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Abstract. For many years Apache Hadoop has been used as a synonym for processing data in the MapReduce fashion.
However, due to the complexity of developing MapReduce applications, adoption of this paradigm in genetics has been limited.
To alleviate some of the issues, we have previously developed Cloudflow - a high-level pipeline framework that allows users to
create sophisticated biomedical pipelines using predefined code blocks while the framework automatically translates those into the
MapReduce execution model. With the introduction of the YARN resource management layer, new computational processing models
such as Apache Spark are now plugable into the Hadoop ecosystem. In this paper we describe the extension of Cloudflow to support
Apache Spark without any adaptions to already implemented pipelines. The described performance evaluation demonstrates that
Spark can bring an additional boost for analysing next generation sequencing (NGS) data to the field of genetics. The Cloudflow
framework is open source and freely available at https://github.com/genepi/cloudflow.
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1. Introduction. Since the advent of high-throughput technologies in the field of molecular biology
(i.e. Next Generation Sequencing (NGS)), a growing amount of data is produced and needs to be analysed.
Thus, molecular biology has evolved into a big data science, where the bottleneck is no longer the production
of raw data in the laboratory, but its subsequent analysis and interpretation. Due to the variety of data, users
need to carefully select the suitable processing framework that fits their data structure and processing task
best [8]; further, the size of the data makes analysis parallelization desirable. Fortunately, a large number of
conceptual approaches exist on how to deal with the data boost [14]. One promising approach for efficient
data parallelization is Apache Hadoop with its YARN (Yet Another Resource Negotiator) architecture [15].
Within Hadoop, users can focus on the functional parallelization of their problem while benefiting from the
scalable Hadoop architecture stack in the background. However, writing Apache Hadoop applications requires
custom code development and domain expertise, which has led to poor adoption of this parallelization model
in biomedical research. More specifically, the MapReduce model is quite restrictive requiring users to break an
existing workflow into a number of map and reduce steps, often a challenging task. Additionally, the reusability
of the map and reduce functions are limited, resulting in a use-case specific implementation and therefore time-
intensive solution for every problem. To alleviate some of the pressing issues, we developed Cloudflow [6] - a
framework that simplifies pipeline creation in biomedical research, especially in the field of genetics. Cloudflow
supports a variety of NGS data formats and contains a rich collection of built-in operations for analyzing such
kind of datasets (e.g. quality checks, mapping reads or variation calling). The main concept behind our approach
is to break complex data analysis steps into three basic operations. All further use-case specific operations are
built by implementing or extending one of the basic operations. Pipelines are then composed by creating a
sequence of these operations. The framework itself translates the set of pipeline operations into one or more
jobs and decides which of the operations are executed in the map or the reduce phase. Thus, Cloudflow hides
the complexity and the implementation details of MapReduce jobs, allowing scientists to build pipelines with
an intuitive method.

Initially, Cloudflow provided a framework to reuse existing Hadoop blocks for MapReduce. With the rise of
the previously mentioned Apache Hadoop resource manager YARN [15], new non-batch processing models such
as Apache Spark can also be run within a Hadoop cluster. The success of Apache Spark can be seen within new
projects such as Adam [9], VariantSpark [11], SparkSeq [16] and especially the ongoing initiative on porting
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GATK to Spark (GATK 4). However, similar to MapReduce, writing Spark pipelines can be a challenging
task that prevents domain experts from using such models in their daily work. In the future, it is likely that
Apache Spark will substitute MapReduce as the general-purpose processing engine of Hadoop. To support this
transition, we extended Cloudflow to support Spark and evaluated three genetics data-analysis pipelines that
have been developed on both MapReduce and Spark engines. The results demonstrates that our contribution
helps reduce the development time and increases reusability of the code over different use cases and even on
different data processing engines.

2. Apache Hadoop. Apache Hadoop is an initiative for distributed computing on a cluster infrastructure.
It is well known for providing an open-source implementation of the batch processing model MapReduce, initially
developed by Google in 2004. In 2013, Apache Hadoop introduced a new resource management system - YARN
- that allows multiple data processing models to be integrated on the same cluster, allowing different processing
models to share common underlying resources. In YARN, the MapReduce processing library is now referred to
as MapReduce 2 (MR2). MR2 uses the required distributed file system (HDFS) as the default data location for
data input and output.

Compared to MapReduce 1 (MR1), the two main components (JobTracker, TaskTracker) have been re-
organized: The JobTracker has been broken up into three services (ResourceManager, Application Master,
JobHistoryServer). The ResourceManager is a YARN service to run applications (e.g. MapReduce, Impala or
Spark). The Application Master is started for each job and includes all parts to manage e.g. a MapReduce job.
The JobHistoryServer is responsible for providing information about already finished jobs. Instead of using
a TaskTracker to start individual tasks, the YARN NodeManager service manages all resources on one node
and starts individual containers (former tasks). As mentioned, this setup provides multiple processing models
within the same cluster, including MapReduce and Spark.

One of the important changes within YARN is how resources are managed. Within MapReduce, the amount
of concurrent tasks on each node have been specified separately for map and reduce (mapred.tasktracker.map.

tasks.maximum, mapred.tasktracker.reduce.tasks.maximum). Now with YARN, one can only specify the amount
of cores on each node (yarn.nodemanager.resource.cpu-vcores) and the amount of available memory (yarn.node-
manager.resource.memory-mb), independently of map and reduce. Using these two parameters, YARN runs
the amount of appropriate containers per node. Since Cloudflow provides support for both the MapReduce and
Spark processing model, they will be introduced shortly in the coming paragraphs.

2.1. MapReduce. The aim of MapReduce is to develop a simple and scalable method to process large
datasets on several machines in parallel [5]. The main idea behind this distributed programming model is that
a long-time calculation is split into a map and a reduce phase which contains all the logic behind the calculation
and is specified by the user. The underlying framework itself takes care of parallelization, task scheduling,
load-balancing and fault-tolerance. Due to its simplicity, MapReduce is used to solve many scientific problems
where large-scale computing is needed. Moreover, MapReduce is ideal for parallel batch processing of terabytes
of input data. The data-flow of a MapReduce program consists of several steps, where only the map and reduce
function are problem-specific and the other steps are loosely coupled with the problem and generalized. In the
first step, the input data set is split into key/value pairs and a user defined map function is executed for each
pair:

map(key, value) → list((keyi, valuei)), wherei = 0...n

The map function reads a pair, performs some problem-specific calculations and produces zero or n inter-
mediate key/value pairs for each input pair. In the next step, the intermediate key/value pairs are grouped by
similar keys and a merged list of all values for this key is created. Finally, the user-defined reduce function is
applied to the intermediate key/list pairs:

reduce(keyi, list(valuei)) → list(outvalue)

The values created by the reduce function are the final outputs of a MapReduce job.
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2.2. Apache Spark. The cluster computing framework Spark was initiated at UC Berkeley AMPlab in
2009 and is an Apache top-level project since 2014 [17]. Spark can run in standalone mode, or over existing
cluster managers like Apache Mesos or YARN. Therefore, no Hadoop cluster is required as long as a shared
file system is provided (e.g. NFS). In addition to the batch data processing model, streaming data processing
model is supported by using a micro-batch model. Currently Spark offers four main libraries: Spark SQL and
Dataframes for working with structured data, Spark Streaming for fault-tolerant stream processing, a machine
learning library called MLlib, with a collection of algorithms already provided and an API for graph processing
called GraphX.

Spark’s main differentiation to MapReduce is the in-memory cache based on the Resilent Distributed
Datasets (RDD) concept. Thereby it has lower launching overheads compared to MapReduce [16]. While
MapReduce is ideal for batch processing of large datasets, Spark profits from RDDs caching and is therefore
able to handle tight-coupled problems faster than MapReduce. If the data fits in the memory, Spark outper-
forms MapReduce. In contrast to the two-stage disk based Map and Reduce phase, Spark allows multi-stage
in-memory primitives, based on RDDs transformation and action operations. While map can be modeled with
a lazy transformation that calls a function for each element in a data set and returns another RDD, reduce is an
action operation triggering a computation (aggregation) and sending either all the RDDs elements back to the
main program (driver) or write them on the disk. The RDD’s operation concept is represented in Figure 2.1.

RDD
Transformation Action value

Fig. 2.1. Apache Spark’s RDD Operations.

Spark based software in the genomic data analysis is currently evolving, by exploiting the increased memory
of cluster systems. First implementations of the Smith-Waterman local sequence alignment approach was
realized within SparkSW [18]. VariantSpark [11] employs Spark MLlib machine learning library using the
k-means clustering for population structure deconvolution.

2.3. Related Work. To simplify the implementation of MapReduce jobs, Apache Pig has been introduced
as a higher level interface [12]. It is based on HDFS and MapReduce and allows a fast implementation of data
flows with already available data operations such as join, filter or group by. Data flows are specified in the
Pig Latin language that describes a directed acyclic graph (DAG) and defines how data should be processed.
A further advantage of Apache Pig is the ability to check the data flow on optimizations, e.g. if two grouping
statements can be combined. The costs to write code in Apache Pig are lower than setting up a Java project
and implementing the corresponding MapReduce functions. But, as stated earlier, Apache Pig includes only a
limited number of operators and writing Apache MapReduce jobs directly in Java yields advantages in speed
compared to Apache Pig.

The pipeline framework FlumeJava [4] is based on the concept of immutable parallel collections. This kind
of data-structure can be used to process and analyze their items in parallel. The end user can either use one of
the predefined functions or can combine them with its own. Each function is implemented as parallel for-each
loop, which is then translated by the framework into a series of MapReduce jobs. During the translation, the
framework itself decides if such a function should be executed locally (i.e. sequentially) or remotely (i.e. parallel).
Apache Crunch (https://crunch.apache.org/) is a freely available open source implementation of FlumeJava.

3. Cloudflow. Cloudflow [6] is a framework to simplify the creation of analysis pipelines by encapsulating
complex data analysis steps as simple operations. This approach helps hide the complexity and the imple-
mentation details of complex data-parallel pipelines. Moreover, the concept of using basic operations increases
the reusability and enables testing of the operation logic on a local workstation by using existing unit testing
frameworks.

Since Cloudflow used initially Apache MapReduce for pipeline execution, it offers parallel data processing,
data reliability and fault tolerance out of the box. This fact is especially important in the field of Cloud Com-
puting, where infrastructure often relies on commodity hardware and nodes can fail on a regular basis (e.g. due
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to miss-configuration or hardware failures). At the same time, the architecture of Cloudflow is independent from
MapReduce. As we show in this paper on the example of Apache Spark, it provides parallelization constructs
and abstraction interfaces that can be used to extend the system by implementing other parallel programming
models (see Figure 3.1).

Pipeline

MapReduce

Cloudflow

Spark

Hadoop Cluster

Local Machine

Fig. 3.1. The architecture of Cloudflow enables to test the pipeline during development on the local machine and to execute
the same pipeline on a Hadoop cluster for big data analaysis.

Instead of developing a new declarative language for the pipeline composition, we developed a clear Java
API. The proposed framework implements different patterns to speed up pipeline creation, to be extensible,
and to support test-driven pipeline development. The following section gives an overview on the abstraction,
explains the basic operations in detail, and shows how pipelines are created.

3.1. Data Types and Basic Operations. Cloudflow operates on records consisting of a key/value pair,
whereby different record types are available (e.g. TextRecord, IntegerRecord, FastqRecord). A loader class is
responsible for loading the input data and converting it into an appropriate record type. As mentioned earlier,
Cloudflow supports three different basic operations: transform, summarize, and group. These are used to
analyze and transform records.

The transform operation is used to analyze one input record and to create between 0 and n output
records. The user implements the computational logic for this operation by extending an abstract class. This
child class provides the function implementation that is then executed by the Cloudflow framework for all input
records in parallel:

Class MyTransformer extends Transformer {

public void transform(Record) {

doSomethingInParallel();

emit(new Record());

}

}

The summarize operation is used on a list of records, whereby records with the same key are grouped.
Thus, the signature of the process method has the key and a list of records as an input:

Class MySummarizer extends Summarizer {

public void summarize(Key, List<Record>) {

doSomethingInParallel();

emit(new Record());

}

}

The group operation is a special operation, which takes a list of records as an input and creates a
Record group with the same key. The Cloudflow framework automatically inserts a group-operation between
a transform- and a summarize-operation. This ensures, that output records of the transform operation are
compatible with the input records of the summarize operation. The group-operation is realized by using the
shuffle phase of a MapReduce job or reduceByKey transformation in Spark.
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Based on these operations, the user defines pipelines by building sequences of operations (see Section 3.3); a
pipeline must start with a transform operation, all further operations are optional and can be used in arbitrary
order.

3.2. Extended Operations. Complex operations are built by combining one or more basic operations.
We already implemented several standard operations that are helpful for the analysis of text or numerical data
records:

• Filter: this operation is a special transform operation, which emits the record to the subsequent oper-
ation iff a user-defined condition is fulfilled.

• Split: the transform operation calculates for each input record a new split level (i.e. a new key). This
key is used by the group operation to create chunks, which can then be analyzed by a user-defined
summarize operation.

• Aggregation (sum, mean): This defines a group operation followed by a summarize operation to ag-
gregate all values with the same key (e.g. calculates the mean of all values). One record with the
aggregated value is then emitted to the subsequent operation.

• Executor: this summarize operation writes all grouped values into a file on the local disk. It is then
used as the input of an external UNIX command line program. Based on the lines of the output file,
new records are created and emitted to the subsequent operation.

Since Cloudflow’s operations are based on the Composite pattern, all these extended operations can also be used
as a basis for new operations. In addition, this enables to split complex operations into several sub-operations,
which improves testing and maintenance.

3.3. Pipeline Composition. The user builds pipelines by connecting several operations with compatible
interfaces. For this purpose the Cloudflow framework implements the Builder pattern, which enables (a) building
complex pipelines, (b) providing type safety and (c)support for implementing domain specific builders (see
Section 4.1). In addition, the Builder pattern ensures that only a valid sequence of operations can be created
(e.g. after the group-by operation, a summarize operation has to be added).

Class LineToWords extends Transformer {

public void transform(TextRecord rec) {

String[] words = rec.getValue().split()

for (String word: words){

emit(new IntegerRecord(word, 1));

}

}

}

pipeline.loadText(input)

.transform(LineToWords.class)

.sum()

.save(output);

Fig. 3.2. WordCount example using Cloudflow.

To help the user and accelerate the pipeline composition process, Cloudflow comes preconfigured with a set
of useful operations. This has the advantage that even the default WordCount example can be broken down
into a few simple operations and is defined in a single line of code (see Figure 3.2). In the first step, a text file is
loaded from HDFS (loadText). Then, for each record (i.e. line of input) the application-specific LineToWords

operation is executed, which splits the line into words and creates a new record for each word. In the last step,
a predefined sum operation is executed. The operation extends the pipeline by a group-by operation and a
summarize-operation in order to sum up all the values for a certain key. For frequently used operations (e.g.
sum, mean or count), we created special builder functions, which extend the pipeline and improve the code
readability by keeping the code simple.



108 L. Forer, E. Afgan, H. Weissensteiner, D. Davidovic, G. Specht, F. Kronenberg, S. Schoenherr

3.4. Pipeline Execution on MapReduce. Before the execution, Cloudflow checks the compatibility of
input and output records of consecutive operations. This ensures that only valid and executable pipelines are
submitted to the cluster.

If the pipeline is executable and valid, then the operation sequence is translated into an execution plan.
The execution plan specifies if an operation is executed in the map or in the reduce phase. Based on this plan,
Cloudflow creates one or more MapReduce jobs and configures them to execute the user-defined operations
in the correct order. In this translation step, Cloudflow tries to minimize the number of MapReduce jobs
by combining consecutive transform operations and by executing all transform operations after a summarize
operation in the same reducer instance (see Figure 3.3).

For additive summarize operations (e.g. sum), Cloudflow takes advantage of Hadoop’s combiner functional-
ity. The idea of this improvement is to combine the key/value pairs that are generated by all the map tasks on
the same machine into fewer pairs. Thus, the number of pairs that are transferred between mapper and reducer
are minimized, which results in a positive effect on the network bandwidth since unnecessary communication is
avoided.
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Fig. 3.3. Cloudflow translates the operation sequence automatically into an executable MapReduce job.

3.5. Pipeline Execution on Spark. Since the architecture of Cloudflow is independent from MapRe-
duce, the provided parallelization constructs and abstraction interfaces can be used to extend the system by
using Spark as an alternative parallelization framework. Thus, we implemented a new pipeline executor that
takes a Cloudflow pipeline as input and translates the execution plan to a sequence of transformations. This
transformations are using the Spark API in order to operate on Resilient Distributed Datasets (RDD) and take
advantage of in-memory technologies.

The main task of this process is to combine all consecutive transform operations and to execute them step
by step in the flatMapToPair stage of a Spark job. Next, the summarize operation defines the logic behind
the groupByKey operation. In the last step, all transform operations are then executed using Spark’s map

transformation. Thus, the created Spark job needs two stages to execute a single Cloudflow pipeline (see
Figure 3.4).

To optimize the execution time of the generated Spark job, Cloudflow tries to minimize the number of mem-
ory intensive groupByKey operations. This is achieved by using reduceByKey for most summarize-operations
or by mapping this operations to the equivalent build-in transformation of Spark (e.g. count, sum, mean).

3.6. Bioinformatics Support. Cloudflow provides a variety of already implemented utilities, which fa-
cilitate the creation of pipelines in the field of Bioinformatics (especially for NGS data in Genetics). For that
purpose, we implemented, based on HadoopBAM [10], several record types and loader classes in order to process
FASTQ, BAM and VCF files. Moreover, we created several operations and filters for the analysis of biological



Cloudflow - enabling faster biomedical pipelines with MapReduce and Spark 109

Text

files

Text

files
Split Words Filter: not empty Sum Filter: n > 100

C
lo

u
d

fl
o

w
 P

ip
e

lin
e

S
p

a
rk

 J
o

b

Split Words Filter: not empty Sum Filter: n > 100
Text

files

Text

files

flatMap map

group

by key

Translation

transform transform summarize transform

Stage 1 Stage 2

Fig. 3.4. The Spark pipeline executor takes a Cloudflow pipeline as input and translates the execution plan to a sequence of
Spark transformations.

datasets. For example, a typical quality control pipeline for VCF files can be implemented by simply combin-
ing several built-in operations. First, we apply predefined filters to discard variations that are monomorphic,
marked as duplicates, or are Insertions or Deletions (InDels). For all records passing the filters, Cloudflow
applies a summarize operation that calculates the call rate for each variation (see Figure 3.5).

Class CallRateCalc extends Transformer {

public void transform(VcfRecord record) {

VariantContext snp = record.getValue();

float call = callRate(snp);

emit(new FloatRecord(snp.getID(), call);

}

}

pipeline.loadVCF(input)

.filter(MonomorphicFilter.class)

.filter(DuplicateFilter.class)

.filter(InDelFilter.class)

.transform(CallRateCalc.class)

.save(output);

Fig. 3.5. VCF Quality Control Pipeline using Cloudflow.

3.7. Deploying Pipelines as a Service. Cloudgene [13] is a web-based platform to create and execute
workflows consisting of Hadoop YARN, Apache Pig and command line-based programs. It can be seen as an
additional layer between Hadoop and the end-user that hides the complexity of the framework. Therefore,
Cloudgene is the perfect candidate to provide Cloudflow pipelines as a service. Such pipeline can be integrated
into the workflow platform by utilizing Cloudgene’s plugin interface. No adaptation to the source code is
needed, while only a simple plain text file including a header, input parameters, output parameters and the
definition of the workflow itself need to be created. When launching Cloudgene, the manifest file is loaded and
the client interface is automatically rendered using information from the file. As Cloudgene supports different
technologies, it is possible to parallelize the calculations using Cloudflow and to visualize the results using R.

Cloudflow requires a compatible Hadoop YARN cluster for executing pipelines. CloudMan [2, 3] makes
it possible to easily procure and configure a virtual compute cluster on a cloud infrastructure. The procured
platform delivers a dynamically scalable Slurm and Hadoop cluster along with a number of higher level bioin-
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formatics applications. With its ability to be launched and managed via a web browser on a number of clouds,
customized as necessary, and easily shared with collaborators, CloudMan makes it possible to readily utilize
cloud resources in a research environment. The approach on how Cloudgene and CloudMan can be combined
efficiently has already been demonstrated [7], paving the path for readily executing Cloudflow pipelines.

4. Evaluation. As shown in [6], Cloudflow has practically the same execution time compared to Apache
Crunch and the overhead between a Cloudflow pipeline and a plain MapReduce job is negligible. To evaluate the
here presented extension, we implemented three different data-analysis pipelines using Cloudflow. The results
of our experiments demonstrate that Spark brings a speed-up in the execution time compared to MapReduce.
The following sections describe the experiments in detail. For more extensive pipeline examples, take a look at
the source code repository at https://github.com/genepi/cloudflow. All the experiments have been executed on
a 6 node physical cluster (5 cores & 32 GB RAM each) running the latest Cloudera Version (CDH 5.1.1) and
Hadoop YARN 2.6.

4.1. WordCount. We extended our previously introduced WordCount example from [6] and executed it
with different input datasets to compare the execution times of the existing Cloudflow MapReduce implemen-
tation with the new Spark implementation (see Figure 4.1).
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Fig. 4.1. Execution time of the WordCount use case

The results of this initial experiment show that overall the new Spark executor is faster than the existing
MapReduce implementation. Moreover, the results demonstrate that the Spark WordCount pipeline imple-
mented within Cloudflow scales well with the amount of input data.

4.2. Quality Control of Sequencing Data. When working with NGS data, the quality of raw data
needs to be checked before subsequent downstream analysis (e.g. read mapping/alignment) can be achieved.
Factors such as read errors, insertions or deletions of bases must be considered that finally results in the most
accurate genome position for each read. The mean base quality per position is an important metric to get an
overview about sequencing data quality.

The parallelization of the pipeline is realized by writing a transform operation, which calculates a quality
value for each base of the input read. Next, a summarize operation is used to calculate the mean value of all
qualities for a certain position (see Figure 4.2).

We executed the pipeline with different BAM files taken from the 1000 Genomes Project [1] to test and
validate the pipeline with real-world input data. Three different datasets were used: (1) sample HG00097
high coverage chromosome 11 [1 GB]; (2) sample HG00096 high coverage whole exome [8 GB] and (3) sample
HG00096 low coverage whole genome [15 GB]. The results of this experiment show that the new Spark executor
has a speed-up of 2 compared to the MapReduce implementation (see Figure 4.3).
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class GetQuality extends Transformer<BamRecord, IntegerRecord> {

public void transform(BamRecord record) {

for (int pos = 0; pos < (record.getSequenceLength(); pos++) {

emit(new IntegerRecord(pos, (record.getQualityAtPos(pos));

}

}

BioPipeline pipeline = new BioPipeline("Check Base Quality");

pipeline.loadBam(input).apply(GetQuality.class).mean().save(output);

Fig. 4.2. BAM Quality Control Pipeline using Cloudflow.
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Fig. 4.3. Execution time of the BAM Quality Control Pipeline with different sample from the 1000 Genomes Project

For this pipeline Cloudflow uses the groupByKey transformation to calculate the average of all qualities.
This transformation shows especially a good performance if all values for one key can fit into memory. However,
too many values resulting in disc swaps and finally resulting in a execution time similar to MapReduce. This
could lead to a bottleneck for extremely large datasets.

4.3. Sequence Length Distribution. This workflow generates the distribution of all sequence lengths
within one BAM sample. This is especially useful for currently upcoming technologies such as the third genera-
tion Single Molecule Sequencing on PacBio or Oxford Nanopore systems to check for long reads or to determine
appropriate reads as seeds within mapping algorithms.

The parallelization of the pipeline is realized by writing a transform operation that creates a new record
for each read where the key represents the length of the read and the value is set to a constant. The summarize
operation sums up all values per key, which finally represents the total number of reads with a certain length
(see Figure 4.4).

class CalcReadLength extends Transformer<BamRecord, IntegerRecord> {

public void transform(BamRecord record) {

emit(new IntegerRecord((record.getSequenceLength(), 1);

}

}

BioPipeline pipeline = new BioPipeline("Check Read Length");

pipeline.loadBam(input).apply(CalcReadLength.class).sum().save(output);

Fig. 4.4. Sequence Length Distribution using Cloudflow.

The pipeline was executed with the same datasets as described in Section 4.2. Again this experiment shows
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the expected speed-up when the Cloudflow pipeline is executed on Spark instead of MapReduce (see Figure
4.5).

0

30

60

90

chr11 (HG00097) exome (HG00096) low coverage (HG00096)

E
xe

c
u

ti
o

n
 T

im
e

 [
s
e

c
]

Cloudflow MapReduce

Cloudflow Spark

Fig. 4.5. Execution time of the Sequence Length Distribution pipeline with different samples from the 1000 Genomes Project

Compared to the previous pipeline, Cloudflow uses the reduceByKey transformation to sum up all values.
This enables Spark to combine records with the same key on each partition before shuffling the data and sending
it to other nodes. Thus, no memory overflow is produced and the pipeline scales linear with the amount of data.

4.4. Scalability. We tested the scalability of the new Spark executor in terms of the number of machines.
For that experiment, we executed the same Cloudflow pipeline on the Hadoop cluster using 2, 4 and 6 nodes and
compared the measured execution times with those of the MapReduce executor (see Figure 4.6). The results
show that the overhead of executing a Cloudflow pipeline on a small MapReduce cluster (in our case two nodes)
is much higher than using the same cluster with Spark. However, after a cluster size of 4 nodes both executors
scale identically. Thus, the user benefits from the Spark executor when the used cluster is small.
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Fig. 4.6. Execution time of the WordCount use case

5. Discussion and Future Work. With Coudflow, an approach was presented that enables separation
of the development of analysis pipelines from the underlying parallelization model. The extension of Cloudflow
to Spark as an alternative execution engine has several advantages: (1) the developer has the possibility to
create pipelines without thinking about the underlying technical details of the used parallelization framework;
(2) the developer is not limited to one specific parallelization framework and can evaluate its pipeline using
different frameworks without additional effort; (3) the end-user has the possibility to decide where an existing
pipeline should be run depending on its computing infrastructure. Moreover, users take advantage when new
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parallelization models are integrated into Cloudflow and can use them without changing the source code of the
pipeline.

However, such a generic approach also has some limitations in terms of optimizations. Currently, Cloudflow
does not take advantage of all in-memory features provided by Spark. Our implementation minimizes the number
of memory intensive transformations (e.g. groupByKey) only for some predefined ’summarizers’ (e.g. sum and
count). Moreover, no caching-support is implemented, which is essential for machine learning algorithms. To
overcome this issue we will implement additional features in future releases to support even more use cases in
the field of bioinformatics. Beside the optimizations of the translation processes, we plan to integrate new file
formats such as ADAM and CRAM, which will enable further development of scalable services.

6. Conclusion. Cloudflow’s overall aim is to simplify the development of complex analysis pipelines by
using abstract operations. Therefore, operations need only be written once and can be re-used for future
MapReduce and Spark usage. The major advantage of Cloudflow lies in the provision of validated operations,
especially in the area of genetics, and its extensibility.

The contribution of this paper was an extension of Cloudflow that enables executing the same pipeline on
Spark as on MapReduce. The experiments and evaluation show that (1) the same pipeline can be executed
on Spark without changing the existing source code, (2) Spark leads to a speed-up for most pipelines and (3)
the architecture of Cloudflow is extensible and therefore new analysis tools and file-formats based on Spark
(e.g. ADAM) can be easily integrated in the future.
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[10] M. Niemenmaa, A. Kallio, A. Schumacher, P. Klemelä, E. Korpelainen, and K. Heljanko. Hadoop-bam: directly
manipulating next generation sequencing data in the cloud. Bioinformatics, 28(6):876–877, 2012.

[11] A. R. O’Brien, N. F. W. Saunders, Y. Guo, F. A. Buske, R. J. Scott, and D. C. Bauer. VariantSpark: population scale
clustering of genotype information. BMC Genomics, 16(1):1052+, Dec. 2015.

[12] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig latin: a not-so-foreign language for data processing.
In Proceedings of the 2008 ACM SIGMOD international conference on Management of data, pages 1099–1110. ACM,
2008.

[13] S. Schönherr, L. Forer, H. Weißensteiner, F. Kronenberg, G. Specht, and A. Kloss-Brandstätter. Cloudgene:
A graphical execution platform for mapreduce programs on private and public clouds. BMC bioinformatics, 13(1):200,
2012.



114 L. Forer, E. Afgan, H. Weissensteiner, D. Davidovic, G. Specht, F. Kronenberg, S. Schoenherr

[14] O. Spjuth, E. Bongcam-Rudloff, G. C. Hernández, L. Forer, M. Giovacchini, R. V. Guimera, A. Kallio, E. Kor-
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