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Abstract. Process rescheduling is a known technique to face with system heterogeneity and dynamism, being especially
pertinent on Bulk Synchronous Parallel (BSP) programs. These programs are organized in a set of round-based supersteps, in
which the slowest process determines the moment of synchronization. This approach motivated us to develop a first model called
MigBSP, which combines computation, communication and migration costs metrics for process rescheduling decisions. MigBSP
originally employed an heuristic that could select either a single or a collection of process to migrate at each load balancing
invocation. The first proposal is not reactive, so you should manually setup a percentage of processes to be migrated as input
parameter for the load balancing model. In this work, two novel heuristics, named MigCube and MigHull, are proposed to choose
the candidate processes for migration and their destination. Both heuristics consider the use of computational geometry for plotting
computation, communication and migration costs metrics in a 3D graph, so both ‘which’ and ‘where’ load balancing questions can
be answered without any user intervention. We believe that the contribution is not only in the MigBSP landscape, but also for
the BSP community, who is trying to enhance performance in round-based applications in an effortless way. In addition to the
description of MigCube and MigHull, this article also presents their evaluations with performance gains of up to 42% when enabling
process migration over a subset of the Grid5000 infrastructure.
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1. Introduction. Process migration is a useful mechanism to offer runtime load balancing, mainly in
dynamic, complex and heterogeneous environments. Generally, process migration requires explicit rescheduling
calls within the application [11]. A different migration approach happens at middleware level, where changes
in the application code and previous knowledge about the system are usually not required. Considering this,
we have developed a process rescheduling model for grid computing architectures called MigBSP [28]. We
decided to work with round-based applications, such as those that follow the BSP (Bulk-Synchronous Parallel)
programming model [33]. Concerning the choose of migration processes, MigBSP creates a priority list based on
the highest Potential of Migration (PM) of each process. PM is a decision function that combines the migration
costs with data from computation and communication phases in order to create a unified scheduling metric.

Taking profit from the highest PM of each process, MigBSP could originally employ one of two methods to
select the candidate processes for migration. As illustrated in Figure 1.1, MigBSP can select one or a group of
processes located on the top of the list. The second case is viable thanks to a predefined percentage that acts over
the highest PM value. Although we achieved good results particularly with this second approach [28], we agree
that the use of another percentage value could eventually determine better migration results. Consequently,
a question arises: Using the PM idea, how can one reach an optimized percentage of migratable candidates on

dynamic environments? A solution involves the testing of several hand-tuned parameters for each new BSP
application and a comparison among the results.

After developing the first version of MigBSP, we focused our research on investigating new heuristics and
metaheuristics in order to fill the aforementioned gap. We followed this rationally because both scheduling and
rescheduling techniques are classified as NP-hard problems [15]. Taking into account metaheuristics, Genetic
Algorithms [14, 22, 26], Simulated Annealing [13, 34], Artificial Bee Algorithms [16, 3], Pareto Search [32] and
Hybrid Schemes [18] are commonly used for these tasks. Considering their iterative nature, they are known
by reaching high-quality solutions meanwhile paying a high-computational time for achieving optimal or near-
optimal solutions. On the other hand, heuristics are faster than metaheuristics, since they operate with mental
shortcuts to ease the cognitive load of making a decision [9]. Thus, heuristics such as min-min and max-min
operate by trading optimistically, completeness, accuracy, or precision for speed. When analyzing the state-of-
the-art on migration-aware BSP communication libraries [8, 19, 21, 24, 25, 28, 35], we still observe that both
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Fig. 1.1: Current MigBSP’s methods for choosing the candidate processes for migration based on a decision
function named Potential of Migration (PM).

heuristics and metaheuristics techniques are not employed to offer rescheduling under the following constraints:
(i) combination of multiple metrics; (ii) automatic selection of candidate processes for migration without user
intervention.

When process (re)scheduling is considered, two timers are involved: calculus complexity and quality of the
mapping. Both measures are used in heuristics for optimizing the MigBSP’s initial approaches. In this regard,
we developed two novel heuristics named MigCube and MigHull for automatically selecting one or more
candidates for migration at each rescheduling attempt. They solve a 3D geometric query problem taking profit
from the computation, communication and migration costs metrics of the PM as the values for the x, y and
z axes. So, the scientific contribution of the article consists in exploring computational geometry concepts
to select the most suitable points arranged in a three-dimensional space, consequently indicating the processes
for migration, without needing any intervention when considering the user viewpoint. MigCube explores the
Euclidean distance [12] among the points while MigHull extends the idea of Convex Hull for a 3D setting [4].

This article presents the algorithms of MigCube and MigHull in detail, followed by their evaluation when
using two BSP scientific applications over a subset of the Grid5000 infrastructure1. Besides not needing a
particular parameter in the model at compilation time, the results also show the benefits of selecting a more
appropriate number of migratable processes instead of selecting just one or a percentage of them. The contri-
bution of both proposed heuristics does not appear only in the MigBSP scope, but also for the BSP community
who is interested in efficient migration process at middleware level in an effortless way.

The remainder of this article will first introduce the fundamental concepts in Section 2, explaining how
MigBSP works in detail. The main part of the paper belongs to Section 3, where both MigCube and MigHull
algorithms are proposed. Sections 4 and 5 show the employed methodology and the results, respectively. Related
work is discussed in Section 6. Finally, Section 7 emphasizes the scientific contribution of the work and notes
challenges that we can address in the future.

2. Fundamental Concepts. This section explains the functioning of MigBSP, emphasizing its rationales
and parameters. MigBSP is a rescheduling model that works over heterogeneous resources, joining the power
of clusters, supercomputers and local networks. The heterogeneity issue considers the processor’s clock (all
processors have the same set of instructions), as well as the network bandwidth. Such an architecture is
assembled with Sets (sites or clusters) and Set Managers. Set Managers are responsible for scheduling, capturing
data from a Set and exchanging it among other managers [28].

The decision for process remapping is taken at the end of a superstep. A BSP program has an arbitrary
number of supersteps, each one composed by a local computation phase on each process, a global and arbitrary
communication phase among the processes and a synchronization barrier [33]. Aiming at not trying to test
process rescheduling at each conclusion of superstep, we designed a parameter named α to control the interval
of supersteps between two consecutive attempts for process rescheduling. Thus, we applied two adaptations

1https://www.grid5000.fr/
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that control the value of the α (α ∈ N) in order to reduce the scheduling model intrusiveness: (i) to postpone
the rescheduling call if the processes are balanced or to turn it more frequent, otherwise; (ii) to delay this call if
a pattern without migrations on ω past calls is observed. Thus, α is automatically updated at each rescheduling
call and will indicate the interval for the next one (more details in [28]). A shorter initial value of α will bring
better reactivity on application reorganization, since process rescheduling will be evaluated as soon reaching the
αth superstep. So, this configuration implies on reconfiguring the application sooner, benefiting the remaining
of the execution with an optimized process-resources mapping. However, if process migration is inviable (due to
the large number of bytes to be transferred or a prohibitive network latency overhead, for example), a shorter
α will cause more overhead in the normal execution of the application. In this last case, process rescheduling is
tested more frequently, but no migrations take place actually.

The answer for ‘Which’ is solved through our decision function called Potential of Migration (PM). Each
process i computes n functions PM(i, j), where n is the number of Sets and j means a particular Set. The key
rationale consists in performing only a subset of the processes-resources tests at the rescheduling moment. The
value of PM(i, j) is found using Computation, Communication and Memory metrics as presented in Equations
2.1–2.4. A previous paper describes them in detail [28]. The greater the value of PM(i, j), the more prone the
processes will be to migrate.

Comp(i, j) = Pcomp(i)× CTPk+α−1(i)× ISetk+α−1(j); (2.1)

Comm(i, j) = Pcomm(i, j)×BTPk+α−1(i, j); (2.2)

Mem(i, j) = M(i)× T (i, j) +Mig(i, j); (2.3)

PM(i, j) = Comp(i, j) + Comm(i, j)−Mem(i, j). (2.4)

Computation metric Comp(i, j) considers a Computation Pattern Pcomp(i) that measures the stability
of a process i regarding the number of instructions at each superstep. This value is close to 1 if the process
is regular and close to 0 otherwise. Furthermore, we also have a computation time prediction CTP (i) for
process i based on all computation phases between two rescheduling activation. In this way, here k refers to
the index of the last call for process rescheduling and k + α − 1 means the interval of supersteps from the
last to the current rescheduling attempt. The metric Comp(i, j) also presents an index ISet(j) which informs
the average computation capacity of Set j. In the same way, Communication metric Comm(i, j) computes the
Communication Pattern Pcomm(i, j) between processes and Sets. Furthermore, this metric uses communication
time prediction BTP (i, j) considering data between two re-balancing activation. Comm(i, j) increases if process
i has a regular communication with processes from Set j and performs slower communication actions to this Set.
The metric Mem(i, j) considers process memory M(i), transferring rate T (i, j) between considered process i

and the manager of target Set j, as well as migration costs Mig(i, j). These costs are dependent of the operating
system, as well as the migration tool [28].

At each rescheduling call, each process passes its highest PM(i, j) to its Set Manager. This last entity
exchanges the PM of the processes with other managers. As described earlier, each manager creates a decreasing-
sorted list and selects either the process on the top or a percentage of them for testing the migration viability.
Here, besides using the abstraction of Set, this test also considers the following data: (i) the external load on
source and destination processors; (ii) the processes that both processors are executing; (iii) the simulation
of considered process running on a destination processor; (iv) the time of communication actions considering
local and destination processors; (v) migration costs. We used these five information to compute the migration
viability of each process through a relationship between two timers: t1 and t2. t1 means the superstep time of
process i in the current processor, while t2 encompasses its execution on the other processor and it includes the
migration costs. Process migration takes place if t1 > t2.

3. MigCube and MigHull: Proposal of Novel Heuristics to Select the Candidates for Migra-

tion. This article proposes MigCube and MigHull heuristics to improve efficiency on selecting process of BSP
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applications at the rescheduling moment. The main idea is to outperform the current MigBSP strategies for this
task, particularly without user intervention at editing or launching time to set model parameter for selection
purposes. At the application perspective, the use of a particular selection policy or even process rescheduling
facility is totally hidden from the user. Usually, for the submission of a BSP application in a grid, it is previously
compiled with a rescheduling-aware BSP library, informing an initial processes-nodes scheduling [38]. Figure 3.1
depicts the software stack when using MigBSP. The gray boxes represent the scope of this article.

Application

BSP Library

MigBSP Rescheduling Model

Process Selection 

A Single  
Process, the 
Highest PM

Percentage of 
Processes based on 

the  Highest PM

Arbitrary Number 
of Processes: 

MigCube

Arbitrary Number 
of Processes: 

MigHull

Communication Network

Rescheduling Activation

Process Migration Evaluation

Fig. 3.1: Software stack when using the novel heuristics for BSP process rescheduling

BSP applications have their performance always driven by the slowest process, so both heuristics try to
optimize the number and the selection of processes to eventually migrate so that the remaining supersteps
may run faster. Unlike previous approaches, MigCube and MigHull select an arbitrary number of processes
but also considering the list of the highest PM of each process. Figure 3.2 illustrates the rescheduling in a
BSP application. The mapping quality of MigCube or MigHull will impact the next value of α parameter. If
the system is classified as balanced, the value of α is increased in order to postpone the next call for process
rescheduling.

Both MigCube and MigHull take profit from the list of the highest PM of each process. Considering that
each PM identifies a process and a target Set, and since all the three assumed metrics are expressed in the same
data unit, we may plot them as a single point in a 3D setting. In this way, the proposed heuristics must answer
the following answer: Which points should be selected at each rescheduling call? To accomplish this, MigCube
and MigHull use computational geometry to analyze a set of points, in order to efficiently find which points
are close to the input query. At model level, each Set Manager compute the selected points locally, each one
referring to a particular process i that presents a PM(i, j). After that, only the source and the target Sets
(represented by j in the PM notation) are involved to transfer a process i actually. The destination Set informs
the source Set about which is the most suitable processor under its responsibility to receive the process.

Heuristic methods are employed because they are generally used to find a solution of a specific-domain
problem without exhaustively searching the entire solution space [36]. Thus, such algorithms can usually achieve
good solutions in a small computational time. This is special pertinent on our case, since we have to pay the
overhead inherent to the migration process. Nevertheless, we could use metaheuristic methods rather than
heuristic ones. However, metaheuristics represent more general approximate algorithms which are defined as
upper level techniques that guide strategies underlying heuristics to solve specific optimization problems [31]. For
this reason, metaheuristics sometimes require high processing time to attain near-optimal solutions, especially
for large-size problems. Anyway, both single solution-based or population-based metaheuristics could be used,
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Fig. 3.2: MigBSP flowchart, where the gray box represents the work of MigCube or MigHull.
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Fig. 3.3: Processes and cube representation in MigCube heuristic. Those processes that are located inside the
cube will be appointed as candidate processes for migration.

such as Simulated Annealing, Tabu Search, Genetic Algorithms and Swarm Intelligence Schemes, needing only
a given quality measurement to be performed.

3.1. Terminologies. Both MigCube and MigHull plot each process pi (i = 1, 2, . . . , n) as a point in the
3D Cartesian coordinate system where xi, yi and zi represent the coordinates of pi on each of the graph axes.
Here, xi, yi and zi also represent respectively, the computation, communication and memory metrics from the
largest PM of pi. In addition, a process pi can be also represented as pi = (xi, yi, zi).

3.2. MigCube Heuristic. MigCube uses the processes’ location to create a cube, so selecting as candi-
dates those processes inside it. The algorithm starts by selecting the central point of the cube, which refers to
the point that has the largest PM. Its notation is p1 and it represents the best candidate for migration. After
that, parameter △cube is computed in accordance with Equation 3.1 as an average of the distances from the
aforementioned point to the others. Equation 3.2 computes the distance between p1 and any point pi in the
3D coordinate system. Finally, △cube is used to situate the cube edges as defined in Equation 3.3.

△cube =
1

n− 1

n
∑

i=2

D(p1, pi) ; (3.1)

D(p1, pi) =
2

√

(x1 − xi)2 + (y1 − yi)2 + (z1 − zi)2 ; (3.2)

edge = 2△cube . (3.3)

Figure 3.3 depicts an example of the points and the cube, where p1 has the largest PM. Algorithm 1 presents
the pseudocode of MigCube heuristic for selecting the candidate process for migration. As mentioned earlier,
the idea is to select as candidates all processes inside the cube. MigCube will always select at least one process,
the one with the largest PM. After the heuristic sets which processes could migrate, the model follows its normal
processing, migrating or not the processes in accordance with the destination Set of each candidate process.
Each process pi has a PM(i, j) where i means the process index and j a target Set. So, the Manager of j−th Set
is asked about a resource and migration viability is computed as explained in Section 2 (more details in [28]).
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Algorithm 1: MigCube heuristic for selecting the candidate processes for migration.

Input: pm list receives a decreasing-sorted list of the n processes based on the PM values.
Output: candidate list with the candidate processes for migration

Set process p1 as the first element of pm list, being represented by (x1, y1, z1);
minorX = x1 −△cube;
majorX = x1 +△cube;
minorY = y1 −△cube;
majorY = y1 +△cube;
minorZ = z1 −△cube;
majorZ = z1 +△cube;
candidate list = p1;
for i = 2 to n do

if xi ≥ minorX and xi ≤ majorX then

if yi ≥ minorY and yi ≤ majorY then

if zi ≥ minorZ and zi ≤ majorZ then
candidate list += pi;

end if

end if

end if

end for

3.3. MigHull Heuristic. MigHull heuristic is a Convex Hull adaptation. In brief, the Convex Hull or
Convex Envelope of a set S of points in the Euclidean plane is the smallest convex set that contains S [6, 4]. It
can be seen as a convex polygon whose vertices are some of the points in the input set. MigHull employs the
Convex Hull ideas, but providing two adaptations: (i) three-dimensional space is split in three two-dimensional
planes; (ii) despite of selecting all processes, MigHull chooses only a part of them based on the two processes
with the highest PM values.

We are calculating three 2D hulls, considering a pair of coordinates of each point i at a time, as follows:
(i) xi and yi; (ii) xi and zi; and (iii) yi and zi. Figure 3.4 (a) illustrates this idea. Here, each process that
is inside each plane concomitantly is then selected as a candidate for migration. For the standard 2D Convex
Hull, the problem consists of finding the smallest convex polyhedron/polygon containing all the points. Thus,
the native Convex Hull always selects all the points, which would not make sense for migration decision-making.
In this way, we are adapting the QuickHull algorithm [5] to select processes. By default, QuickHull finds the
points with the minimum and maximum x coordinates and creates a line between them. The next step in the
QuickHull algorithm is the selection of the point with the maximum distance from the aforesaid line, so the two
points found before along with this one form a triangle. The points lying inside of that triangle cannot be part
of the convex hull and can therefore be ignored in the next steps. Discarding the tested point and the previous
ignored ones, the algorithm selects the next point with the maximum distance from the line and proceeds the
same calculus again.

MigHull changes QuickHull as follows. Considering the plane a− b, where a means the abscissa and b the
ordinate, we are considering the a-coordinate of the two points with the highest PM to draw a line segment
between them. After that, we calculate △Hull as the maximum distance of coverage from this line segment to
the other processes, so the processes inside this region are candidates to migrate in the scope of a − b plane.
Figure 3.4 (b) illustrates an example of this procedure for the x− y plane, but the same is evaluated for other
two planes: x− z and y− z. In other words, by substituting x− y plane by x− z and y− z the distance △Hull

is also calculated in the x − z and y − z planes, respectively. Finally, the processes that appear as candidates
concomitantly in the x− y, x− z and y − z planes are selected as final candidates to migrate according to the
MigHull algorithm.

△Hull = σ(x, y) = Max(σ(x), σ(y)) . (3.4)

Equation 3.4 shows how we are computing △Hull for the x− y plane. Each plane has its own value for this
metric. In this equation, σ(a) for a specific axis a is the standard deviation of all points (i.e. processes) when
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Fig. 3.4: Selection of candidate process for migration with MigHull: (a) Creating three planes (x-y, x-z and
y-z) from the three-dimensional space; (b) partially selecting the candidate process in the x-y plane. Those
processes that appear concomitantly in the yellow region of the three planes are chosen for the next rescheduling
step: the tests of migration viability.

considering the coordinate a. Using Figure 3.4 (b) as an example, we firstly take the value of the coordinate x

of all the 11 points, computing the standard deviation σ(x) of these respective values. The same calculation is
performed with respect to the y axis, so the greatest standard deviation is selected as △Hull for the x−y plane.
In order to identify the candidate processes for migration, the distance of any point pm to the line determined
by the points p1 and p2 over a specific plane (see Algorithm 2) is computed and denoted as d(pm, p1, p2, plane).
These last two points represent the processes with the highest PM. If x-coordinate of pm is lower or greater
than the x-coordinate of points used as limits of the line segment, we are computing the Euclidean distance
given by the Pythagorean formula [12]. Otherwise, we are using the perpendicular distance from a point to a
line determined by p1 and p2. Although Algorithm 2 was developed for the x-y plane, its use for x-z and y-z is
trivial and not explained here.

Figure 3.4 (b) depicts the MigHull ideas to create a region of candidate processes for migration. Contrary to
MigCube, MigHull always selects at least two processes as candidates for migration: p1 and p2. Independently of
the evaluated plane, these points always have the largest PM, so being always selected according to the MigHull
algorithm. Algorithm 3 shows all steps to compute MigHull, where the processes that appear as candidates
concomitantly in the x − y, x − z and y − z are candidates to be rescheduled. After MigHull presents the
candidates, MigBSP continues its normal execution investigating the migration feasibility for each candidate
through an interaction between the source and target Set Managers. MigBSP was presented in Section 2 and
detailed in [28].
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Algorithm 2: Calculating the distance d(pm, p1, p2, plane) from the point pm to the line segment created
by the points p1 and p2 in the x− y plane.

Input: p1 (x1, y1, z1) and p2 (x2, y2, z2) denote the two processes with the highest PM values. The point pm (xm, ym, zm)
refers to one of the remaining processes, where 3 ≤ m ≤ n.
Output: Distance d(pm, p1, p2, plane) from the point pm to the line created by p1 and p2 in the plane denoted by plane.

Denote ax + by + c as the line equation formed by the points p1 and p2, where the coefficients are defined as:
a = (y1 − y2), b = (x2 − x1) and c = (x1y2 − x2y1);
if xm < x1 then

d(pm, p1, p2, “x− y”) =
√

(x1 − xm)2 + (y1 − ym)2

end if

else if xm > x2 then

d(pm, p1, p2, “x− y”) =
√

(xm − x2)2 + (ym − y2)2

end if

else

d(pm, p1, p2, “x− y”) =
axm + bym + c√

a2 + b2

end if

Algorithm 3: MigHull heuristic for selecting the candidate processes for migration.

Input: pm list receives a decreasing-sorted list of the n processes based on the PM values.
Output: candidate list with the candidate processes for migration.

Set processes p1 and p2 as the first and the second elements of pm list, being represented by (x1, y1, z1) and (x2, y2, z2),
respectively;
candidate list = p1;
candidate list += p2;
candidatex-y = null;
candidatex-z = null;
candidatey-z = null;
for i = 3 to n do

if d(pi, p1, p2, “x− y”) ≤ △Hull then
candidatex-y += pi;

end if

end for

for i = 3 to n do

if d(pi, p1, p2, “x− z”) ≤ △Hull then
candidatex-z += pi;

end if

end for

for i = 3 to n do

if d(pi, p1, p2, “y − z”) ≤ △Hull then
candidatey-z += pi;

end if

end for

candidate list += {candidatex-y ∩ candidatex-z ∩ candidatey-z}

4. Evaluation Methodology. This section describes the evaluation methodology, presenting data about
the evaluation technique, MigBSP parameters, execution environment and tested application. Firstly, we are
using the SimGrid [2] simulator to assembly a grid computing infrastructure, because of it offers a framework
to evaluate message-passing applications with different scheduling algorithms and execution platforms. We did
not developed any extension to SimGrid, but only applications that use its native API (Application Program
Interface). Considering that SimGrid is deterministic, a single execution of each set of parameters was done.
Moreover, the number of supersteps is variable, as follows: 20, 40, 60, 80 and 100. The initial value of α is
selected among three numbers: 4, 8 and 16. We selected them because these values were used when evaluating
the first version of MigBSP [28], where significant impacts on performance and overhead were perceived when
changing from one value to another. Furthermore, as will be discussed in Subsection 5.4, we will present a
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Fig. 4.1: Example of the four initial processes-resources scheduling employed in the tests using a hypothetical
grid infrastrucuture.

comparison study among MigCube, MigHull and the originals heuristics of MigBSP, so we can analyze the
impact of these values of α on different algorithms for process migration.

Since the MigBSP was designed for grid environments, we are testing it with the proposed heuristics over
the Grid5000 platform2. In fact, this platform is an XML file used by SimGrid, denoting machines, clusters and
network configurations. Besides the platform file, SimGrid also receives as input another XML file informing
the first scheduling (deployment). Particularly, we are using 45 nodes, distributed in 3 distinct sites, each one
offering here a single cluster. We are using the 10 nodes from cluster Chicon, 15 from cluster Capricorne and
15 nodes from cluster Suno. The hardware information is described as follow: (i) Chicon has AMD Opteron
2.6 GHz processors with 4GB of memory and a Gigabit Ethernet card; (ii) Capricorne has AMD Opteron
2.0GHz processors, with 2GB of memory and a Myrinet network card; (iii) Suno has Intel Xeon E5520 2.26GHz
processors with 32GB of memory and 2 Gigabit Ethernet cards. Considering the deployment file, we are
working with 60 processes that are launched in accordance with an initial process-scheduling mapping. We are
considering four of them, explained below and detailed in the example of Figure 4.1:

(a) Ascending: Processes are scheduled cyclically in Ascending order of nodes’ processing power;
(b) Descending: Same idea of the Ascending mapping, but in reverse order, where the nodes with the higher

2http://lists.gforge.inria.fr
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capacities are the first to receive processes;
(c) CPU: This mapping allocates each process to the resource that has the largest amount of free processing

power on that moment;
(d) Round-Robin: It allocates the processes cyclically without taking into account any characteristics of the

resources.
The initial mapping will influence the execution time directly, also influencing the rescheduling model in

the same way. For example, the CPU mapping implies on using load balancing in accordance with the CPU
power of the nodes, so this idea of equilibrium from the beginning tends to reduce the number of migrations at
runtime. On the other hand, for example, the scheduling of all process in a single node could compromise the
performance, imposing more rescheduling actions afterwards to spread them in the resource pool. Besides the
initial mappings and MigBSP parameters, the tests also consider three scenarios: (i) execution of the native
application, without MigBSP or proposed heuristics; (ii) the application runs with MigBSP, which performs the
heuristics calculus and message-passing, but does not migrate any processes actually; (iii) the application runs
with MigBSP and an heuristic to select the candidate processes for migration, enabling then any migration if it
was evaluated as viable. The main idea is to show the overhead impact of the heuristic execution (comparison
between scenarios (i) and (ii)) and performance impact when enabling migrations (comparison between scenarios
(i) and (iii)).

Regarding the BSP application, we developed an implementation of the Lattice-Boltzmann method [29] to
compute fluid dynamics. Technically, this method considers a typical volume of fluids composed of a collection of
particles, where a particle is represented by a distribution function for each fluid component at each grid point.
The data volume is divided into continuous blocks of equal size in accordance with the number of processes.
Each block is copied and runs in a BSP process. After the computation phase, each process sends data to its
right-sided neighbor. Finally, a synchronization barrier takes place and other superstep is computed afterwards.

5. Discussion of Results. The results consider the performance of MigCube and MigHull heuristics in
terms of application processing time in Subsections 5.1 and 5.2. In addition, we also present two subsections,
5.3 and 5.4, for comparison purposes; the first one analyzes MigCube against MigHull and the second one
compares both approaches with the standard process selection heuristics from MigBSP. We are using a BSP
implementation of the fluid dynamics application with variations in the following configurations: number of
supersteps; initial process-processor scheduling; the MigBSP’s parameter denoted α; and the aforementioned
evaluation scenarios.

5.1. MigCube Evaluation. Table 5.1 shows the test results with MigCube. Scenario (ii) always produces
a time larger than scenario (i), since the first adds the heuristic calculus and message passing. This overhead can
be considered as part of the heuristic execution cost. The mean overhead of MigCube is 3.21%. This overhead
also takes place when migration are enabled but any process replacement is viable during the application
execution. The effectiveness of MigCube appears when comparing scenarios (iii) and (i). The larger the number
of supersteps, the larger the gains with process migration. In other words, an application that migrates the
processes in the first supersteps presents better performance because of both it has more time to amortize
the penalties involved in process migration and more time to execute with an optimized configuration. The
highlighted fields show that only one migration happens when using 20 supersteps and α equal to 16. Although
achieving better results than scenario (i), the system remains unbalanced. This situation is only solved when
60 supersteps are performed.

Figure 5.1 shows the percentage of gain in execution time when analyzing scenarios (iii) and (i). It has been
calculated using the following equation:

Gain =
Scenario (i)− Scenario (iii)

Scenario (i)
× 100 . (5.1)

The parameter α equal to 8 was the responsible for the best results. A lower value of α implies in a greater
number of process rescheduling calls (recalling that each call encompasses scheduling calculus and message-
passing), while a larger value of α parameter postpones the calls being so less reactive for process migration.
When running a short number of supersteps, the configuration with α equal to 16 outperforms the other values
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Table 5.1: MigCube evaluation. The times are expressed in seconds. We are highlighting the execution of 20
supersteps with α=16, where a single process migration takes place.

Supersteps

Scenarios

i
ii iii ii iii ii iii

α = 4 α = 8 α = 16

Ascending

20 16.10 17.39 11.79 16.57 10.85 16.33 14.33

40 32.19 34.59 23.41 33.42 20.00 32.66 20.66

60 48.28 51.86 36.29 49.93 28.32 48.99 27.42

80 64.37 67.00 47.97 66.78 36.66 65.60 38.00

100 80.47 84.90 60.85 83.28 46.20 81.88 44.61

Descending

20 16.27 16.68 11.67 16.55 11.50 16.39 14.41

40 32.94 33.09 21.47 33.28 21.36 33.20 21.99

60 48.82 49.50 32.41 49.38 29.91 49.28 29.88

80 65.09 65.80 42.21 65.78 38.58 65.63 40.82

100 81.37 81.40 53.14 81.75 48.40 81.68 47.67

CPU

20 20.08 20.33 13.78 20.30 16.97 20.13 19.50

40 40.15 40.45 25.94 40.38 27.91 40.27 33.26

60 60.22 60.56 39.16 60.50 38.28 60.47 41.28

80 80.29 80.50 51.31 81.20 48.83 81.01 53.96

100 100.36 100.87 64.50 100.63 60.27 100.51 62.12

Round-Robin

20 16.16 17.11 10.73 16.42 10.95 16.30 14.28

40 32.33 34.12 20.30 33.01 20.45 32.49 20.89

60 48.46 51.13 30.94 49.29 29.38 48.68 27.73

80 65.56 66.20 39.94 65.89 38.19 65.73 40.00

100 80.66 83.50 49.99 82.17 48.00 81.20 47.09

of α: with α=4 or α=8 we have a higher number of migrations (with time penalization on each migration
activity) but not enough number of supersteps to amortize the investment in migrations. Figure 5.1 presents a
linear behavior when considering the execution with α equal to 4. In this case, process reorganization happens
earlier and then, the execution can proceed with an optimized process-resource mapping after passing the first
supersteps.

Figure 5.2 illustrates the number of migrations at each rescheduling call when considering α equal to 8.
Considering the CPU strategy for initial scheduling, we can observe that MigCube selects a large number of
processes to migrate at each attempt. The PM of the processes are closed to the largest PM , showing a large
number of migrations at each rescheduling call. After analyzing the log of operations, we can observe a principle
of hysteresis, i.e, several consecutive migrations in order to stabilize the behavior of the system. Moreover, in
the current implementation, the migration test of a candidate process does not take into account the previous
migration of other process to the same target (node or cluster), so contributing for the large number of observed
migrations. These ideas explain the performance of the CPU strategy when compared to the remaining ones.
Although obtaining good performance rates when comparing scenarios (i) and (iii), the CPU technique for
initial scheduling achieves the worst performance among the other ones.

5.2. MigHull Evaluation. Table 5.2 shows the MigHull results. A mean overhead of 3.45% in the
execution time was observed when comparing scenarios (i) and (ii). Considering scenario (iii), the same MigCube
performance panorama appears here in MigHull, where larger gains appear when enlarging the number of
supersteps. In particular, as presented in MigCube, the use of α equal to 16 was responsible for the best
performance values when executing a short number of supersteps. Table 5.2 highlights the large difference in
time when comparing the CPU initial mapping against the other three initial scheduling strategies. Although
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Fig. 5.1: Percentage of gain in the execution time with MigCube-driven process rescheduling
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Fig. 5.2: Number of migrations at each rescheduling call when using MigCube and α = 8.

efficient in the CPU perspective, the CPU initial mapping causes communication penalties because there are a
large number of inter-cluster communication.

Figure 5.3 shows the percentage of gain on the execution time when MigHull-driven migrations take place.
The results were calculated considering Equation 5.1 and data from scenarios (i) and (iii). Analyzing Table 5.2
and the graphs in Figure 5.3 using the MigHull, it is possible to verify that a value of α equal to 8 is the most
stable when considering the time gain. However, different from MigCube, a value of α equal to 16 does not
show a tendency of gain in performance. The use of MigHull tends to be more complex and increases the cost
of execution as increases the number of clusters, because each BSP process need to calculate the probability
of migration in each cluster; in this way, increasing the computation cost. Figure 5.4 depicts the number of
migrations at each rescheduling intervention when using α equal to 8 and the MigHull heuristic. Clearly, the
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Table 5.2: MigHull evaluation. The times are expressed in seconds. We are highlighting the performance of
scenario (i), where the CPU strategy for initial mapping presents large disparities

Supersteps

Scenarios

i
ii iii ii iii ii iii

α = 4 α = 8 α = 16

Ascending

20 16.10 17.33 11.75 16.57 11.89 16.33 14.56

40 32.19 34.59 21.52 33.42 21.95 32.66 23.04

60 48.28 51.56 32.20 49.93 30.93 48.99 31.57

80 64.37 67.04 42.07 66.78 39.91 64.60 42.39

100 80.47 84.48 52.85 83.28 49.90 81.88 49.96

Descending

20 16.27 16.68 12.15 16.60 11.99 16.39 14.31

40 32.54 33.09 21.53 33.01 22.15 32.95 23.32

60 48.82 49.50 32.27 49.38 31.12 49.25 32.12

80 65.09 65.38 41.97 65.25 40.21 65.15 42.71

100 81.37 81.70 53.11 81.65 50.22 81.53 51.37

CPU

20 20.08 20.33 14.47 20.31 15.72 20.13 17.46

40 40.15 40.45 27.04 40.37 27.05 40.29 28.46

60 60.22 60.56 38.87 60.51 37.07 60.49 40.91

80 80.29 81.10 51.84 81.02 47.37 80.95 55.03

100 100.36 101.13 63.67 100.94 56.57 100.77 67.51

Round-Robin

20 16.16 17.11 11.61 16.42 11.81 16.30 14.50

40 32.33 34.12 21.20 33.01 21.93 32.49 23.04

60 48.46 51.13 31.85 49.29 30.87 48.68 31.97

80 64.56 65.15 41.44 65.89 39.87 65.09 43.20

100 80.60 83.60 52.10 82.17 49.85 81.20 50.70

MigHull strategy of using an intersection of the three 2D planes is responsible for reducing the number of
migratable processes when compared to MigCube. Particularly, Figure 5.5 illustrates three moments of the
execution for the Ascending strategy, showing the division of the processes among the clusters. We can observe
the movement of the processes to take profit from the most powerful clusters, Chicon and Suno (see Section 4
for details regarding the subset of the Grid5000 infrastructure used in the tests).

5.3. MigCube and MigHull Comparative. Both MigCube and MigHull heuristics have the same
objective and make use of the same idea: computational geometry to select a portion of process to migrate.
Figure 5.6 illustrates the gains considering each initial scheduling and heuristic. The graph shows the mean
value of gain of scenario (iii) over scenario (i) when considering all set of supersteps and α values. MigCube
with the Ascending scheduling and α value equal to 4 achieved a gain of 25%, diverging significantly from the
other results. This divergence occurs due to a low α, which makes many processes to migrate, increasing the
communication between process and approximating metrics.

MigHull achieved up to 35% of gain in application execution time with process migration, while MigCube
obtained 42%. Figure 5.7 presents an analysis of the execution time of the supersteps at each migration call.
The time presented in the graph refers to the interval between two supersteps in which a migration call took
place. Particularly, we are considering 60 processes, 80 supersteps, α equal to 8 and the initial scheduling as
being Round-Robin. In this way, migrations are evaluated at supersteps 1, 8, 16, 24, 32, 40, 48, 56, 64, 72
and 80. In this figure, the label ‘Without Migration’ represents the execution of the application without any
migration, so the time is stable since the application performs the same number of computation activities at
each superstep. We can observe that the time on both MigCube and MigHull tends to stabilize after crossing the
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Fig. 5.3: Percentage of gain in the execution time with MigHull-driven process rescheduling
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Fig. 5.4: Number of migrations at each rescheduling call when using MigHull and α = 8.

fourth migration call. Furthermore, we can observe that they achieved the main idea with process migration:
to reduce the time of a superstep, so minimizing the application time as a whole.

5.4. Comparing MigCube and MigHull Against the Original Heuristics of MigBSP. Here, we
intend to compare the proposed heuristics with the original ones, all developed for the scope of MigBSP. Up to
the moment of MigCube and MigHull proposals, MigBSP offers two heuristics to select the candidate processes
for migration, both of them based on the descending-sorted list of the highest PM of each process: (i) we can
select the top of the list or; (ii) use a percentage to select a number of processes based on the value belonging
to the top. While the first is not reactive, the second needs the user intervention to set a particular percentage
for the application and execution environment duet. This last task is not trivial, mainly when dealing with
heterogeneous and/or dynamic applications or parallel machines. Concerning this panorama, MigCube and
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Fig. 5.5: Different moments of processes-clusters mappings when executing MigCube with the Ascending strat-
egy for initial scheduling, 80 supersteps and α = 8.
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Fig. 5.6: Comparative involving MigCube and MigHull when varying the value of α

MigHull come to fill the gap on process selection re-activity, not needing any intervention from the user nor
previous knowledge about the BSP application.

Figure 5.8 shows a performance graph when considering the four aforementioned heuristics. This graph
depicts, for each value of α, a mean value of the executions with the four initial scheduling. The gain refers to
the performance of scenarios (i) and (iii). As expected, the heuristic that selects only one process obtained the
worst results. The heuristic of percentage selection, that is using a 20% selection from the top PM has similar
results to MigCube and MigHull. This happens because the percentage heuristic can select more process at
each execution, providing a fast rescheduling of processes. The MigCube and MigHull achieve the best results
due its analysis of each metric and the use of geometrical space.

6. Related Work. Today, BSP represents the most used programming model to write successful parallel
programs that exhibit phase-based computational behaviors. Thus, despite being proposed more than two
decades ago by Leslie Valiant [33], several initiatives offer this model together with load balancing techniques
and/or to treat particular parallel platforms [1, 8, 7, 37, 19, 21, 24, 27]. HAMA [1] is a cluster-driven library,
particularly suitable for heterogeneous systems. It runs on top of the HDFS (Hadoop Distributed File System)
in order to integrate BSP and iterative Map-Reduce applications. PUB [8, 7] is a C library that offers both
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centralized and distributed strategies for load balancing. In the first one, all nodes send data about their CPU
power and load to a master node. The master verifies the least and the most loaded node and migrates one
process between them. In distributed approaches, every node chooses c (PUB parameter) other nodes randomly
and asks them for their load. One process is migrated if the minimum load of c analyzed nodes is smaller than
own load of the node that is performing the test.

Mizan [19] monitors run-time characteristics of all processes (i.e., their execution time and incoming and
outgoing messages). Using these measurements, at the end of every superstep, Mizan constructs a migration plan
that minimizes the variations across workers by identifying which vertices to migrate and where to migrate them.
BSPCloud [21] can make full use of multi-core clusters and has the advantage of performance predictability. Its
target architecture are clusters, which are offered by cloud computing virtual machines. Pregel.NET [27] is based
on Google’s Pregel [23], offering distributed graph programming on the Azure Cloud using Bulk Synchronous
Parallel model. It works with partitioning and scheduling of activities to workers in a Cloud environment,
making use of the elasticity of virtual machines. Mansouri et al. [24] proposed task migration of a DSP (Digital
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Table 6.1: Related work comparison: F1 - Changing the application code; F2 - Platform: Grid or Cluster; F3
- Automatic selection of migratable processes, i.e., without user intervention; F4 - Use of computation metric
(CPU load, CPU time or processing time) for load balancing; F5 - Use of communication data for load balancing;
F6 - Use of migration costs for load balancing; F7 - Combination of metrics for load balancing purposes; F8 -
Support for BSP applications; F9 - Support of any kind of adaptivity on dynamic environments; F10 - Support
for heterogeneous systems; F11 - Process migration capability

Proposal
Features

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11

MigBSP [28] No All No• Yes Yes Yes Yes Yes Yes Yes Yes
HAMA [1] HDFS Cluster No No No No No Yes No Yes Yes
PUB [7] No All Yes No No No Yes Yes Yes Yes Yes
MulticoreBSP [37] Yes No NA† No No NA† No Yes No⋆ No⋆ No
Mizan [19] No Cluster Yes No No No Yes Yes Yes Yes Yes
BSPCloud [21] No Cluster No No No No Yes Yes Yes No Yes
DistPM [20] No All Yes No No No Yes No Yes Yes Yes
Pregel.NET [27] Yes Cloud Yes No No No No Yes Yes Yes Yes
CPU-GPU cluster [24] Yes Cluster Yes No No No No Yes Yes Yes Yes
References: • Depends on user definition at the beginning of the application; ⋆ Unknown; † Not Applicable.

Signal Processing) application implemented with the BSP computing model on a CPU-GPU cluster. During
the processing phase of a BSP superstep, instead of moving the heavily loaded processes to another CPU,
part of the load is divided to run in different GPUs. In this way, this middleware avoids network interaction,
saving time on such operation. Unlike distributed systems, MulticoreBSP [37] library targets shared-memory
computing employing thread-based parallelization. Finally, DistPM [20] is a library particularly developed to
support process migration in grid computing. DistPM manages the network communication to avoid high data
interaction between different clusters.

Table 6.1 summarizes the analysis of the aforementioned systems. We observe that our previous work
named MigBSP is competitive among the BSP libraries regarding the load balancing perspective. Only MigBSP
combines computation, communication and migration costs metrics for migration decision-making. Although
having a process running in a slow processor that has a communication consistent pattern with a specific
cluster, the migration penalties can act against migration viability, being dependent of process’ size and network
characteristics. The MigBSP’s drawback considers how it selects the migratable processes, where now needs the
intervention of user. In this way, both MigCube and MigHull proposed in this article seek to fill the MigBSP’s
gap, which is being used today to run BSP-based weather forecast and oil prospection applications in the south
of Brazil [30].

7. Conclusion. Considering that the bulk synchronous style is a common organization on writing success-
ful parallel programs [7, 10, 17], MigCube and MigHull emerge as alternatives for selecting their processes for
running on more suitable resources without interference from the users. The key contribution of the proposed
heuristics is the efficient use of computation, communication and migration costs metrics as axes values in the
computational geometry for process migration decision-making. As mentioned above, MigCube and MigHull
are not restricted to the MigBSP’s scope, being employed to manage both heterogeneity and dynamism with
process migration effortlessly at middleware level. Many data analysis techniques, such as machine learning
and graph algorithms, require iterative computations and this is where Bulk Synchronous Parallel model can be
more effective than MapReduce or Divide-and-Conquer strategies. The results showed gains larger than 40%
when using MigCube or MigHull to decide process rescheduling in a subset of the Grid5000 environment. In
addition, we also demonstrated a mean overhead close to 3% when employing the heuristics, but not perform-
ing any migrations. The evaluation emphasized the capacity of both proposed heuristics with different initial
processes-processors mappings over an heterogeneous cluster-based grid.

Thus, future work includes the use of dynamism at resource and network usage levels to analyze MigCube
and MigHull reactivity and overhead. The Lattice-Boltzmann application was very useful to present the benefits
of the aforementioned heuristics in front of the originals presented in MigBSP, but we plan to evaluate the new
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proposals on new complex applications including weather prediction and DNA sequencing [30]. Moreover, the
use of a simulator was very convenient to evaluate the MigCube and MigHull feasibility. In this way, also as
future work, we are analyzing communication libraries such as ProActive3 and AMPI4 to implement MigBSP
and the proposed heuristics. Consequently, real tests in the Grid5000 infrastructure will be conducted and
compared with data obtained at simulation level.
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