as part of an interconnected Earth
System.

The expanding operational capability of global monitoring from space opens a unique opportunity to build
sustainable platforms that support services exploiting archived or new rich EO data sets. In order to be
successful, such platforms must exploit the latest advances in scientific data management. Thus they will
offer easy and seamless access to all relevant data repositories, as well as efficient operations (search, retrieval,
processing/re-processing, projection, visualization and analysis) to extract and distribute single parameters or
combined products on user demand.

The broad range of existing constraints for using satellite Earth observations is related to the ability of EO
missions to (i) access and monitor the target areas at the right time, and (ii) extract the needed information
from the collected sensor data. When not considering timeliness constraints, the sheer volume of data needed
for change analysis presents a huge challenge for the current techniques with respect to accessing and processing
very large collections of satellite data. Existing classification algorithms using HPC and extracting features from
data gathered by satellites or airplanes scanning the Earth cannot be applied in real time and therefore the
data collected from satellites is processed only at request (event based). Recently the scalability of classification
algorithms has been improved, while the problem of feeding the HPC systems with the remote sensing data and
exploiting the data locality remains open.

With the establishment and maintenance of long-term EO programs (Sentinels, Earth Explorer, Landsat or
past ENVISAT mission) it is finally possible to obtain a long and homogeneous time series of satellite imagery.
Time-series analysis involves capturing the change of one or more variables over time and providing a rich
source of information on the dynamic nature of Earth surface processes for monitoring land-cover change and
vegetation-climate dynamics. Using a large set of satellite images that cover the same spatial domain but
originate from different satellites at different acquisition times, makes it possible to obtain an extended data
series with shorter time intervals. This capability will offer new opportunities for monitoring landscape changes
and advance our understanding of the reasons behind those changes. Different sensors will support different
spatial resolution and registration constraints. When the generated data is integrated in a common model will
result in a valuable information source revealing complex patterns for environmental monitoring and analysis
of landscape dynamics.

Analyzing big temporal datasets of satellite imagery and derived products qualifies as processing of extreme
data. An example is the mining of temporal patterns on the geospatial domain through a composition of services
that discover, access and analyze geospatial data cubes in an exascale environment (storages, metadata services,
data, analysis tools, etc.) that connects to existing data infrastructures. In particular such EO extreme-scale
application can be applied to measure land-use change over time.

3.4.2. Weather forecast. The current weather forecasting systems are reliant on numerical simulations.
The achieved accuracy of prediction is sensitive to the accuracy of initial conditions and estimates of the
current state of the atmosphere —the accuracy depends on an optimal combination of numerical simulations
and observational data. Severe weather events can be very localized (within a few km) and over a short lifetime
(a few minutes.) To forecast such phenomena the sensors must be able to send data at a rate of half a minute
intervals and simulations should run at a resolution of few hundred meters. However, 2Pflops are estimated
to be needed to run 100 simulations for 30s at a 100m resolution, producing 200GB of data at each 30s which
must be merged with observational data, producing another 200GB of data in the next 30s [63].



On Processing Extreme Data 483

The WRF (Weather Research and Forecasting) Model is a recent mesoscale numerical weather prediction
system designed to serve both atmospheric research and operational forecasting needs [66]. It features two
dynamical cores, a data assimilation system, and a software architecture facilitating parallel computation and
system extensibility. WRF is in operational use at US National Centers for Environmental Prediction, Air
Force Weather Agency and other centers. Currently the WRF implementations suffer from lack of accuracy and
real-time response even though they run on a cluster level. To improve the quality of output and build effective
warning system, data collected in real time from various sources should feed into the WRF simulator and the
resolution should be increased (resulting in both computation and data-intensive challenges.) The forecasting
application needs to be reprogrammed for efficiently handling the increased data requirements based on project
developments in exascale programming, monitoring and storage.

Extreme data processing arises in advanced weather forecasting that is based on the effects of heat fluxes
and wave height in the sea surface under consideration of hydrological models, and the sensitivity to various
convective parameterization schemes of extreme precipitation events over a complex terrain. The future plans of
weather forecasting and a related early-warning systems can include an extension to existing processes in space
and time to cover parts of a continent at an increased vertical resolution and multiple runs per day [8, 16, 54].
Such a redesign of the forecast process can increase the volume of the output results by approximately 700
times, which will approach 1 Terabyte per day.

3.4.3. Urban computing. Urban computing refers to the process of acquisition, integration, and analysis
of big and heterogeneous data. The data is generated by a diversity of sources in urban spaces, such as
sensors, devices, vehicles, buildings, and human. The goal is to tackle the major issues that cities face, such
as air pollution, increased energy consumption and traffic congestion [105]. It involves sensing technologies,
advanced data management and analytics models, as well as visualization methods in order to generate solutions
that improve urban environment, human life quality, city operation systems. HPC capabilities were recently
introduced to develop solutions for sustainable urban operations [92, 46]. The discovery of mobility models is one
of the most challenging issues which requires HPC [70], but it can improve resource furnishing and management
of cities.

The category of extreme-scale applications includes the smart-cities planning, designed as a composition of
different services allowing to gather and collect environmental data, and subsequently process and analyse it in
order to mine social and urban behaviors. The involved components in an exascale environment (e.g. storages,
metadata services and analysis tools) should interoperate and cooperate seamlessly. The access to underlying
infrastructure should be secure, pervasive and ubiquitous. A trajectory pattern-extraction methodology will be
applied to a real-world dataset concerning mobility of citizens within an urban area. The goal is to discover user
behavior and provide useful information about mobility-related phenomena so as predict future movements of
citizens, in order to support decisions in various ways.

We plan to analyze the mobility of citizens in order to discover people and community behaviour, i.e.,
patterns, rules and regularities in moving trajectories. A novel methodology is needed to extract and analyze
the time- and geo-references associated with social data so as to mine interesting locations and frequent travel
sequences among these locations in a given geo-spatial region. It will allow to infer human dynamics and
behavior within urban context. The extreme amount of geo-tagged data generated also by social-media users
together with the data-intensive computations needed for their analysis requires an extreme-scale distributed
implementation in which memory size and I/O capabilities scale with compute power.

3.4.4. Numerical simulations. Large-scale numerical simulations of complex domains, modeled by par-
tial differential equations (PDEs), comprise processing of data from billions of discretization nodes. For each
node, several hundred bytes of data are stored for several thousand time steps of the simulation, creating sim-
ulation results in order of Petabytes. This data is then post-processed, analyzed and visualized, creating a new
bottleneck in both data-movement and processing phases. Consequently, the scalability preservation in exascale
systems requires new algorithms and data structures supported by approaches of efficient communication, data
manipulation, storage principles and tailored high-performance processing.

Many of the established numerical algorithms and approaches have been designed at a time when computer
platforms were based on a moderate number of very fast computing nodes. In the exascale era, new computing
architectures are foreseen, built from millions of cores and equipped with accelerators able to implement data flow
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approaches. The existing numerical methodologies and algorithms must follow these trends. For example, an
implicit methodology is often preferred for the solution of PDEs because of longer possible time steps, however,
because of the additional price for the solution of a large global linear system. An alternative approach, based
on explicit methods, requires only a matrix-vector multiplication in each time step. Even though the number
of time steps in explicit methods could be higher, such an approach could better fit the new architecture with
many smaller processing units resulting in a more efficient methodology.

One of the most complex fields of scientific computing is the computational fluid dynamics (CFD), which
is of great interest among researchers and engineers in many areas of science and technology. The core problem
is the solution of the Navier-Stokes PDE equation or its variants, e.g., Darcy or Brinkman equation for flow in
porous media. The CFD plays a crucial role in the modeling of many important industrial processes, e.g., heat
transport-energy studies, solidification of advanced materials, microfluidics and nanofluidics, vehicles design,
etc. The solution approaches that are based on local information from neighboring discretization nodes will
be preferred in exascale CFD solvers, because such methodologies are closer to natural behavior. Moreover,
such approaches are tailored to the execution on exascale computer architectures that incorporate multi-level
processor and memory hierarchies, processing accelerators, and high-radix interconnection networks.

Solving extensive problems via local numerical methods requires efficient subdivision of the domain into
several million to several billion discretization nodes. Each simulation works on Terabytes of data, but even
more data is stored for each simulation in form of checkpointing and simulation results. Each node produces its
own simulation data that can create substantial overhead if it has to be communicated to a centralized storage.
Distributed storage in which nodes store data locally, or at least at a nearby storage location is preferable to
centralized storage at a single location that becomes an interconnection and storage bottleneck. Furthermore,
distributed storage of results promotes distributed analysis and data visualization, which also proves highly
problematic when working with Terabytes and Petabytes of data. Therefore, the data storage of the simulation
procedure should be planned with consideration of the optimal storage locations required.

3.5. Overview of the proposed methodology. Tables 3.1 and 3.2 summarize the proposed actions
which were discussed in details in the previous subsections. In a concise way, they show the key actions to be
carried out and the expected validations coming from some applications domains.

4. Conclusions. We provided in this paper a roadmap to reach the extreme-scale level in data processing.
It is based on four pillars: new programming and energy models for extreme data applications, new tools
for monitoring and data-analysis for extreme data applications, adaptation of data management and storage
techniques to extreme scale, and validation of the concepts and tools through specific extreme data applications.
For each topic some limitations of the existing concepts and technologies have been identified and potential
solutions to overcome these limitations were sketched without claiming that they guarantee the success or that
they are the only solution. We recognize that the efforts to implement these solutions can be enormous and will
require the joint efforts of multiple teams. Therefore we considered it useful to expose our ideas and proposals
in this paper and to seek for contributions in the proposed directions in the years to come.
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