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A PARALLEL ALGORITHM FOR THE STATE SPACE EXPLORATION
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Abstract. Model checking has long been used as a means of verification of formal specifications. This is a verification technique
of dynamic systems that explores all possible states of the system. It determines whether the given system satisfies its specification.
This technique suffers from the state explosion problem when traversing all possible states of systems. Parallel and/or distributed
approaches are used to cope with the state space explosion problem. In this article, we propose a synchronized parallel algorithm
of exploration based on a fixed number of threads. We present many experiments for a comparison between our parallel approach
and the algorithm proposed for a parallel exploration in SPIN . We show by an experimental study that our parallel approach
gives encouraging results.
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1. Introduction. Verification by model checking is an automatic verification technique, to verify that a
system satisfies a given specification. This is a commonly used tool in situations, where, it is essential to certify
the proper functioning of a system. Thus, the model checking tools are widely used in high-tech industries, for
verification of electronic circuits, or even in aeronautics, to ensure safety of embedded systems. Any algorithm
of model checking is based on two steps: (1) exploration of reachable states of the system; and (2) verification
of the specifications in this state space. These two steps can sometimes be performed simultaneously, which is
called on the fly model checking. Exploration is a computing process which determines a sequence of actions,
making it possible to achieve a desired goal. A good exploration means, the achieving and the storage of a large
number of states without exceeding the available memory resources [1] and in finite time. The state space can
be described by an initial state and a set of transitions. A succession of states produced by actions forms a path
within the state space [2, 3].

In the case of realistic examples, the number of states can be enormous. For example, in an n-bit counter, the
number of states is exponential in the number of bits (2n). Reachability analysis is limited by the state explosion
problem [4, 5, 6]. This problem occurs, when the state space to be explored is large and cannot be explored by
the algorithms for lack of capacity memory resources, or an important time because the memory space needed
to carry out exploration is higher than the memory space contained in the machine. Many researches have been
done to fight the state explosion problem, by taking advantage of a distributed environment, by increasing the
computational power and using large available memory [27].

In this article, we are interested in the analysis of execution time needed to carry out exploration. During
the reachability analysis, it is essential to take into account the concept of time because, even by distributing
the states graph on multiple machines (at Amazon or another provider) will not settle the problem, due to the
exponential growth of the number of system-states, so we need in this case to treat the temporal explosion. We
present a comparative study between two algorithms for a parallel exploration. For that, we used four models:
Peterson [7], Dining philosophers [8], Producer-consumer [9] and counters.

Outline of the paper: the article is divided into 7 sections, the second section presents some works which
offer solutions to the state explosion problem. Section 3 presents model checking and reachability analysis.
Section 4 is devoted to the definition of the synchronized parallel algorithm (SPA). The fifth section presents
the parallel algorithm for state exploration in SPIN . The sixth section is devoted to the experiments performed
for a comparison of the SPA algorithm and the algorithm proposed for SPIN model checker. Section 7 presents
a comparison between two parallel approaches for reachability analysis.
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2. Model checking and reachability. Model Checking is a verification technique, based on the exhaus-
tive state space exploration of systems, in searching of behaviors that do not verify its specification. A model
checker can be seen as a black box, which accepts as input a system as well as a property expressed on this
system and returns an answer, indicating if the property is checked or not. When verifying properties, through
explicit-state model checking, all the possible behaviors of the system are enumerated and the properties are
checked. The algorithms implemented include two phases, a construction of the state space then an exploration
of this state space in searching of errors. The state space is represented as a graph which, describes all the
possible evolutions of the system. Nodes of the graph represent the states of the system and the arcs represent
the transitions between these states [2, 3]. The reachability analysis consists on the exploration of models state
by state, each state and all its successors are stored in memory. Exploration finishes when all the states are
visited. An exploration algorithm, with each step of its execution, can either visit a new node, or an explored
node. Fig. 2.1 gives the organizing chart of the basic sequential reachability for performing a breadth first
search.

Fig. 2.1. Sequential Reachability using a breadth first search

3. Related work. Many solutions have been proposed for the state explosion problem. In this section, we
present five solutions. Each one of them is running on a different architecture (distributed, parallel, sequential).
These solutions are based on methods (states compression, partial order reduction, bit state hashing) and
different data structures. Each solution aims to improve the performances in execution time and memory
capacity.

In [10], the authors present a new solution to the state explosion problem. The approach is based on the
concept of scalability. When checking systems by model checking, this problem can occur if the models are
large. The authors propose to optimize the model checker Divine [10], so that the network can be scaled up
in number of nodes, which can check larger systems. This is the main advantage of this method. In previous
experiments, Divine was evaluated on a small number of nodes, it was soon determined that performance, of
several Divine algorithms did not scale well, with a high number of nodes, because of the number of messages
that pass through the network. The optimizations focus on improving two distributed algorithms (OWCTY
and MAP) included in Divine, which allow for a good exploration of the model. Each node will process a part
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of state space. A major drawback of this approach, is the number of messages exchanged through the network
because large messages are sent in priority which could cause an overload on the network.

The solution described in [11] allows a distribution of state space exploration, during the verification of
models by model checking using SPIN [12, 13]. Each node has a set V , that contains the explored states,
and a queue U , to store the unvisited states. An advantage of this approach, is that the proposed algorithm is
compatible with 3 methods for state space exploration (states of compression, partial order reduction, state bit
hashing). A drawback of this method is the absence of a considerable gain for each model explored.

The approach proposed in [14] is based on a sequential algorithm. Its objective is the storage of states in
their compressed form (this constitutes the advantage of this method), only the difference between the previous
state and the following state is stored. The first generated state (initial state) is stored in an explicit way, the
other states are stored in a compressed form in hash tables. The states are decompressed, to verify if a state was
already visited or not, for that, it is necessary to add the most recent changes for each state, until a state stored
in explicit form is reached. The disadvantage of this method, is the backtracking function, which represents an
overload because the execution time can increase quickly.

The solution presented in [15] is based on an algorithm executed in parallel by multiple processors. The
authors presented a model checker called PMC (Parallel Model Checker), to verify properties written in CTL*
[16] that combines both of language Computation Tree Logic (CTL) [18] and Linear Temporal Logic (LTL)
[17]. This model checker verifies, models whose behavior is represented as and/or trees. The proposed solution
is inspired by the parallel algorithm, for pure reachability analysis [19]. Inggs & Barringer [15], presented a
parallelization of processing model checking using a shared memory architecture. PMC uses a dynamic load
balancing technique. Each process has its own unbounded private stack and bounded shared stack for storing
work items. Shared stacks are protected by locks to synchronize read and write access to it. During model
checking, processes have to interact with each other, via the shared memory, to divide new work items and to
avoid duplication of work. The advantage of this method is the presence of private and shared stacks for each
processor.

Inggs & Barringer [15] presented the results for three types of experiments. The drawback of this approach,
is the use of a shared memory, which requires synchronization between processes.

In [20], the authors propose a parallel algorithm for the construction of state space. The architecture
used is a shared memory multiprocessor architecture. States are stored in the local hash tables (lockless hash
table). This constitutes the advantage of this method. Each processor has a private stack and a shared stack.
Distribution and coordination of states between the processors is made through a location table, which contains
the list of states that have been visited. It is used to dynamically allocate works on the processors. Its primary
role is to return true, if the state was visited and the number of process running, false otherwise. Collisions
may occur, if the key returned by the hash function, is the same for both states. This constitutes the drawback
of this approach.

4. Synchronized parallel algorithm (SPA). A parallel machine is essentially a set of processors that
cooperate and communicate. A parallel algorithm runs on a parallel computer. The instructions are executed
simultaneously, which can lead to a considerable gain in execution time. An important task in a parallel
approach, is the assignment of work to threads, to have a load balancing between threads.

The Synchronized parallel algorithm (SPA), is based on the use of a fixed number of threads and uses
2 sets of states: K and Q[i]. Set K, is the set of visited states, this set is shared by all the threads, then,
the access is synchronized. Successors’ states are stored in Queue Q[i], where i varies from 1 to N (N is the
number of threads). Q[i] is a FIFO queue where each thread i processes states in Q[i]. The size of this queue is
unlimited. Each pointer Q[i], points to a linked list of nodes (value, link to the next node). Each time a state
is generated, a thread will be randomly selected and the state will be stored in its list (we can’t have at the
same time, removal and adding operations). Random function was used, to load balancing states on subsets
Q[i]. Synchronization between different threads, is performed on the lists of each thread during states adding,
or states removal. We have a fixed number of threads, so we need to be able to determine when all states have
been reached, to stop the exploration.

Fig. 4.1 shows the threads synchronization on the Queue Q[i] containing the states to be processed. At the
first step, thread 1 generates the initial state. For each next state, a thread is generated randomly and the state
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Fig. 4.1. Threads Synchronization on the queue Q[i]

is stored in its list. After this step, each thread i where Q[i] is not empty, will remove a state from the queue by
the synchronization state remove function, only one thread can execute this function at the same time (critical
section). The successors of this state are generated by the successors generation function. After that, a test
is realized on each next state, if the state is new, it is stored randomly in the queue Q[k] of the thread k, by
executing the state storage function, otherwise it goes to the next state. Termination verification is triggered,
to check whether, termination of exploration has been reached, by the verification of termination function. If
the queue Q[i] is empty, exploration ends, otherwise the process will be repeated as long as the queue is not
empty.

The algorithm of parallel exploration is presented in what follows.

At the beginning of the exploration, the initial state is generated, then its successors are observed. At this
time, for each new configuration, a thread is chosen randomly (line 9 of Algorithm 1). Data used are shared
between threads, synchronization are made on the set k containing all visited states and on the queue Q[i] for
processing current states.

To explain the exploration process, we have taken an example of counters (Fig. 4.2). The representation of
a counter that is incremented and decremented, is carried out using a deterministic automaton consisting of a
single state (both initial and terminal). The state s is incremented up to N, s can be decremented at each step
down to 0, which represents the initial state. If we add another counter, there could be a state vector with 2
cells, therefore, with N counters, we will have a state vector composed of N cells, corresponding to n automaton
(Fig. 4.3). For example, by fixing the specific value to 5 and having 6 counters, the total number of states to
be explored is equal to 46656 ((the specific value+1)the number of counters). The number 1 corresponds to the
minimum value 0. Fig. 4.3 presents a part of the reachability graph of 6 counters that can be incremented or
decremented on each step. For each explored state, a set of generated successors is generated. The first step, is
the generation of initial state (0 0 0 0 0 0) by thread 1. From the initial state, six states are discovered, because
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Algorithm 1 Synchronized Parallel Algorithm (SPA)

1: exploration done← false

2: For each (w: 1..N)
3: do
4: for (each s in 1 .. N) do
5: (Synchronized) delete s from Q[w]
6: for (each successor s of s) do
7: if ((Synchronized) s not in K) then
8: (Synchronized) add s to K
9: w= choose Random 1 .. N

10: (Synchronized) add s to Q[w]
11: end if
12: end for
13: end for
14: if (w==1) then
15: if (all Q[1..N ] == NULL) then
16: done ← true
17: end if
18: end if
19: while !exploration done

Fig. 4.2. Automaton of a counter that increments and decrements

at each transition, a counter can be incremented. A transition from one state to another occurs, when a counter
is incremented or decremented. The initial state is stored in the set K, because the state is new and in the
Queue Q[1], to explore its next configurations (states). Thereafter, all its successors are visited and stored in
their turn in both sets, to do that, we need to choose randomly, a thread x for each successor c. Each next
configuration c is stored in Q[x]. The exploration stops when the queue Q[i] is empty, i varies from 1 to N.

Fig. 4.3. A part of Reachability graph of 6 counters incremented up to 5 and decremented down to 0



134 L. Allal, G. Belalem, P. Dhaussy, C. Teodorov

5. Parallel exploration in SPIN. SPIN is a tool for verification and simulation of concurrent systems.
To be studied, a concurrent system is first described in Promela (Process Meta Language), the SPIN verification
language [26]. The algorithm (Algorithm 2) proposed in [22], is based on the use of a three dimensional queue
Q[t][i][j] for storage of states, whose successors have not been observed yet. It is composed of 3 parameters: t,
i and j. The parameter t, is varied from 0 to 1, it allows states to pass from current states to future states. At
each step of exploration, all states from Q[t][i][j] are processed and their successors are stored in Q[1− t][i][j],
corresponding to the configurations that will be observed at the next step. A lockless hachtable [23], was used
in order to avoid waits between different threads. An important task in the algorithm proposed in [22], is to
determine when all states have been explored to stop exploration.

Algorithm 2 Parallel Exploration Algorithm in SPIN

1: done← false

2: t← 0
3: Search (i: 1..N)
4: do
5: for (each state in 1..N) do
6: Delete s from Q[t][i][j]
7: for (Each next configuration c of s) do
8: if ¬ (S.Contains(c)) then
9: S.add(c)

10: k ← Choose Random from 1..N
11: add state to Q[1− t][k][i]
12: end if
13: end for
14: end for
15: Wait()
16: if (i==1) then
17: wait until all threads are idle
18: if (all Q[1− t][i][j] == NULL) then
19: done ← true
20: else
21: Notify all threads
22: t ← 1-t
23: end if
24: end if
25: while !done

In this algorithm, the parameters i and j vary from 1 to N , where N is the number of threads. The size of
this queue is unlimited. The current states to be generated are treated from Q[t][i][j] and successors are add
to Q[1 − t][k][i] with k, a thread selected randomly from N . The conceptual difference between the SPA and
SPIN algorithm is that, in SPIN , a three dimensional queue is used, which consumes more memory space.
SPA algorithm is based on the use of a one dimensional queue. A thread that ends exploring its existing states,
waits for all threads to finish their treatment, to pass to future states. In the SPA algorithm, there is no waiting
between threads, threads wait when adding or removing state in (from) the queue.

6. Experimental study. In this article, we presented a parallel approach for state space exploration. We
carried out four experimental studies on 4 different models, 3 models from BEEM database [21] and a counter
model. The objective is to make a comparison between two parallel approaches. This comparison is based on
the execution time of the exploration step. The experiments are performed by varying some metrics. We study
the behavior of these approaches by experiments. The experiments were performed on an i7 machine with 8
cores, it operates at a frequency of 2 MHz, with 16 GB of physical memory. We have implemented both parallel
algorithms using java platform [25]. We realized the specification of these models in Java. We have fixed the
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Fig. 6.1. Execution time (both parallel approaches) by varying the number of processes

Table 6.1

Execution time, configurations number, and processes for both algorithms

Processes Configurations Exe. time SPA Exe. time SPIN

algo (seconds) algo (seconds)
5 352 0.017 0.022
10 47104 0.20 0.21
15 3473408 9 11
16 7929856 29 33
17 17956864 91 95
18 40370176 279 327

number of threads at each experiment. The launch of threads has been realized using the class thread. The
number of states is given at the end of each experiment by the set K (set of visited states). The size of this
set is equal to the number of states. No information is calculated or communicated to each state, because,
the purpose of reachability analysis, is to load all the states in memory. The number of threads to perform
exploration is the same for both algorithms on each experiment.

6.1. Experiment 1: Peterson model. Peterson’s algorithm [7], is a mutual exclusion algorithm for
concurrent programming. This algorithm is based on an active wait approach. It consists of two parts: the
input into the critical section and the output from it. We have made a parallel comparison between, our
approach, and the parallel algorithm developed in SPIN model checker [22], using Peterson model [7].

We made 6 different tests, by varying the number of concurrent processes (5, 10, 15, 16, 17, 18), and
estimated execution time of reachability analysis for each test (see Fig. 6.1 and Table 6.1). The number of
states varies from 352 to 40370176, regarding to the number of processes accessing a critical section. At each
test, we fixed the number of created threads (process machine) for a parallel execution (from 2 to 8). At the
last test (with 18 processes accessing a critical section), we used 8 threads to fully exploit all machine resources.
From the results provided by this experiment, SPA algorithm shows better performance in execution time
(Fig. 6.1). The comparison was made on the execution time estimated to perform experimentations. In the
algorithm presented in [22], whenever a thread finishes processing its tasks (lists of current states), it waits for
other threads, therefore, it takes more time because it is based on the processing of states step by step. Having
18 processes accessing a critical section, the synchronized parallel algorithm shows better performance, because,
for each process added (process in critical section), more configurations will be observed, because, the state
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Fig. 6.2. Execution time (both parallel approaches) by varying the number of processes

Table 6.2

Execution time, configurations number, and processes for both algorithms

Processes Configurations Exe. time SPA Exe. time SPIN

algo (seconds) algo (seconds)
11 393660 0.86 0.88
12 1240029 2 3
13 3897234 11 14
14 12223143 44 51
15 38263752 249 266

vector will change. The state vector, is an array, where each cell corresponds to the identifier of a process in
critical section.

To interpret these results in execution time, we calculated the gain (in percentage) obtained by our proposed
algorithm from each experience (21.45, 3.31, 12.10, 11.75, 3.64, 14.63). From these results, we estimate the
average gain obtained from all tests, using Peterson model specification, Taverage peterson = 11.15%.

6.2. Experiment 2: Dining philosophers model. The dining philosophers model [8], is used to solve
the synchronization problems between different processes. we realized the specification of this model in Java,
and then, we performed an exploration on this model using both parallel algorithms. The result about execution
time estimated, is given in Fig. 6.2 and Table 6.2. We realized the experiments on the same machine, we have
varied the number of processes in critical section from 11 to 15, with a step of 1 and we measured at every
experiment, the execution time estimated during exploration. The number of states increases regarding to the
number of concurrent processes, all possible case are exploited (all possible states are explored).

Having 15 concurrent processes, the number of configurations (states) is about 38.263.752. We can notice a
performance gain, using the proposed approach compared to the parallel exploration in SPIN model checker.
The average gain obtained using our algorithm is about 9.90% ≃ 10%. Concerning the model specification
and reachability analysis, our algorithm shows better performance compared to SPIN algorithm. The gain
increases by increasing the number of processes in critical section, therefore, the proposed algorithm scales well.

6.3. Experiment 3: Producers consumer model. The Producers/Consumer model [9], is a classic
example of two synchronization processes, one that produces information he deposited in a limited buffer size,
and one that removes one by one to consume. We have done the specification of this model, using several
producers and one consumer. We realized 5 tests, by varying the number of producers and the table size, in
which data are stored. The comparison is made on execution time (Fig. 6.3 and Table 6.3). In the first test,
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Fig. 6.3. Execution time (both parallel approaches) by varying the table size and the number of producers

Table 6.3

Execution time, and configurations number for both algorithms

Configurations Exe. time SPA Exe. time SPIN

algo (seconds) algo (seconds)
6020000 68 70
12040001 146 162
16040001 260 278
30060001 586 (≃ 10min) 656 (≃ 11min)
20020001 777 (≃ 13(min)) 885 (≃ 15(min))

we used 600 producers and the table size was fixed at 10000 cells. The reachability graph corresponding to this
experiment is composed of 6.020.000 states (configurations). The experiments and the number of states at each
test, are given in Table 6.4.

Table 6.4

Experiments parameters and the total number of states obtained

Producers Table size (cells) Number of states after
reachability analysis

600 10000 6.020.000
600 200000 12.040.001
800 20000 16.040.001
1000 30000 30.060.001
2000 20000 20.020.001

Comparing the results given by both approaches, we note that our algorithm shows better results in exe-
cution time, compared to the parallel exploration algorithm in SPIN in each experiment. The average gain
obtained by performing a comparison by SPA algorithm, is estimated by 8.62%.

6.4. Experiment 4: Counters model. We have made a parallel comparison between our approach,
and the parallel algorithm developed in SPIN model checker [22], using counters model. We used 5 counters,
incremented from 0 to a maximum value, and made 6 tests. In the first one, the counters are incremented from
0 to 22. At each test, we incremented a maximum value by a step of 3 (from 0 to 22, from 0 to 25, ...). The
result, is shown in Fig. 6.4 and Table 6.5.
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Fig. 6.4. Execution time (both parallel approaches) by varying the number of configurations

Table 6.5

Execution time, configurations number, and max value for both algorithms

Max value Configurations Exe. time SPA Exe. time SPIN

algo (seconds) algo (seconds)
22 6436343 11 13
25 11881376 24 27
28 20511149 45 48
31 33554432 84 86
34 52521875 142 164
37 79235168 268 285

To calculate the number of states, we need the number of counters and the maximum value of counter.
Then, this number is calculated by: (max value + 1)number of counters. Regarding to the experiment shown
in Fig. 6.4, our algorithm gives better results, by increasing the maximum value of counters. Both parallel
approaches show significant results, when the number of configurations is high, with a gain provided by the
synchronized parallel algorithm.

Despite the gain of 10%, we can notice at each experiment, that the gap between both curves (SPA and
SPIN), becomes important when the number of processes increases, which predicts that these curves move
further for larger number of processes, and therefore, the gain obtained by our approach will be more significant.

7. Positioning our parallel approach and Discussion. To position our parallel algorithm, with the
integrated parallel algorithm in SPIN , which is very used in the exploration of states using model checking
techniques, we studied the conceptual difference between both algorithms (SPA and SPIN), and the complexity
of these two algorithms [24].

Conceptual difference between both algorithms: We realized in the previous section, a series of
experiments. The SPA algorithm showed in each one, better results. This is due to the fact, that in the
SPIN approach, several loops are executed each time we alternate between current and future states: having
N threads, for each thread i, all Q[t][i][j] are explored (j varies from 1 to N). The treatment of visited states, for
this thread, ends only after all queues are empty. The process is the same for other threads. In the proposed
approach, each thread i manages its queue Q[i], so there is no time lost. In SPIN , at each step (alternation
between current and future states), a thread that ends its processing, waits for all other threads. A time is lost
at this level, which represents the major drawback of this algorithm (SPIN algorithm), especially if the wait is
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Table 8.1

Data structures specified in the SPA algorithm

Data structures Memory space used
exploration done 32 bits
pointer queue Q[i] 32 bits
Linked list (queue Q[i]) (32 + 32) * s bits
K (set of reached states) (32 + 32) * t bits (key and data)

long. Waiting in the SPA algorithm are in the access to the queue Q[i] for removal, or addition of states. This
time is smaller, compared to the wait between threads in SPIN . This is demonstrated by the results obtained.

Study of the algorithmic complexity: an algorithm, is a sequence of actions performed from an initial
state, to a final state in a finite time. We study the complexity to predict the execution time of an algorithm,
and to compare two algorithms performing the same treatments. The complexity of an algorithm, is determined
through a description of the behavior of algorithms. The complexity of an algorithm can be evaluated in time
(speed), and in space. In this article, we focus on the study of the execution time. We conducted a study of
the complexity, for both parallel algorithms: SPA algorithm, and the algorithm integrated in SPIN , for this,
we have defined execution time for each type of instruction:

• ae: state assignment
• ce: comparison of states
• s: number of next states per state
• q: maximum number of states in Q[i] or M
• p: number of threads
• w: waiting time per thread (idle)

Taking each operation, we estimate the time needed to achieve the reachability analysis, by each algorithm:
• complexity of the synchronized parallel algorithm ”SPA” (Algorithm 1, section 4): com-
plexity of the proposed algorithm CApp is estimated by:

CApp = ae+ p(ae+ s.q(ce+ 3.ae)) + ce+ p.ce)) = O(qp) (7.1)

• complexity of the parallel algorithm proposed in [22] (Algorithm 2, section 5): complexity
CSPIN is estimated by:

CSPIN = 2.ae+ p(ae+ s.p.q(ce+ 2.ae)) + w(p− 1) + q.ce.ae = O(qp2) (7.2)

According to these complexities obtained by equations (7.1) and (7.2), we can notice that our algorithm has
order of O(qp) time complexity, the complexity of the algorithm proposed in [22] is around the square, estimated
to O(qp2). In conclusion, we can say and confirm that our proposed algorithm, for the exploration of states,
can be used to explore a large number of states, in a linear time.

8. Memory space used in reachability analysis. Model checking, is a technique based on verification
of the correctness of a system, with respect to a desired behavior and properties. Exploration consists on
exploring each state (we have to iterate algorithm many times), therefore, having systems composed of large
number of states, that tend to grow exponentially, in the number of its processes and variables, this case leads
to a state space exploration for large systems. In this section, we analyzed the memory space used in both
algorithms, by counting the total number of data structures used.

• Memory space used in the synchronized parallel algorithm ”SPA” (Algorithm 1, section 4):
An integer value, is specified in the source code of any program as a sequence of digits. Usually, variables
are stored on 32 bits, therefore, to analyze the used memory space, we have to count the number of
data structures declared in the algorithm. The data structures specified in the algorithm, are listed in
Table 8.1. exploration done is a boolean variable, it is stored on 32 bits, we have N pointers of queue
Q[i], with N referring to the number of threads and each Q[i] (i varies from 1 to N), points to a liked list
of states. A number of next states is unknown. We have N linked lists, and each one contains nodes,
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Table 8.2

Data structures specified in the parallel algorithm in SPIN

Data structures Memory space used
done 32 bits
t 32 bits
pointer queue Q[i] 32 bits
list of points (thread’s pointer to 32 * N bits
other threads)
Linked list (for one thread) (32 + 32) * s * N bits
S (set of reached states) (32 + 32) * t bits (key and data)

each node contains two fields, an integer value and a link to the next node. Therefore, the memory
used for states storage in the queue Q[i] is (32 + 32) * s * N (s is the maximum number of states in a
list of a thread). A set K contains explored states.
The size of K is determined by: (32 + 32) * t, with t the total number of states explored by reachability
analysis. By having these information, we can estimate the state space storage, used by our approach,
expressed in bits: Memory usedSPA app = 32 + (32 * N) + ((32 + 32) * s * N) + ((32 + 32) * t) =
32(1 +N + (2 ∗ s ∗N) + (t ∗ 2)) = 32(1 +N(1 + (2 ∗ s) + (t ∗ 2)).
• Memory space used in the parallel algorithm in SPIN (Algorithm 2, section 5): In the
parallel algorithm developed in SPIN model checker, 2 sets are specified, Q[i] (3 dimensional queue)
and S (set of reached states). The data structures specified in the algorithm are listed in Table 8.2.
done is a boolean variable that indicates whether all states have been reached or not. The variable
t, is stored on 32 bits. There are N pointers of queue Q[i], each one points to a list of pointers (N
pointers), linking to linked lists. Each thread, maintains N lists of states, the memory space used for
states storage in the queue Q[i] is (32+32) * s * N (s is the maximum number of states in a list of a
thread). The memory space, is allocated for storage of current and future states, therefore, space is
allocated for Q[0][i][j] and Q[1][i][j].
The size of S is determined by: (32 + 32) * t (t is the total number of states explored). We can estimate
the state space storage used by the parallel algorithm proposed in [22] in bits: Memory usedalgo SPIN

= 32 + 32 + 2 (32 * N) + 2 (32 * N * N) + (2* N) *((32 + 32) * s * N) + ((32 + 32) * t) =
32(1 + 1 + (2 ∗N) + (2 ∗N2) + 4 ∗ s ∗N2 + (t ∗ 2)) = 32(2 +N(2 + (2 ∗N) + (4 ∗ s ∗N)) + (t ∗ 2)).

A less memory space used is necessary to fight the state explosion problem. From this analysis, we can
conclude that our algorithm uses less memory than the parallel algorithm developed in SPIN .

9. Conclusion and future work. Model checking is a set of an automatic verification techniques of
temporal properties on reactive systems. It takes as input, a system of transitions and a formula from some
temporal logic, and answers if the abstraction satisfies or not the formula. This technique suffers from the
state explosion problem, where systems become too large. In this article, we have proposed a parallel approach
to the state space exploration. We realized many experiments, for a comparison between our algorithm, and
the algorithm proposed in [22]. As first experiment, we measured the performance of both parallel algorithms,
using Peterson model [7] then we compared the results. We showed that our approach gives better results.
In the second experiment, we measured performances in terms of execution time, obtained by both parallel
algorithms, using Dining Philosophers model [8], we calculated and noticed that our approach produces better
results. In the third experiment, we made a comparison between both parallel algorithms, using Producer-
Consumer model [9], we noticed an improvement of performance in execution time, reported by our approach.
In the last experiment, we used counters model, and concluded that our approach gives better results. We
work on the execution of experiments on a distributed environment, to improve performance, we are about to
conduct tests, using models observed in the article.
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