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PERFORMANCE OPTIMIZATIONS FOR AN AUTOMATIC TARGET GENERATION
PROCESS IN HYPERSPECTRAL ANALYSIS

FERNANDO SIERRA-PAJUELO, ABEL PAZ-GALLARDO∗AND ANTONIO PLAZA†

Abstract. Hyperspectral sensors acquire images with hundreds of spectral channels. These images have a lot of information
in both spectral and spatial domain, and with this kind of information different research studies can be accomplished. In this work,
we present several optimizations for hyperspectral image processing algorithms intended to detect targets in hyperspectral images.
The hyperspectral image selected for our study was collected by the NASAs Airborne Visible Infra-Red Imaging Spectrometer
(AVIRIS) over the World Trade Center (WTC) in New York, five days after September 11th attack. The algorithm used in our
experiments is the automated target generation process (ATGP) and our optimizations comprise parallel versions of the algorithm
developed using open multi-processing (OpenMP) and message passing interface (MPI). Our experiments indicate that the ATGP
can be successfully implemented in parallel in multicore and cluster computing architectures, including Intel Xeon Phi.
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1. Introduction. Hyperspectral imaging [1] is concerned with the analysis and interpretation of spectra
acquired form a given scene (or specific object) by an airborne or satellite sensor [2]. Instruments such as the
Airborne Visible Infrared Imaging Spectrometer (AVIRIS) [3] are able to record the visible and near-infrared
spectrum of the reflected light using 224 spectral bands. As shown in Fig. 1.1, the resulting “image cube” is a
stack of images in which each pixel has an associated spectral signature or fingerprint that uniquely characterizes
the underlying objects [4]. The resulting data volume typically comprises several GBs per flight [5].

The special properties of hyperspectral data have significantly expanded the domain of many analysis
techniques, including (supervised and unsupervised) classification, spectral unmixing, compression, target, and
anomaly detection [6, 7, 8, 9, 10]. Specifically, the automatic detection of targets and anomalies is highly
relevant in many application domains, like fire control in forests or detect deposit of minerals, including those
addressed in Fig. 1.2 [11, 12, 13].

The automatic detection of targets and anomalies in hyperspectral images is highly relevant in many appli-
cations and it is particularly important for defense and security applications [14, 15], as well as for rare mineral
detection in geology [16] or location of infected trees in forestry. In this paper, we developed and compared
several efficient parallel versions of the automatic target generation process (ATGP) algorithm [4]. This algo-
rithm was designed to find spectral signatures with orthogonal projections. The considered method includes the
spectral angle distance (SAD) and the parallel versions are developed with open multi-processing (OpenMP)
and message passing interface (MPI). They are focused on identifying thermal hot spots in a complex urban
background, using AVIRIS hyperspectral data collected over the World Trade Center in New York just five days
after the terrorist attack of September 11th, 2001.

2. Methods. In this section, we will describe the target detection algorithm that will be efficiently im-
plemented in parallel: the ATGP algorithm [4], it was created to find spectral signatures using orthogonal
projections. The starting point of the algorithm is the brightest pixel in the image, similar to other existing
measures, it is possible to use different starting points instead of the brightest pixel. But, in these cases, it has
been experimentally verified that the pixel is always detected in a small number of iterations if not chosen as
a point starting [17]. Therefore, it seems reasonable to use as a starting condition. Next, we show a detailed
algorithmic description of the classical version of this algorithm. It begins by an orthogonal subspace projector
specified by the following expression:

P⊥

U
= I−U(UTU)−1UT (2.1)
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Fig. 1.1: Hyperspectral imaging concept. The reflectance and wavelength of pure pixels and mixed pixels are
described in the figure. They are different and unique for each kind of pixel.

Fig. 1.2: Applications of target and anomaly detection. Detect targets in a war, humanity missions or you could
use this to find mines and deactivate it.

where U is a matrix of spectral signatures, UT is the transpose of the matrix and I is the identity matrix.
ATGP algorithm uses the orthogonal projection of the equation 2.1 in each iteration to find a number of pixels
or bands vectors from an initial pixel that is passed to the algorithm as ATGP value and which is usually the
brightest pixel. This algorithm performs the following steps:

1. Calculate t0, the brightest pixel of the hyperspectral image, using equation 2.2, where F(x,y) is the pixel
(vector) at coordinates (x, y) in the image. The brightest pixel is that with greater value performing
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the vector product between the associated vector with that pixel and its transposed F(x, y)T .

t0 = arg{max(x,y)[F(x, y)
T · F(x, y)]} (2.2)

2. Apply an orthogonal projection operator tagged as P⊥

U
, using the expression 2.1, with U = t0. This

operator is applied to all pixels of the hyperspectral image.
3. Then, the algorithm finds a new target named as t1 with the greater value in the complementary space

< t0 >⊥, orthogonal to t0, using equation 2.3. In other words, the algorithm finds the pixel with higher
orthogonality respect to t0.

t1 = arg{max(x,y)[P
⊥

U
· F(x, y)]T · [P⊥

U
· F(x, y)]} (2.3)

4. The next step is to modify the U matrix and adding the new target found, that is U = [t0t1].
5. The algorithm finds a new target named t2 with the highest complementary space < t0, t1 >⊥ ,

orthogonal to t0 and t1, using the expression 2.4. At this point, the orthogonal projector is based on a
matrix U = [t0t1] and the orthogonally concept is different.

t2 = arg{max(x,y)[P
⊥

U
· F(x, y)]T · [P⊥

U
· F(x, y)]} (2.4)

6. The process is repeated iteratively, to find a third target, t3, a fourth target t4, until a certain condition
satisfies the termination for the algorithm. The termination condition considered in this paper is to
achieve a number of targets p that is determined as an input parameter to the algorithm.

3. Parallel Implementations. Partitioning or data division prior to processing of the hyperspectral
image can be done essentially by using two different strategies [18]:

• Spectral partitioning considers that different parallel architecture processors may contain non-overlap-
ping parts of the same spectral signature (pixel). This schema has the disadvantage that, considering
the spectral signature (vector) as a minimum unit for processing algorithms, it would be necessary
to include more communication operations for each calculation of the metric that is used. From the
viewpoint of the parallelization of the algorithm, which is based on applying repetitive computations,
this type of partitioning means a huge cost in terms of communication operations. Clusters of computers
are made up of different processing units interconnected via a communication network [19]. In previous
works, it has been reported that data-parallel approaches, in which the hyperspectral data is partitioned
among different processing units, are particularly effective for parallel processing in this type of high-
performance computing systems [5, 20].
• Spatial partitioning considers that the same spectral signature or pixel cannot be partitioned in different
units of the parallel processing architecture. We can work locally with the image on each processor,
eliminating much of the communication load of the algorithm. In this way, we just need to make global
communications to synchronize processes or get results in each iteration of the algorithm [25].

Our parallel implementation uses spatial partitioning so that each node carries a certain portion of the image,
which can be managed easily indicating each participant node from where to start reading and the number of
lines associated with the node. Besides, another reason for selecting spatial versus spectral partitioning is that,
with spatial partitioning, each pixel vector (spectral signature) remains in the same processing unit. As the
spectral signature is the minimum unit of computation in most hyperspectral imaging algorithms, keeping the
spectral signatures in the same processor reduces drastically the amount of inter-processor communications. A
comparison between spatial versus spectral partitioning for parallel hyperspectral algorithms has been reported
in [21]. The parallelization by spatial decomposition adopted by our implementation is described graphically
in Fig. 3.1. We opted for a spatial partitioning for that reason and other that we describe below:

• The spatial partitioning is a natural alternative to parallelize algorithms based on a processing by
window, such as algorithms for detect anomalies and target detection.
• Another reason to select the spatial partitioning versus spectral is that the spatial partitioning allows
to reduce communications between processors of the parallel architecture significantly. The most part
of hyperspectral analysis algorithms consider the spectral signature as the minimum processing unit
and, therefore, spectral partitioning involve inter-processor communications on pixel level increasing
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Fig. 3.1: Spatial-domain decomposition of a hyperspectral data set.

Table 4.1: Hyperspectral Image Features that we use.

Lines 614
Samples 512

Spectral Bands 224
Spectral Range 0,4 - 2,5 µm

Spatial Resolution 1.7 metres/pixel

the associated communications costs. The result of this is a lower parallel performance and scalability
issues when the processor number increases.
• The last reason to select spatial partitioning is the ability to reuse code and improve the portability of
parallel algorithms developed to different architectures. Is highly desirable to reuse serial code when
we are developing parallel version due to the complexity of some analysis techniques. The spatial
partitioning allows parallelism of fine-grained to make easier to use a parallel algorithm to different
portions of data in which all spectral information is saved, allowing the transformation of the serial
code to parallel code easier than applying a spectral partitioning.

This parallel scheme preserves in any case the sequential algorithm functionality of ATGP, except that in
this case a matrix of intermediate values is calculated in each of the nodes and then an update is performed
globally to share which node has the maximum value.

4. Experimental Results. In this section, we evaluate the parallel performance of the implementation
introduced in the previous section.

Hyperspectral image considered. The image to be processed (AVIRIS World Trade Center) was taken
five days after September 11th attacks. The main features of the image are in the Table 4.1. Note that the spatial
resolution of the image is very high for what is usually in AVIRIS. This is because the image corresponds to a
low altitude flight in which this flight pretended to obtain the highest possible spatial resolution. Therefore,the
impact of mixed pixels is much smaller than we would expect and it is possible to do an study more focused on
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Table 4.2: RGB Spectral Bands used for Fig. 4.1.

Color Band
Red 1682
Green 1107
Blue 655

Fig. 4.1: WTC Hyperspectral image with RGB Colors.

detecting anomalies (fires).
We make a fake color composition in RGB with three bands (see Table 4.2) and we could see the vegetation

in green color and the fires in gray hue. The smoke has the source in the red square (WTC Area) and its going
to the south of the island, with a blue hue because the smoke has a high reflectance in the 655µm wavelength.

As we could see in the Fig. 4.1, it should be pointed out that the automatic detection of fires in the WTC
is a very complex problem, due to the diversity of the urban environment in which fires are located. This
complicates the discrimination between points of interest (fires) and background due to the complexity of the
background, that has many different spectral substances as expected in a urban landscape.

4.1. Sequential. For comparison we use the ATGP sequential version and run this code on a computer
with an 2x Intel Xeon processors model E5649 at 2.53 GHz with 6 cores and 24 GB of DDR3 memory. The
experimental results show the time to load and process the image completely. We calculated the average of five
executions for each result. The time spent by the sequential version of the algorithm in the considered platform
was 18.42 seconds with a standard deviation of 0.21 seconds.

4.2. Performance optimizations with OpenMP. In this section, we evaluate the performance opti-
mizations with OpenMP. The test-bed was performed in two different platforms:

• s6030: NUMA (Non-Uniform Memory Access) shared memory platform with 64 cores, 8x Intel Xeon
X7550 at 2.00 GHz and 1 Terabyte of memory.
• Computational node: 2x Intel Xeon processors model E5649 at 2.53 GHz with 6 cores and 24 GB of
DDR3 memory.

The most important part of the algorithm is the ATGP method. As we have seen in Section 2, it’s a highly
iterative algorithm with three for loops to scroll the image and perform operations. In these loops we will
do the study using OpenMP. Before we start to get the optimal results, we have performed various tests to
find the optimal state of OpenMP code.To make easier the understanding, we include 2 different pseudo-codes
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Algorithm 1 ATGP algorithm pseudo-code

Input: ImageFile ImageHeader Targets
1: Read header information.
2: Read Header(ImageHeader)→bands,lines,samples
3:

4: Inicialize Matrix and Vectors
5: iV ector[targets][2]←0
6:

7: Load image into an array
8: Load Image(ImageFile, iVector)
9:

10: Pixel more brilliant to start.
11: Get Max Bright()→iVector
12:

13: Calculate targets
14: for i =0,i <targets do
15: max atgp =ATGP(iVector,lines,samples)
16: Save the coordinates P[i][0] and P[i][1]
17: end for
18: Return the results P[targets][2]

Algorithm 2 ATGP method pseudo-code

Input: iVector imageLines imageSamples
Output: maxValue
1: Compare the image pixels
2: Where n and n2 are values for lines and samples, respectively.
3: pragma omp parallel for num threads(n) private(i)
4: for i =0,i <lines do
5: pragma omp parallel for num threads(n2) private(Values,k)
6: for k =0,k <samples do
7: Calculate de maximum distance
8: for j =0,j <bands do
9: Get vector for compare

10: vector[j]←iVector[j*lines]
11: end for
12: Calulate de Spectral Angle Distance
13: maxV alue←Distance(vector[j],bands)
14: end for
15: end for
16: Return maxValue

(Algorithm 1 and 2). It can help to reproduce the code. In Algorithm 2 we use two openmp pragma to
distribute block of data on cores and nodes. While n is used to select the lines, n2 is used for the samples.
According to our experiments, the optimal n and n2 are 16 and 32, respectively.

After performing various executions we reached the optimal solution for each machine, s6030 and computa-
tional node. We run our optimized OpenMP code in the computational node with 2, 4 and 8 cores. We always
try to use the thread-to-core binding with 1-1 ratio to be more efficient. If we evaluate the results obtained (see
Table 4.3), we could see that the s6030 environment is faster than the computational environment, as Fig. 4.2
shows.
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Table 4.3: Multicore scalability study with OpenMP code optimizations (Time in seconds) with five execu-
tions.In s6030 with same cores is faster because is a shared memory machine and OpenMP code take advantage
of this.

Computational Node Speed-up s6030 Speed-up
2 Cores 2,4868 s 7,4071 1,5246 s 12,0818
4 Cores 2,3790 s 7,7427 1,4953 s 12,3185
8 Cores 2,1709 s 8,4849 1,4926 s 12.3408

Fig. 4.2: Multicore scalability study in the two environments (Time in seconds) with five executions.It’s clearly
how the multicore scalability is faster in a shared memory machine (s6030).

Besides the ATGP method, we parallelized using OpenMP other loops into the code and we always make a
study of the optimal number of threads for each loop. We are compiling it with using the icc compiler (version
14.0.2) with -openmp and -O3 flags.

The obtained results are expected, because the s6030 environment is a system designed for computing codes
like this one. The next performance results were obtained using 16, 32 and 64 cores on s6030 environment and
the best result were obtained using 64 cores (see Table 4.4), as we can see in Fig. 4.3.

4.3. Performance optimizations with MPI. We performed several optimizations in our sequential
code using MPI. In this subsection, we considered up to 16 computational nodes composed by the resources
previously described each, where we do many test until find the best option for this algorithm. For all executions
we used the maximum time in each node and then calculate the average. We will select the worst time from
each test to calculate the average time.

All our tests were conducted using MPI with 2, 4, 8 and 10 nodes and 1 thread in each node. Besides, we
have tested using MPI with 12, 14 and 16 nodes, the maximum number of nodes that we could use at cluster,
but the results that we obtained are worse and we see no need to include these in this results.

So we tried to find which are the best results by combining any number of nodes with any number of
threads. Specifically, we calculated the results, and after different tests we could guarantee that the best result
is achieved using one node and ten threads (see Table 4.5). In that case, we have tried various combinations
with nodes and threads and we dont have used these results because the values obtained are worse than others.

We considered important to get two new times for the MPI implementation, in order to obtain a more reliable
comparative evaluating the time spent in communication. We calculate the average send time (Broadcast) with
the worst time that we get in total send communications. Moreover, we estimate the time of receive (Gather)
and calculate the average using the worst time that we get in total receive communications.

We believe that the best result in that case is using one node because when running the code within the
same node does not suffer delay by MPIBroadcast or MPIGather calls. We use MPI variables within the code



8 F. Sierra-Pajuelo, A. Paz-Gallardo, A. Plaza

Table 4.4: Multicore scalability on a shared memory machine (Time in seconds) with five executions. The total
time in a shared memory machine is improvement when we use more cores,the scalability is normal and the
time improvement is small because the algorithm is highly iterative with data dependencies.

OpenMP Total time(s) Speed-up
16 Cores 1,4834 12,4174
32 Cores 1,4502 12,7016
64 Cores 1,3858 13,2919

Fig. 4.3: Multicore scalability on a shared memory machine with five executions. The progress is bigger with
64cores because OpenMp use the strength of the shared memory machine.

and we are compiling it using the mpicc compiler(version 14.0.2) and -lpmi and -O3 compilation flags. It can
be seen that the scalability study with the best results in Fig. 4.4. Also, we obtained send and receive times
from all tests and compared them in Fig. 4.5.

As we could see, with 4, 8 and 10 nodes the results that we obtain are highly similar and this is because
the ATGP algorithm is iterative and we think that we need to work with a larger volume of data. Maybe, the
size of our problem (this particular hyperspectral image) is small for a such distributed memory platform.

4.4. Performance optimizations over Intel Xeon PhiTM. We performed several optimizations in our
OpenMP code for Xeon Phi [22, 23]. In this subsection, we considered an Intel Xeon Phi node:

• 2x Intel Xeon CPU E5-2620 v2 @ 2.10 GHz with 6 cores and 32 GB of DDR3 memory.
• Xeon Phi Card 5110P with 8 GB of DDR3 memory and 60 cores.

The performance of the OpenMP runtime can be essential for the overall scalability of OpenMP codes.
In the experiments using Intel Xeon Phi we could distinguish two modes [24]:
• Offload Mode: The application starts the execution on the host. As the computation proceeds it can
decide to send data to the coprocessor and let that work on it and the host and the coprocessor may
or may not work in parallel.
• Native Mode: This execution environment allows the users to view the coprocessor as another compute
node. In order to run the code natively, an application has to be cross compiled for Phi operating
environment.

Many experiments were done using OpenMP with Xeon Phi directives until finding the best option for
this algorithm. All experiments were executed five times and the results are the average of all of them. The
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Table 4.5: Total time using MPI in a cluster environment (Time in seconds) with five executions. Try to find
the harmony between send time and receive time.We suspect that the best time is with 1Node and 10Threads
because the receive time is minor.

MPI Total Send (s) Total Receive (s) Total Time (s) Speed-up
2 Nodes 0,0531 0,0404 4,0052 4,5990
4 Nodes 0,1050 0,0977 2,6626 6,9180
8 Nodes 0,1902 0,1645 2,5050 7,3532
10 nodes 0,1400 0,1161 2,3372 7,8812

1 Node 10 Threads 0,1558 0,0343 1,1002 16,7424

Fig. 4.4: Scalability study in a cluster environment using MPI with five executions. The total time is better in
a single node because the communications spend a lot of time.

executions were done using Xeon Phi offload and native mode and results are shown in Table 4.6.

As we can see, using offload the results that we obtain are faster than using native mode. This is obvious
because in native mode you need to communicate the results with the other coprocessor and work in parallel
with the host, and for nested parallel regions, the overhead is much larger on the Xeon Phi system. We use
OpenMP variables with Xeon Phi support within the code and we are compiling it using the mpicc compiler
(version 14.0.2) and -mmic, -openmp and -O3 compilation flags.

5. Conclusions. In this paper we did several performance optimizations for the automatic target detection
process (ATGP) algorithm for hyperspectral imaging. The results and parallel performance of the proposed
parallel implementations, conducted using OpenMP and MPI [26], have been presented and thoroughly discussed
in the context of a real defense and security application: the analysis of hyperspectral data collected by NASAs
AVIRIS instrument over the World Trade Center (WTC) in New York, five days after the terrorist attacks
that collapsed the two main towers in the WTC complex. From the results obtained we can conclude that the
best performance is obtained with 1 node and 10 threads, using MPI. This is also the result that we expected
because the ATGP algorithm is highly iterative and with high data dependency between iterations.

6. Future Research. Although the results reported in this work are very encouraging, further experiments
should be conducted in order to increase the parallel performance of other versions of the proposed parallel
algorithms and also optimizing the parallel design of the algorithms. We will do some research comparing this
results with accelerators like GPUs (using CUDA).

In addition, we could use a heavier image and compare if the results over MPI are better than with the
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Fig. 4.5: Comparative between send and receive times in each test using MPI with five executions.In this figure
we could see how the receive time is better in the same node and this is too relevant for the final total time.

Table 4.6: Total time using OpenMP over Intel Xeon Phi (Time in seconds) with five executions.

MODE Total Time (s) Speed-up
OFFLOAD 4,1322 4,4576
NATIVE 7,3886 2,4930

actual image.

Finally, new target detection and endmember extraction algorithms could be optimized and evaluated using
different multi-core and many-core architectures.
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