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ANALYSIS AND VERIFICATION OF XACML POLICIES
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∗
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Abstract. The connectivity of devices, machines and people via Cloud infrastructure can support collaborations among
doctors and specialists from different medical organisations. Such collaborations may lead to data sharing and joint tasks and
activities. Hence, the collaborating organisations are responsible for managing and protecting data they share. Therefore, they
should define a set of access control policies regulating the exchange of data they own. However, existing Cloud services do not
offer tools to analyse these policies. In this paper, we propose a Cloud Policy Verification Service (CPVS) for the analysis and
the verification of access control policies specified using XACML. The analysis process detects anomalies at two policy levels: a)
intra-policy: detects discrepancies between rules within a single security policy (conflicting rules and redundancies), and b) inter-
policies: detects anomalies between several security policies such as inconsistency and similarity. The verification process consists
in verifying the completeness property which guarantees that each access request is either accepted or denied by the access control
policy. In order to demonstrate the efficiency of our method, we also provide the time and space complexities. Finally, we present
the implementation of our method and demonstrate how efficiently our approach can detect policy anomalies.
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1. Introduction. The use of connected devices (mobiles, sensors, scanners etc.) permits the creation of
Electronic Personal Records (EPR) to monitor patients’ health states remotely. The EPR of a patient consists
of medical histories, diagnoses, medications, immunization dates, etc [11]. A first advantage of an EPR is that it
provides accurate, up-to-date, and complete information about patients. Another advantage is that it supports
collaborations among different doctors in diverse medical organisations.

Cloud computing offers a suitable platform for such collaborations [1]. For instance, the storage service
offered by the Cloud can be considered as a shared pool where medical organisations can store and share their
data. A patient’s EPR usually contains confidential data and hence each medical organisation needs to define
a set of policies to regulate the access to the outsourced data. However, current Cloud solutions do not offer
users the ability to define their own policies. To address this issue, we have developed, in previous work, a
middleware (denoted curlX [6]) that permits the enforcement of users’ security policies in Openstack [27] (an
open source Cloud solution). curlX uses XACML [25] (eXtensible Access Control Markup Language) to specify
access control policies [7]. Yet, XACML has many limitations in terms of policy anomaly detection [16]. For
instance, XACML lacks a mechanism to detect conflicts and redundancies.

In this paper, we present a formal approach based on automata to detect anomalies in XACML policies
such as: conflicting rules, redundancies, inconsistencies, and policy similarities; and to verify the completeness
property that guarantees that each access request is either accepted or denied by the access control policy. The
approach is implemented as a Cloud service denoted CPVS (Cloud Policy Verification Service) and integrated
into curlX. The advantage of the proposed approach is that it detects several discrepancies in the XACML
policies using the same formal model, in contrast to other existing approaches which make use of different
models to detect distinct anomalies.

The rest of the paper is organised as follows: Section 2 presents related work. In Section 3, we present an
overview of XACML policies and automata. Section 4 describes the architecture of curlX taking into account
the new verification service. In Section 5, we present the procedure to transform XACML policies into automata.
Sections 6 and 7 define the approaches to detect anomalies and verify completeness in XACML policies. We
calculate the time and space complexities in Section 8. Section 9 discusses the implementation and evaluation
of our proposed approach. Finally, Section 10 concludes the paper and outlines areas for future research.
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2. Related Work. In a collaborative healthcare process, doctors and specialists from different medical
organisations share patient’s data in order to make a better diagnosis. Due to the current Big data exponential
data growth, solutions that store, process [10] and manage medical data are of a great interest. In this direction,
cloud computing represents a cost-effective solution for such needs [1, 2]. For instance, Marzini et al. [23] make
use of the cloud elasticity to manage basic activities in healthcare scenarios. On the other hand, the usage of
cloud computing for medical environments raises several issues such as reliability and security.

Regarding the reliability issue, Gawanmeh et al. [14] present a state of the art review on the verification
of reliability in healthcare systems using either simulation-based verification, formal methods such as automata
and prism [28, 29], or semi-formal methods. In the work presented in this paper, we focus on the formal
verification of the security aspect, especially access control.

Access control protects the system’s resources against unauthorized access via a set of policies. Jansen [18]
proposed XACML as a policy specification language for cloud applications. Yet, XACML policies may contain
conflicting and redundant rules, since XACML policies are sometimes managed by more than one administrator
[16]. Moreover, in collaborative applications, the XACML policies are aggregated from collaborative parties
which may raise conflicts between rules in different policies.

Several works make use of verification techniques such as model checking in order to detect XACML policy
anomalies. For instance, to detect conflicts between rules in a given policy, Martin et al. [22] encode the rules
in Coq [8], a tool built specifically for formal theorem proving. A rule is a Coq record with two fields: the
first field has the effect type, and the second field contains the srac type that combines the four elements of
XACML: subject-resource-action-condition. In order to compare the elements of type srac independently, the
authors split them into a defined normal form DNF. If two rules have overlap (srac types are identical) with
different effects, the rules are then in conflict. Otherwise, if the effects are similar, then the rules are redundant.
However, using Coq does not allow the automatic anomaly detection after the insertion of new rules, since their
proposed approach does not interact directly with the policies’ original format. In contrast, Mourad et al. [24]
use the Unified Modelling Language (UML) to detect conflicting and redundant rules prior to their enforcement
in the system. However, this technique does not allow completeness verification.

Regarding inter-policy conflict detection, Ramli [30] uses Answer Set Programming (ASP) in order to detect
incompleteness, conflicting and unreachable XACML policies. As a limitation of this approach, it is difficult
to model XACML expressions dealing with types of attributes that do not belong to AnsProlog [31], such as
strings. Huonder [17] proposes another approach to detect and resolve conflicts in XACML policies based on
mapping each target to n-dimensional space and overlapping the policies with different effects. The intersection
of all dimensions defines an inter-policy conflict. Yet, this technique cannot verify the policy’s completeness
property.

Besides verification-based techniques, many research efforts consider representing XACML policies as deci-
sion trees to detect and resolve conflicts. In this direction, Hu et al. [16] make use of Binary Decision Diagram
(BDD). In this work, each XACML attribute is encoded into an atomic boolean expression. The rules are then
functions of these expressions. Fisler et al. [12] suggested an extended version of BDD called Multi-Terminal
Binary Decision Diagram (MTBDD). Also, Gouglidis et al. [15] transform the XACML policies into Computa-
tion Tree Logic (CTL). These tree-based approaches have a main drawback, the state explosion in the decision
trees.

A comparison of the proposed approach in this paper with the seven existing methods is presented in Table
2.1. We have adopted the metrics proposed by Li et al. [20]:

1. Completeness: it guarantees that any access request has a response by the access control policy:
permit or deny.

2. Policy anomalies can be divided into two categories, namely intra-policy anomalies (conflicting rules
and redundancy) and inter-policy anomalies (inconsistency and similarity):

• Conflicting rules: two rules are in conflict in the same security policy.
• Redundancy : the existence of two rules that have the same effect (permit or deny) such that one
of the two rules can be removed without changing the result of the policy.

• Inconsistency : the existence of two or more rules in different policies that are in conflict.
• Policy similarity : two policies can be similar and represented differently.
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Table 2.1

The Capabilities of the Proposed Access Control Verification Approaches

Approach Technique Completeness
Policy anomalies

Flexibility
Conflicting rules Redundancy Inconsistency Similarity

[22] Coq No Yes No No No No
[24] UML No Yes Yes No No No
[30] ASP Yes No No Yes No No
[17] n-dimensions No No No Yes No No
[16] BDD No Yes Yes Yes No No
[12] MTBDD No No No No Yes No
[15] CTL No Yes No No No Yes

Our Proposed method Automata Yes Yes Yes Yes Yes Yes

3. Flexibility: It indicates whether a method can detect anomalies at run-time (i.e. detects if the new
inserted rule raises anomalies with the existing rules prior to its enforcement).

Table 2.1 underlines our contributions compared to existing works. The proposed approach uses automata
to represent the XACML policies. This formalism, allow us to detect several XACML anomalies (intra and
inter policies conflicts) and to verify the completeness property using the same formal model. In addition, the
approach has the ability to detect conflicting rules at run-time. In fact, the proposed approach models each
security policy with an automaton. To verify if a new rule raises conflicts with the existing ones, the proposed
approach consists in applying the synchronous product to the rule’s automaton and the policy’s automaton.
The conflict detection process is then applied to the resulted automaton. Hence, there is no need to integrate
the new rule into the policy to do the verification.

3. Preliminaries. The proposed approach consists in verifying XACML (eXtensible Access Control Mar-
kup Language) security policies using automata. Therefore, in this section, we define the two concepts: automata
and XACML.

3.1. Automata. Finite state automata (or briefly automata) are used, for example, for pattern matching
in text editors [3], for lexical analysis in compilers, for communication protocol specifications, for language recog-
nition [9], and for firewall design analysis [19]. An automaton can be formally defined by A = (Σ, Q, q0, Qf , δ)
where Σ is a finite set of events (also called alphabet), Q is a finite set of states, q0 is the initial state and
Qf ⊆ Q is a finite set of final states. δ : Q × Σ → Q is the transition function, where δ(q, σ) = r means that
the execution of the event σ (or the reading of the term σ) from state q leads to state r. δ(q, σ) = r can also be
written as qσr.

An automaton A consists of states linked by labelled transitions, and represented by a graph whose nodes
and arcs are the states and the transitions of A, respectively. There is one initial state (with a small incoming
arrow) and one or more final states (double circled).

In this paper, we use the notation S = {σ1, σ2, . . . , σp} (it can be also denoted as S = {σ1}∪{σ2}∪ . . . {σp})
for a set of events. The notation qSr means that if q is the current state, then every event σk from the set S

leads to the state r. The arc labelled S, linking q and r, is equivalent to many arcs labelled σ1, . . . , σp linking q

and r.
A finite event sequence (more briefly, sequence) is accepted by A if it starts in the initial state q0 and

terminates in one of the final states of A. The language of A, denoted LA, is the set of sequences accepted
by A.

The rich theory of automata allows us to compose models of systems, behaviours, mechanisms due to the
operations that can be performed over automata. For instance, the synchronous products of two automata A1

and A2 over the alphabet Σ is an automaton over the alphabet Σ whose language is LA1
∩LA2

. This intersection
permits us to track the behaviour of the global system (consisting of the two subsystems modelled by A1 and
A2) in order to detect anomalies and conflicts.

3.2. XACML. XACML (eXtensible Access Control Markup Language) has been widely used as a policy
specification language in both academia and industry. Its first version was released by Anderson et al. [4] in
2003 and used in the context of distributed systems [21]. Two years later, OASIS extended the old version and
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proposed XACML 3.0 [25]. XACML assumes an architecture containing a PDP (Policy Decision Point), PEP
(Policy Enforcement Point) and PAP (Policy Administration Point). The XACML request to access a specific
resource is redirected to PEP. The PEP then extracts the attributes from the request and sends them to the
PDP which searches in the policy repository for the appropriate policy that matches the request. The PDP
then sends a response to the requester, which can be: Permit, Deny, Not Applicable or Indeterminate. The first
two responses are obvious. Not Applicable is applied if no rule or policy matches the request. Indeterminate is
applied if the system cannot interpret the request due to the lack of attributes or problems of connection. The
PAP is responsible to associate the new added rules to the appropriate policy.

The main component of XACML Policy is composed of a Target that identifies the capabilities that should
be exposed by the requester (the targeted resources for example), and some Rules. Each Rule contains facts
(Subjects, Resources, Actions and Environment) for access control decisions and an Effect that can be either
Permit or Deny.

Policies can be combined using PolicySet that specifies the combining algorithms in case if two security
policies provoke permit/deny conflicts. XACML offers four combining algorithms:

• permit-override: If at least one policy is evaluated as ”permit”, the integrated output will also be
”permit”.

• deny-override: If at least one policy is evaluated as ”deny”, the integrated output will also be ”deny”.
• first applicable: The result of the combining algorithm is the result of the first policy that evaluates to
Permit or Deny.

• only-one-applicable: The result is the one of the only applicable policy. If we have more than one policy,
then the result is Not Applicable.

A XACML policy contains hundreds and thousands of rules, which make it difficult to detect policy conflicts
directly from the XML file. Yet, identifying conflicts in XACML policies is a primordial task for their designers.
In fact, the choice of the combining algorithms relies essentially on the information from conflict diagnosis. The
XACML policies may contain two kinds of conflicts: intra-policy (conflict between rules of the same policy) and
inter-policy (conflict between rules of several policies defined under the PolicySet).

4. CPVS: Cloud Policy Verification Service. Cloud computing offers several services, such as com-
puting, authentication, and storage. These services could support collaborations among different organisations.
Yet, such collaborations need to be regulated by a set of access control policies to protect the shared resources.
However, the current Cloud architectures do not provide to the users the capability to define their own ac-
cess control policies (high level control policies). For instance, Openstack is a widely used Cloud open source
software that offers a storage service via Swift [5]. Although the Swift component supports fine-grained access
control to objects (resources), it remains specific and at a low level of control. To address this issue, we have
developed a middleware denoted curlX [6] that permits the collaborators to express their own security policies
using XACML and enforce them using the cloud primitives such us curl (client url request) library. The user
sends a curl request to the middleware asking for accessing a resource stored in Swift (see Fig. 4.1). The curl
request is of the form:

curl−X <PUT |POST> −i−HX−Auth−Token :<TOKEN> −HX−Container−Read :<ACL> <STORAGE−

URL>/<container>.

The authentication token and the storage url are provided by Keystone. Keystone is an authentication
service in Openstack. It provides each authenticated user by tokens that expire after a specific time delay. The
curl request is redirected to the translator component to be transformed into XACML request and redirected
to the PEP. After retrieving the main attributes (subjects, resources, and action), PEP sends them to PDP in
order to search for an adequate policy, and then decide if the request is permitted or not.

In the first version of curlX [7], we did not take into account the analysis of XACML policies. For this
purpose, in this paper, we integrate a new component into curlX denoted CPVS (Cloud Policy Verification
Service). Figure 4.1 presents the global architecture of curlX after the integration of CPVS. It is a policy
verification framework that consists of the following four verification modules (see Fig. 4.2):

• Intra-policy anomaly detection: responsible for detecting conflicting and redundant rules in a single
security policy.
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Fig. 4.1. The global architecture of curlX

• Inter-policy anomaly detection: if the policy cache contains combined security policies, this module is
used to detect inconsistency and similarity between the combined policies.

• flexibility: medical organisations may add a new rule to their security policies. However, this new rule
may create a conflict with the existing ones. Hence, this module is responsible for verifying if the new
rule generates any conflicts or redundancies prior to its enforcement.

• Policy properties verification: verifies the completeness for each policy stored in the cache.
Each verification module communicates with the policy cache via the Xparser sub-module that parses the

XACML policies and extracts its components in a hierarchical way.

5. Modelling XACML Policies by Automata.

5.1. Use Case: Stroke Accident. Healthcare organisations provide several services to their patients:
emergency services, day procedures, diagnostic services, therapy services, etc. For each service, an organisation
may have to produce documents (e.g. personal records, X-ray, brain scan, electroencephalography (EEG), etc).
Those documents are typically stored in the organisation’s data center. An organisation’s data should be
accessible by stakeholders from other organisations, so that they can collaborate in an elaborated diagnosis.
However, information sharing must be regulated in order to guarantee the integrity and confidentiality of the
shared information. This leads to the necessity of having policies regulating the medical data sharing.

Hereafter, we consider a reference scenario of a stroke accident presented by the Moroccan emergency
medical service of Rabat [26]. In this scenario, three kinds of medical organisations are involved: two hospitals
(H1 and H2), one emergency medical service (EMS) and two university hospitals (UH1 and UH2). These
organisations are involved in a collaborative session (presented by a sequence of accesses) in order to perform
an effective diagnosis to the transferred patient. In fact, doctors located in the host hospital (the hospital
where the patient has been transferred) can make use of the experiences of specialists located in other medical
organisations.

Our proposed scenario is that of a patient that has an accident and is transferred to the nearest hospital,
which we call host hospital and denote by H1 . The Moroccan medical system relies on distributed storage: the
patient can have his medical file in another hospital H2 . Once the patient is in H1 , the generalist calls EMS
and a regulator receives the call and inserts the patient’s information in the system. The regulator looks for
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Fig. 4.2. The four modules of CPVS (Cloud Policy Verification Service)

the available specialist doctors: radiologists, cardiologists, neurologists etc., in other hospitals or in university
hospitals. Once he finds a list of available doctors, the regulator creates a collaborative session. During the
collaborative session (whose aim is to elaborate a diagnosis), the specialist doctors may ask the host hospital
to provide them with some scans and a part of the medical file of the patient.

Each organisation regulates the access to its own resources by enforcing a set of access control rules. For
example, we consider the rule R1 in a hospital H1 that permits the radiologists of H1 to write into the personal
record (PR) and the scans of all the patients belonging to this hospital. In the rest of the paper, we adopt three
essential notions that are used in the security policies: subjects, objects (resources), and actions. Therefore, in
the next subsection we formally describe each one of them. This description is essential for the construction of
automata.

5.2. Formal Description of the Collaborating Organisations. Let Org denote the set of organisa-
tions involved in the collaborative session. Each organisation has:

• Subjects: they are human resources. Formally, we have:
Subjects = Doctors ∪ Nurses where
Doctors =

∪
x∈Org doctorsx where

doctorsx = generalistsx ∪ radiologistsx ∪ regulatorsx ∪ cardiologistsx ∪ neurologistsx
• Objects: they are physical and computer resources (hardware, software). For the sake of simplicity,
we consider here only the following categories: personal records (PR), scans, audio, lists of available
doctors (listDoctorsx), and the histories of the collaborative session’s discussion (collSessDiscx). We
obtain formulas like:
Objects =

∪
x∈Org objectsx where

objectsx = PRx ∪ scansx ∪ audiosx ∪ listDoctorsx ∪ collSessDiscx

For the rest of the paper, we consider four types of scans: MRI (Magnetic Resonance Imaging), CAT (Com-
puted Axial Tomography), EEG (Electroencephalography) and MRA (Magnetic Resonance Angiogram). For
the purpose of illustrating our study, we will consider only the following three categories of medical organisations
that are present in most scenarios: hospitals, university hospitals, and emergency medical services. For the sake
of simplicity, we will restrict their sets of subjects and objects as follows (Figure 5.1):

1. Hospitals H1, H2, H3, . . .
The subjects of a hospital are: generalists, radiologists, and nurses. Formally:
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Fig. 5.1. Organisation involved in the collaborative diagnosis.

subjectsHi
= generalistsHi

∪ radiologistsHi
∪ nursesHi

The objects of a hospital are: personal records of patients regularly followed by the hospital, or of
patients transferred to the hospital in emergency cases; and scans consisting of MRI, MRA, CAT, and
EEG. Formally:
objectsHi

= PRHi
∪MRIHi

∪MRAHi
∪ CATHi

∪ EEGHi
.

2. University hospitals UH 1, UH 2, UH 3, . . .
The subjects of a university hospital are specialist doctors (for our case, neurologists, cardiologists and
radiologists). Formally:
subjectsUHi

= neurologistsUHi
∪ radiologistsUHi

∪ cardiologistsUHi
.

3. Emergency medical services EMS1, EMS2,. . .
The subjects of an emergency medical service are regulators and generalists. Formally:
subjectsEMSi

= generalistsEMSi
∪ regulatorsEMSi

.
The objects of an emergency medical service are personal records of the hosted people and who passed
through the emergency case, audio records, list of the doctors of hospitals and university hospitals, and
history of the collaborative session’s discussions. Formally:
objectsEMSi

= PREMSi
∪ audiosEMSi

∪ collSessDiscEMSi
∪ listDoctorsEMSi

.

5.3. From XACML Policies to Automata. XACML policies have three levels, namely PolicySet,
Policy and Rule. Rule is the single entity that describes the particular access control policy. Therefore, in
this paper, we focus mainly on the formalisation of Rule. Policy is the sequence (combination) of several rules.
PolicySet is the sequence (combination) of two or more policies.

A rule is formally defined by triplet (S, O, aU ), where S is a set of subjects, O is a set of objects, and aU
represents a permission. More precisely, in aU we have a = Deny or Permit, and U is a set of actions like read
and write. The meaning of (S, O, aU ) is:

• if a=Permit, then any action in U applied by a subject of S to an object of O is permitted;
• if a=Deny, then any action in U applied by a subject of S to an object of O is forbidden.
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The rule described at the end of Sect. 5.1 can be written as follows: (radiologistH1
, scansH1

∪ PRH1
, pwrite).

This gives the right to the radiologists of hospital H1 to perform the write action on the two categories of
objects: the scans and personal records of all patients of hospital H1.

In XACML, a rule is described by: an Effect and a Target. The Effect can have two values: ”Permit” and
”Deny”. The Target is a combination of Match elements. Each Match element describes an attribute that a
Request should match in order to activate a policy. There are four attribute categories in XACML 3.0, namely:
(a) subject attribute is the entity requesting the access, e.g., generalist, radiologist, etc; (b) resource attribute
is the object or the required data, e.g., EEG, MRA, etc; and (c) action attribute defines the type of access
requested, e.g, read, write, delete, etc. The evaluation of the Match attributes extracted from the rule permits
the evaluation of the request. Even if the request matches one of the rules, the algorithm continues until the
last rule in the PolicySet.

Our proposed automata-based approach is realized as follows: From the XACML representation of a policy
F, we construct an automaton A that models F, and then our analyses of F are done on A. The automaton A
generated from a policy F has the following characteristics: from the initial state of A, we have several possible
paths where each path consists of a pair of transitions that leads to a final state associated to a permission
aU (see Sect. 3.1). Each path represents a rule (S, O, aU ) of F as follows: the first and second transitions
are labelled S and O respectively, and the reached state is associated to aU . The set of paths of A represents
therefore a set of rules that constitute F. Table 5.1 indicates how the constituents of a XACML policy are
represented in the corresponding automaton.

Table 5.1

How the constituents of a XACML policy are represented in the corresponding automaton

XACML Policies Finite State Automaton

Rule Word
Set of subjects and objects Alphabet
ActionMatch attributes Actions associated to the final states
SubjectMatch attributes Labels of first transitions
ResourceMatch attributes Labels of second transitions

Consider a medical organisation x and its security policy consisting of rules x1, x2, . . . , xn, where n is the
number of rules. The construction of the automaton from the policy is done in four steps [19]:

• Step 1: Attribute extraction from a XACML policy. Algorithm 1 parses the XACML policy
using the function getDetailPolicy that extracts rules from the XML file and expresses each one of
them formally by a triplet (S, O, aU ). Each rule has: Effect (a), SubjectMatch (S), ResourceMatch (O),
Action (U ).

• Step 2: Automaton for each rule. each rule xi = (S, O, aU ) obtained in Step 1 is described by an

automaton with four states x0
i , x

1
i , and x2

i and x
#
i , where x0

i represents the initial state, x2
i and x

#
i are

final states. The pair of states x0
i and x1

i are linked by a transition labelled S, and the pair of transition
x1
i and x2

i are linked by a transition labelled O. The permission aU is associated to the final state x2
i .

Transitions labelled ̸=S and ̸=O link x0
i and x1

i to x
#
i respectively. ̸=S denotes the set of subjects of all

the collaborative medical organisations, except the subjects of S. ̸=O denotes the set of objects of the
medical organisation owning the policy, except the objects of O. The final state x2

i is called match state,
because it is reached for any request matching the attribute values of the rule xi, i.e. for any subject s
∈ S and object o ∈ O. The final state x

#
i is called no-match state, because it is reached if the request

does not match the attribute values of xi. As an example, Fig. 5.2 represents the automaton obtained
from the rule presented in the end of Section 5.1.

• Step 3: Standardize the intervals of the automata. The automata obtained in Step 2 do not
have the same alphabet, the objective here is therefore to rewrite the transitions of the automata so
that they have the same alphabet (this rewriting is useful for Step 4). This is realized by partitioning
each of the domains of subjects and objects into a set of disjoint sets. Such partitioning permits to
express a transition of an automaton as a union of sets of the partition.
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Algorithm 1 Algorithm of Step 1
Input: XACML Policy
Output: S,O, a, U
1: procedure getDetailPolicy(Policy.xml)
2: document← parse(Policy.xml)
3: root← document.getDocumentElement() ◃ parses the tags of the xml file
4: while root ̸= EndofDocument do

5: for i← 0, nbRootNodes do

6: if node.getName = ”Rule” and node.getAttributes ̸= null then

7: a← node.getAttributes.getNamedItem(”Effect”)
8: if node.getNodeName = ”SubjectMatch” then

9: S ← Attribute.getTextContent
10: else if node.getNodeName = ”ResourceMatch” then

11: O ← Attribute.getTextContent
12: else if node.getNodeName() = ”ActionMatch” then

13: U ← Attribute.getTextContent
14: end if

15: end if

16: end for

17: end while

18: return S,O, a, U

19: end procedure
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Fig. 5.2. Automaton A1 obtained in Step 1 for the rule R1.

For example, the automaton of Fig. 5.2 is transformed into the automaton of Fig. 5.3. The set
scansH1

has been partitioned into 4 sets MRIH1
,MRAH1

,CATH1
and EEGH1

, which implies that the
transition labelled scansH1

is replaced by four transitions labelled MRIH1
,MRAH1

,CATH1
and EEGH1

,
respectively.
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Fig. 5.3. Automaton A∗

1
obtained from A1 of Fig. 5.2

• Step 4: Product of automata. In order to model the security policy defined in a XACML policy file,
we combine the automata resulting from Step 3 by an operator called synchronous product. Hereafter,
we consider the policy presented in Table 5.2 as an example. It contains seven rules regulating access
to different resources (objects).
The resulting automaton representing the policy of an organisation x is denoted Ax. Each of its states
is a combination of states (u1, u2,. . . , un) of the various combined automata, hence each ui = x

j
i or

x
#
i , for j = 1 or 2. A final state x2

... may be associated to one or more permissions. For the sake of

clarity, a state of Ax is noted x
j
i1,i2,...

, where we indicate only the indices ik such that uik = x
j
ik

(i.e.

uik ̸= x
#
ik
), for j = 1 or 2. For example, the initial state is noted x0

1,2,...,n. A state is noted x# if all its
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Table 5.2

Example of a XACML policy

RuleID Effect SubjectMatch ResourceMatch ActionMatch
R1 Permit generalist PR read
R2 Permit neurologist EEG read
R3 Permit radiologist Scans write
R4 Deny radiologist Scans write
R5 Deny generalist PR read
R6 Permit neurologist EEG read
R7 Permit generalist PR read

components are x
#
i . For example, if we apply the four steps to the policy of Table 5.2, we obtain the

automaton of Fig. 5.4.
Let us explain the notation used for match-states, for example the match-state h2

1,5,7 associated to per-
missions (Pread, Dread, Pread). This state is reached by the pair of transitions (generalist, PR), i.e. when a
generalist wants to have access to a personal record of a patient. The three indices 1, 5, and 7 mean that this
access is matched by the rules 1, 5 and 7. The three permissions are respectively associated to the three indices,
i.e.: R1 and R7 permit the read access, and R5 forbids the read access.

h0
1...,7AH

h1
3,4

h1
1,5,7

h1
2,6

h2
3,4

(Pwrite, Dwrite)

h2
1,5,7

(Pread, Dread, Pread)

h#

h2
2,6

(Pread, Pread)

Scans

Scans

generalist

PR
∪
EEG

PR

PR ∪ Scans \ EEG

EEG

neurologist

rad
iolo

gist

Fig. 5.4. Automata AH Modelling the Security Policy of Table 5.2.

6. Intra- and Inter-security Policy Anomaly Detection. In a XACML policy, we can specify the
policies of several entities (or organisations, like hospitals): the policy of each organisation is represented by
Policy. PolicySet specifies how the different Policy components are combined. We study therefore two types of
anomalies: intra-policy anomalies that correspond to anomalies between rules of a same policy, and inter-policies
anomalies that correspond to anomalies between rules of different policies. In this paper, we consider two types
of intra-policy anomalies: redundancy and conflicting rules, and two types of inter-policy anomalies: similarity
and inconsistency.

6.1. Intra-policy anomaly detection. Let us first consider intra-policy anomalies of a policy F and
show how they are detected by the automaton of F.

6.1.1. Detecting redundant rules. In a policy F, a rule Rj is redundant to a rule Ri if the result of F
is not changed by removing Rj and keeping Ri.

Proposition 1. Consider a policy F and its automaton AF . A rule Rj is redundant to a rule Ri if for

every match-state x2
j1,j2...

of AF :

1. the match-state has the index j only if it has also the index i, and

2. i and j are associated to the same permission.
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Consider, for example, the policy of Table 5.2 and its automaton of Fig. 5.4. Rules 2 and 6 are mutually
redundant to each other, because: 1) the indices 2 and 6 are in the state h2

2,6 and there is no other state where
the indices are not together, and 2) the same permission Pread is associated to both indices. Therefore, we can
remove either R2 or R6 without changing the result of the policy.

6.1.2. Detecting conflicting rules. In a policy F, two rules Ri and Rj are conflicting if they can match
the same subjects and objects (s,o) and have different permissions.

Proposition 2. Consider a policy F and its automaton AF . Rules Ri and Rj are conflicting if there exists

a match-state x2
j1,j2...

of AF such that:

1. the match-state has the indices i and j, and

2. i and j are associated to different permissions.

Consider, for example, the policy of Table 5.2 and its automaton of Fig. 5.4. The match-state h2
3,4 implies

that R3 and R4 are conflicting. Intuitively, R3 permits radiologists to read scans while R4 forbids it. Also, the
match-state h2

1,5,7 implies that R5 is conflicting with R1 and R7. Intuitively, R1 and R7 permits generalists to
read PR while R5 forbids it.

Algorithm 2 in Appendix A regroups the steps of detecting intra-policy conflicts. The algorithm consists
in extracting the final states using the function getFinalNodes. The algorithm compares then the permissions
associated to each final state, if they are different, the rules are considered as conflicting rules, and otherwise
they are redundant.

6.2. Inter-policy anomaly detection. Let us now consider inter-policy anomalies of two policies F1 and
F2. To detect this type of anomalies, we need here to construct an automaton that combines the automata AF1

and AF2. This is equivalent to consider the global policy F obtained by putting together the rules of F1 and
F2 and then constructing the automaton AF of F.

6.2.1. Detecting similar policies. Two policies F1 and F2 are similar if in every situation, the decision
of F1 is similar to the decision of F2.

Proposition 3. Consider two policies F1 and F2 and the automaton AF of the policy F that regroups F1

and F2. F1 and F2 are similar if in F: every rule of F1 is redundant to a rule of F2, and every rule of F1 is

redundant to a rule of F2.

Proposition 3 implies that similarity can be verified by detecting redundancy between the rules of the
policies using Proposition 1.

6.2.2. Detecting inconsistent policies. Two policies F1 and F2 are inconsistent if there exists a situation
where they have contradictory (i.e., different) decisions.

Proposition 4. Consider two policies F1 and F2 and the automaton AF of the policy F that regroups F1

and F2. F1 and F2 are inconsistent if in F: there exist a rule of F1 and a rule of F2 which are conflicting.

Proposition 4 implies that inconsistency can be verified by detecting conflicting rules using Proposition 2.
Therefore, the same logic of the two procedures of Algorithm 2 can be applied to detect inconsistency and

policy similarity. The only difference is the input of the algorithm: instead of an automaton corresponding to
one policy, the input is replaced by a synthesized automaton of two policies (Algorithm 3 in Appendix A).

7. Verification of the Completeness Property. Besides the intra- and inter-security policy anomalies,
it is important to assure the evaluation of security properties to guarantee the correctness of access control
policies. Most of the existing Cloud verification methods focus mainly on the system behaviour verification
and do not take into consideration the security policies. Therefore, designing a dedicated tool that targets the
verification of security properties in the Cloud is an important issue to be addressed [13]. In this section, we
describe a formal method based on the automata generated in Section 5 to detect and verify the completeness
property. Completeness guarantees that each access request is either accepted or denied by the access control
policy.

Proposition 5. A security policy P is complete if and only if the corresponding synthesized automaton

AP has no no-match state.
For instance, the security policy presented in Table 5.2 is incomplete because its corresponding automaton

in Fig. 5.4 has a no-match state denoted h#. The 3 paths leading to h# correspond to the following 3 situations:
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• A radiologist requests access to a PR or EEG.
• A generalist requests access to a scan.
• A neurologist requests access to a PR or a scan that is not EEG.

Intuitively, the security policy of Table 5.2 does not take any decision in these 3 situations. Algorithm 4 in
Appendix A presents the procedure isComplete that verifies if the input automaton has a no-match state.

8. Evaluation of Space and Time Complexities. Let n be the number of rules of a policy, and d1 and
d2 be the numbers of bits to code the subjects and objects, respectively. Hence, the maximum possible number
of subjects and objects are 2d1 and 2d2 , respectively. Let D = d1 + d2. We consider two notions called great

fields and small fields defined by Khoumsi et al. [19]. A great field is a field whose domain contains more than
n values, and a small field is a field whose domain contains at most n values. We then consider two variables:
µ, the number of great fields; and δ, the sum of the number of bits to code the small fields.

By adapting the results of Khoumsi et al. [19] to our context, we obtain Proposition 6 (the proof of this
proposition is in Appendix B).

Proposition 6. The space and time complexities of automata construction and completeness detection are

in O(nµ+1 × 2δ), which is bounded by both O(n3) and O(n× 2D).
The bounds of the complexities for the procedures of policy analysis are obtained by multiplying the above

values by n. Hence, we obtain the following proposition:
Proposition 7. The space and time complexities of redundancy and conflict detections are in O(nµ+2×2δ),

which is bounded by O(n4) and O(n2 × 2D).
The latter result holds also for detecting similarity and inconsistency between two policies, but by replacing

n by n1 + n2, where n1 and n2 are the numbers of rules of the two policies.
As an example, we can consider a policy with n = 500 rules where the maximum number of subjects is 256

(so the subjects are coded in 8 bits: 28 = 256) and where the maximum number of objects is 131072 (hence the
objects are coded in 17 bits: 217 = 131072). Hence:

• D = 25 = 8+17 = total number of bits to code the great and small fields.
• µ = 1 = number of great fields: there is one great field which is ”objects”, because 217 >500.
• 2− µ = 1 = number of small fields: there is one small field which is ”subjects”, because 28 ≤ 500.
• δ = 8 = number of bits to code the small field subjects

If we use the expression O(nµ+1 × 2δ) which depends on the great and small fields, we obtain: O(nµ+1 × 2δ) =
O((5002)× (28)) = O(64 millions). However, if we use the two expressions O(n2) and O(n× 2D) which do not
depend on the great and small fields, we obtain:

• O(n2) = O(5003) = O(125 millions)
• O(n× 2D) = O(500× 225) = O(16.7 billions)

From the example, we can conclude that by considering the great and small fields, we obtain a more precise
estimation of the complexity. Note that:

• when all the fields are great, we obtain O(nµ+1 × 2δ) = O(n2),
• when all the fields are small, we obtain O(nµ+1 × 2δ) = O(n× 2D).

From Proposition 6, the time and space complexities of automata construction and completeness detection
are upper-bounded by O(n3) and O(n×2D). Let Ns and No be the maximum numbers of subjects and objects,
respectively. We have 2D = 2d1 × 2d2 , Ns = 2d1 and No = 2d2 . Therefore, O(n× 2D) = O(n× Ns × No). We
deduce that our complexities of automata construction and completeness detection exceeds neither the order of
the polynomial n3 nor the order of n×Ns ×No.

With the same reasoning on Proposition 7 we obtain that our complexities of redundancy and conflict
detections exceed neither the order of the polynomial n4 nor the order of n2 ×Ns ×No.

In conclusion, our complexities are at most polynomial in n and linear in Ns and No.

9. Implementation and Evaluation. We have implemented our policy analysis service CPVS (Cloud
Policy Verification Service) in Java. This service is integrated into curlX, a middleware integrated into Open-

stack. Based on our policy anomaly analysis mechanism, CPVS consists of four core components: Inter-policy
anomaly detection module, intra-policy anomaly detection module, policy property verification module, and
flexibility module. The modules are described in detail in Section 4. CPVS makes use of the DOM API pro-
vided by the Sun XACML implementation in order to parse the XACML policies and extract the attributes.
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Fig. 9.1. Performance Improvement for Intra-policy Anomaly Detection

We have implemented a Domain Specific Language (DSL) to support the construction of automata. In order
to evaluate the efficiency and effectiveness of the proposed solution, first we need large policy data sets. Un-
fortunately, no one has been published due to confidentiality constraints. Hence, we have developed a random
policy generator in order to generate a large number of XACML policies.

For scalability, it is also important to note that creating subjects and objects with no semantic relationship
(categorisation) is an inefficient approach. It is better to regroup the subjects and objects in subsets or categories
to reduce their sizes. For instance, we can have 10 objects: 4 files consisting of prescriptions and 3 scans
(EEG ,MRI ,BrainScan), and 3 documents containing information about the patient. For this example, we
have two sub-categories: Scans and PR (prescriptions and documents). In this way, instead of having 10 atomic
objects, we have only 2 subsets. This reduces the number of states in the final policy automaton, which then
reduces the time of anomaly detection.

We evaluated the efficiency and effectiveness of CPVS for synthetic XACML policies using 10 synthetic
generated policies. Our experiments were performed on an Intel Core 2 Duo CPU 2.00 GHz with 3.00 GB RAM
running on Windows 7. We adopted three types of performance measurement related to intra-policy anomaly
detection, inter-policy anomaly detection and incompleteness detection.

The time required by CPVS to detect anomalies, such as redundancy and conflicts, depends on the time
of parsing and comparing the final states of the automaton. From Fig. 9.1, we can notice that the times of
conflict and redundancy detections are quasi equal, which reflects the results of time complexity of Section 8.

Furthermore, we generated synthetic policies consisting of 100 rules, and we combined them using the
synchronous product. Figure 9.2 presents the performance of CPVS to detect inconsistency and similarity
between different set of policies (2, 4 . . . 10).

The verification of completeness, which consists in finding the no-match state in the policy’s automata,
depends on the location of such a state. The performance of such verification is quasi constant (Fig. 9.3). It
remains 2 ms for policies that contain 100, 200, 300 and 400 rules, and then it goes to 3 ms for the four other
policies.

10. Conclusion. We have proposed a formal approach based on automata to detect XACML policy
anomalies and verify the policy completeness. Our proposed approach consists of four steps: (1) extracting
attributes from XACML policies; (2) modelling each rule by an automaton; (3) standardising the sets of
transitions in automata; and finally (4) forming products of automata to model the security policy. The
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Fig. 9.2. Performance Improvement for Inter-policy Anomaly Detection

resulted automaton is used to detect anomalies based on analysing its final states. We evaluated the time and
space complexities for anomaly detection. The approach has been implemented in a Cloud service called CPVS

(Cloud Policy Verification Service) integrated into a middleware denoted curlX. The advantage of our approach
is that it detects several anomalies in XACML policies at two different levels using the same formal model. In
fact, it can detect intra-policy anomalies such as conflicts and redundancies, and inter-policy anomalies such as
inconsistencies and similarities.

In future work, we intend to propose a formal approach to resolve the detected anomalies based on a
dynamic aspect. The resolution takes into consideration the XACML combining algorithms. Moreover, the
concept of delegation is often used in the domain of e-health, so we intend to verify the impact of delegation of
roles on the security policies.
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Appendix A. Algorithms of Anomaly Detecing and Completness Verification.

Algorithm 2 Intra-policy Anomaly Detection
Input: Policy Automaton
Output: Redundancy Set RS and Conflicts Set CS
1: procedure IsRedundant(Automaton) ◃ Verify if there are any redundant rules
2: nodes← getF inalNodes(Automaton) ◃ Extract the final states from the automaton
3: while node.size ̸= 0 and nodes ̸= null do

4: for i← 0, node.size do

5: for j ← i + 1, node.size do

6: if node.get(i) = node.get(j) then ◃ The permissions of the final states are equal
7: RS.add(i,j) ◃ Add both rules i and j to the redundant Set
8: end if

9: end for

10: end for

11: end while

12: return RS
13: end procedure

14: procedure hasConflict(Automaton) ◃ Verifies if there are any conflicting rules
15: nodes← getF inalNodes(Automaton)
16: while node.size ̸= 0 and nodes ̸= null do

17: for i← 0, node.size do

18: for j ← i + 1, node.size do

19: if node.get(i) ̸= node.get(j) then ◃ The permissions of the final states are not equal
20: CS.add(i,j) ◃ Add both rules i and j to the conflict set
21: end if

22: end for

23: end for

24: end while

25: return CS

26: end procedure

Algorithm 3 Inter-policy Anomaly Detection
Input: Policy1P1, Policy2P2

Output: Inconsistency Set IS and Similarity Set SS
1: procedure InterPolicyAnalyzer(Automaton) ◃ Detects the inconsistency and the similarity
2: ProductAutomaton← generateProductAutomaton(P1,P2) ◃ The automaton of the global policy
3: IS ← IsRedundant(ProductAutomaton)
4: SS ← hasConflict(ProductAutomaton)
5: Return IS and SS

6: end procedure

Algorithm 4 Verification of the Completeness Property
Input: Policy Automaton
Output: Verification of Completeness (C)
1: procedure isComplete(Automaton)
2: nodes← getF inalNodes(Automaton)
3: while node.size ̸= 0 and nodes ̸= null do

4: for i← 0, node.size do

5: if node.get(i) = Ei then ◃ Ei represents a non-match state

6: return The policy is not complete
7: end if

8: end for

9: end while

10: end procedure

Appendix B. Proof of Proposition 6. We use the notation Ψi = min(2di ; n). We omit the complexity
of Step 1 because it needs a fixed, and finite time O(1)).
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B.1. Complexity of Step 2. The space and time complexities to construct one state or one transition of
Ai are in O(1). Each Ai contains 4 states and a limited number of transitions from each state. Hence, the space
and time complexities to construct each Ai are in O(1). Since we have to construct n automata, the space and
time complexities of Step 2 are in O(n).

B.2. Complexity of Step 3. This step consists in replacing each set of objects and subjects by the
corresponding transitions. The number of transitions from r

j
i of A∗i is bounded by both O(2dj ) and O(n) which

means O(Ψi). The bound O(2dj ) is because 2dj is the number of possible values of either subjects or objects,
which is necessarily ≥ than the number of transitions from r

j
i . Hence, the space and time complexities to

construct all the transitions of A∗i are in O(Ψ0 +Ψ1). Therefore, the space and time complexities to construct
all the A∗i are in O(n× (Ψ0 +Ψ1)).

B.3. Complexity of Step 4. Let us consider the construction of AF in Step 4 level by level, where the
states of level i are those reached after i transitions from the initial state. At each level i, the transitions links
level i -1 to level i. The space and time complexities to construct a state r = <r1;. . . ; rn> of AF are in O(n),
because we need to construct and store the n components of the state. The space and time complexities to
construct a transition between two constructed states of levels i and i+1 are in O(1), because we need to store
the label of the transition.

Level 0: The unique state is the initial state r0 = <q01 ;. . . ; q
0
n>. The space and time complexities of its

construction are in O(n).
Level 1: Using the same reasoning as in the proof of Step 3, the number of transitions from r0 is in O(Ψ0).

Hence, the number of states at level 1 is in O(Ψ0). Therefore, the space and time complexities to construct all
the transitions from level 0 to level 1 are in O(Ψ0), and the space and time complexities to construct all the
states at level 1 are in O(n×Ψ0).

Level 2: The number of transitions from each state of level 1 is in O(Ψ1). Since the number of states of
level 1 is in O(Ψ0), we obtain that the number of states at level 2 and the number of transitions from level 1 to
level 2 are in O(Ψ0 ×Ψ1). Therefore, the space and time complexities to construct all the states at level 2 are
in O(n × Ψ0 × Ψ1), and the space and time complexities to construct all the transitions from level 1 to level
2 are O(Ψ0 × Ψ1). At each level j, the number of states is also bounded by 2n, because each state is defined
by n 2-value components ri (ri = q

j
i or ri = Ei, for i = 1 . . . n). But this bound has no influence due to the

assumptions n>D and 2n>n2.
All levels: By adding the complexities of all levels, we obtain that the space and time complexities of

constructing AF are in O(n×Ψ0)+ O(n×Ψ0 ×Ψ1).
From di ≥ 1 and n > D, we obtain Ψi ≥ 2, from which we deduce that Ψ0+(Ψ0 ×Ψ1) ≤ 2×(Ψ0 ×Ψ1). Hence,
the space and time complexities of constructing AF are in O(n×Ψ0 ×Ψ1).

Associating permissions: It remains to compute complexities of associating permissions to the match
states of AF . The space complexity of associating a permission to a match state of AF is in O(1), because we
only need to store the permission associated to the state. The time complexity of associating permissions to all
match states of AF is in O(n), because we may need to consult the n components of the state.

B.4. Total complexity. Since Steps 1 to 3 are less complex than Step 4, we obtain that the space and
time complexities for constructing AF are in O(n×Ψ0×Ψ1). By definition of µ and δ, we obtain n×Ψ0×Ψ1=
nµ+1 × 2δ, which can be easily shown to be smaller than both n3 and n× 2D.
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