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IMPACT OF SINGLE PARAMETER CHANGES

ON CEPH CLOUD STORAGE PERFORMANCE

STEFAN MEYER AND JOHN P. MORRISON ∗

Abstract. In a general purpose cloud system efficiencies are yet to be had from supporting diverse applications and their
requirements within a storage system used for a private cloud. Supporting such diverse requirements poses a significant challenge
in a storage system that supports fine grained configuration on a variety of parameters.

This paper uses the Ceph distributed file system, and in particular its global parameters, to show how a single changed parameter
can effect the performance for a range of access patterns when tested with an OpenStack cloud system.
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1. Introduction. Cloud systems are becoming more and more complex and can be adopted to suit various
types of use cases and users make use of cloud resources in very distinct ways. Their requirements change
depending on the workload, which include services such as web-, database-, email- or directory-servers, but they
can also be used for other purposes, such as virtual desktops, rendering or genome sequencing. The requirements
of these services vary not only in the component of the system that is used the most, such as the CPU, memory
system or networking, but also the characteristics of it.

When looking at storage systems the requirements of services vary greatly. Access patterns consist of a
mixture of reads and/or writes, in sequential and/or random fashion, with varying block sizes. Depending on
the application the metric with the highest importance might be the throughput, the average or maximum
latency or a mixture of both. The prime motivation for the technical solution here is an attempt to answer the
question of how a cloud operator can change the storage configuration to better support these specific access
patterns.

The most popular open source cloud stack is the very actively developed OpenStack. In the development of
the Kilo release there were 148 contributing organizations plus many independent developers [11] making over
19.000 commits [7]. It is highly customizable and supports many implementations as a back-end for the different
storage services. Due to the popularity and interest in the system many companies offer solutions or interfaces
that hooks into their own systems, which can be seen in the supported storage or networking back-ends. The
storage back-end that will be looked at in this paper for improving performance under specific loads is the open
source distributed file system Ceph1, which was acquired by RedHat in 2014.

The options this combination offers will be subject of this paper. In Section 2 the general idea of offering
distinct storage solutions will be explained. In Section 3 the OpenStack storage components will be introduced,
followed by an introduction to Ceph in Section 4 and the integration of both and the offered options for
performance optimizations. Section 5 is showing the results when the cluster is using different configurations.
The conclusion of the experiments is presented in Section 6.

2. Motivation. OpenStack offers the option to set quotas for the I/O system of the VMs. Limits can be
set for the amount of read/write/total bytes per second (B/s) or the same categories for the operations per
second (IOPS). This allows fine grained limits that can limit the throughput effectively for small file (via IOPS)
and large file (via B/s) access patterns at the same time.

With these quotas it is not possible to create flavours that fit a specific workload, as some important
characteristics, such as latency, cannot be captured by those limiting parameters. It is therefore necessary to
be able to offer storage options that can be more targeted to the use case. This ranges from using different
technologies, such as conventional slow and fast spinning hard drives to solid state drives. These drives in
return can be used in many different configurations that influence the respective performance. The configuration
options include, among others, the storage I/O scheduler and the file system. It becomes even more challenging
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when used in combination with a distributed file system, which seems to be the most common storage back-end
used for OpenStack according to [10].

In our previous paper [14] we looked at the option of offering distinct storage pools using different file
systems. In this paper we extend this work and look at the impact of changing a single parameter in the Ceph
configuration on the performance when tested through an OpenStack cloud deployment using block storage
devices. The OpenStack storage components will be described in Section 3 followed by an overview of the
distributed file system Ceph in 4.

3. OpenStack Storage Components. OpenStack has three different storage services: Glance, Cinder
and Swift. They cover three very different areas. The OpenStack image service Glance is an essential component
in OpenStack as it serves and manages the virtual machine images that are central to Infrastructure-as-a-Service
(IaaS). It offers an RESTful API that can be used by end users and OpenStack internal components to request
virtual machine images or metadata associated with them, such as the image owner, creation date, public
visibility or image tags.

Using the tags of the images should allow an automatic selection of the best storage back-end for an individ-
ual VM. When an image is tagged with an database tag the storage scheduler should be able to automatically
select the appropriate pool to host the VM, like it does for other components, like the amount of CPU core or
the memory capacity. In case the tag is absent the image will be hosted on the fall-back back-end, which uses a
standard or non-targeted configuration that is used for general purpose scenarios. When users use the correct
tag they will benefit from it and the operator will potentially be able to increase the number of users that he
can host without risking overall storage performance degradation and different billing rates, as they are optimal
solutions for specific workloads (value added features).

The OpenStack object storage service Swift offers access to binary objects through an RESTful API. It is
therefore very similar to the Amazon S3 object storage. Swift is a scalable storage system that has been in use
in production for many years at Rackspace2 and has become a part of OpenStack. It is highly scalable and
capable to manage petabytes of storage. Swift comes with its own replication and distribution scheme and does
not rely on special RAID controllers to achieve fault tolerance and resilient storage. It can also be used to host
the cloud images for the image service Glance.

The third storage system of OpenStack is the block storage service Cinder. Cinder is used to either create
volumes that are attached to virtual machines for extra capacity that show up as a separate drive within the VM,
but it can also be used directly as the boot device. In that case the image from Glance will be converted/copied
into a Cinder volume. After it has been flagged as bootable it can be used as the root disk of the VM. The
back-ends for Cinder cover a great variety of systems [4], including proprietary storage systems such as Dell
EqualLogic or EMC VNX Direct, distributed file systems, such as Ceph or GlusterFS, and network shares using
Server Message Block (SMB) or NFS.

Normally it would be necessary to have at least two dedicated storage systems available when all three
storage services are desired. This does not allow the flexibility to deal with extra capacity demands on individual
services as the hardware has to be partitioned when the system is rolled out. Currently there are two storage
back-ends available that can be used for all three services within one system with the support for file-level
storage, which is required for supporting live-migration between compute hosts. These are Ceph (see Section 4)
and GlusterFS 3. By using one of these storage back-ends it is possible to consolidate the three services on
a single storage cluster and keeping them separated through logical pools. According to the OpenStack user
survey in 2014 [10] Ceph has currently the highest popularity as a storage back-end, which will be looked at in
more detail in the following section.

4. Introduction to Ceph. Ceph [16] has been designed under the assumption that a large peta-scale
storage system is an incremental growing system, where the failure of components are not the exception but
rather the norm, and where workloads are constantly changing. At the same time the storage system has to be
able to handle thousands of user requests and deliver high throughput [17]. The system replaces the traditional
interface to disks or RAIDs with object storage devices that integrate intelligence to handle specific operations

2www.rackspace.com
3www.gluster.org
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themselves. Clients interact with the metadata server to perform operations, such as open and rename, while
communicating directly with the OSDs for I/O operations. The algorithm that is used to spread the data over
the available OSDs is called CRUSH [18]. From a high level, Ceph clients and metadata servers view the object
storage cluster, that consists of possibly tens or hundreds of thousands of OSDs, as a single logical object store
and namespace. Ceph’s Reliable Autonomic Distributed Object Store (RADOS) [19] achieves linear scaling in
both capacity and aggregate performance by delegating management of object replication, cluster expansion,
failure detection and recovery to OSDs in a distributed fashion. The following list shows again the individual
components and their role and function:

OSDs: A Ceph OSD Daemon (OSD) stores data, handles data replication, recovery, backfilling, rebalancing,
and provides some monitoring information to Ceph Monitors by checking other Ceph OSD Daemons for
a heartbeat. A Ceph Storage Cluster requires at least two Ceph OSD Daemons to achieve an active

+ clean state when the cluster makes two copies of your data (Ceph makes 2 copies by default, but it
is adjustable).

Monitors: A Ceph Monitor maintains maps of the cluster state, including the monitor map, the OSD map,
the Placement Group (PG) map, and the CRUSH map. Ceph maintains a history (called an ”epoch”)
of each state change in the Ceph Monitors, Ceph OSD Daemons, and PGs.

MDSs: A Ceph Metadata Server (MDS) stores metadata on behalf of the Ceph Filesystem (i.e., Ceph Block
Devices and Ceph Object Storage do not use MDS). Ceph Metadata Servers make it feasible for POSIX
file system users to execute basic commands like ls, find, etc. without placing an enormous burden
on the Ceph Storage Cluster.

Ceph is also highly customizable and offers many ways to change the configuration of the cluster. This is not
just limited to the number of placement groups per pool (pgp), but spans more than 600 parameters. The value
of these parameters will result in many cases from the use case, such as the number of replicas. Furthermore
the storage system relies on components that are not part of Ceph directly, like the Kernel I/O scheduler and
the corresponding queue length, that have an impact on the performance. How these can be used to support
discrete storage pools will be discussed in Section 4.2 to 4.4.

4.1. OpenStack and Ceph. Creating pools within the cluster is necessary to allow access to the storage.
These pools can in return be used for the OpenStack services Glance and Cinder. Running Swift with Ceph is
also possible through the Rados gateway, which is part of Ceph, that offers a RESTful API to the objects in the
cluster. As Glance is only hosting the images for the VMs it does not have any real performance requirements,
especially when Cinder is used for actually running the VMs by choosing the copy to volume option when
creating VMs. Furthermore, even though it is possible to just use Glance without Cinder and use it for booting
the images, it does not offer the option to use multiple back-ends at the same time. It is a requested feature4,
but currently it is not available.

Cinder supports multiple back-ends that are attached at the same time. This offers the possibility to create
different Cinder Tiers that are connected to different back-end systems with varying capabilities or features,
such as having one proprietary storage system and a network share set up as the back-ends or to use different
pools from Ceph or completely different Ceph clusters. In the first case the Ceph configuration file is identical
and only the Ceph pool are different. In the second case it is necessary to provide multiple Ceph configurations
that point to the different clusters, as the Ceph monitors will be running on separate hosts. This might be used
to offer low specification versions that offer no resilience to failures for low cost solutions or high cost solid state
drive solutions.

4.2. Optimization on a Cluster Level. Tuning the distributed file system on a cluster level gives access
to whole range of parameters [3] of Ceph and the underlying components, such as the caching size, recovery
settings, journal settings or logging. This allows for perfect adoption to a specific workload, but in contrast
does not allow for differentiation and therefore multiple workloads in one cluster. When a decision is made it
affects the overall system and can only be slightly tweaked by the parameters that are accessible through the
pools (see 4.3).

4https://blueprints.launchpad.net/glance/+spec/multi-store
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To offer distinct storage variants, the whole storage cluster has to be partitioned and multiple clusters have
to be created. It is possible to run multiple clusters on individual hosts, but it has to be guaranteed that the
services have unique IP and port combinations. Copying data from one cluster to the other cannot be achieved
very easily on the Ceph level, but within OpenStack it is supported with specific limitations. It is not possible
to migrate volumes that have snapshots.

4.3. Optimization using Pools and Tiering. When optimizing on a Ceph pool level without changing
the Crushmap, the parameters that can be changed is limited in comparison to the options that are available
when optimizing on a cluster level. In total there are 19 parameters (full list available at [13]) that change the
characteristics of the pool.

Some of these parameters have a direct effect on the performance and behaviour of a storage pool, as
they directly influence the pool characteristics. Parameters such as size, min size, pgp num, crush ruleset,
hashpspool and crash replay interval have a significant impact on how the pool distributes the data across
the OSDs and how many copies are stored. They also directly influence reliability, stability and recovery.

Ceph offers the option to add a cache Tier to a pool. Adding fast expensive drives for highly frequented
objects with slower cheaper disks that are acting as cold or slower storage. Such tiered systems are very common
in enterprise storage systems, e.g. Dell Compellent [6], and is now available in software solutions, such as Ceph,
as well. Changing the pool parameters effects the movement of the objects between the cache and normal Tier
and the used caching algorithm.

The using a cache Tier it is necessary to select one of two operation modes. When using the writeback
mode the client will write the data directly to the fast cache tier and will receive an acknowledgement when the
request has been finished. Over time the data will be send to the storage tier and potentially flushed out of the
cache tier. When a client requests data that does not reside within the cache, the data is transferred first to
the cache tier and then served to the client. This mode is best used for data that is changeable, such as video,
photo and transactional data.

When using read-only mode the cache will only be used for read access, where it will copy the data from
the storage tier to server the read requests. Write access will be sent directly to the storage tier. This operation
mode is best used for immutable, such as images and videos for webservices, DNA sequences or radiology
images, as reading data from a cache pool that might contain out-of-date data provides weak consistency. For
that reason it should not be used for mutable data.

Using pools for differentiation still relies on the underlying configurations, such as disk scheduler or OSD file
system settings. All pools will share the same general settings with specific configuration changes for replication
count or distribution enhancements. Therefore a pure pool based approach does not offer the best way to make
significantly different storage configurations accessible. On the other hand, pools are a good way to partition
the storage and to expose it to different users/services through the access control mechanisms of Ceph.

4.4. Heterogeneous Pools. The term heterogeneous pools in this case is used for pools that have different
underlying components, such as the I/O scheduler or the file system. The I/O scheduler is set in the operating
system for a specific block device, such as /dev/sdb and cannot be set for a specific partition. The scheduler
comes along with it own settings, such as the scheduler type and the queue depth. Changing these can have a
substantial influence on the performance of the file system under specific workloads [15].

The other component that has an impact on performance is the file system. Besides the different function-
alities that they offer, they handle some patterns much better than others due to their internal design. Both of
these aspect of a heterogeneous cluster configuration have been shown in our previous paper [14].

5. Experimental results. The experiments are focused on changing the whole storage cluster configura-
tion. The storage pools used by OpenStack were deployed on the same hardware and software configuration.
By changing the storage cluster configuration for each individual benchmark run shows the impact of each one
of those individual changes in comparison to the default configuration.

5.1. Testbed. The configuration used for the practical evaluation consists of three Dell R610 servers
connected to a directly attached storage expansion tray through an LSI SAS3444E SAS controller using SAS
multi-lane cables, each. Each server is equipped with an Intel Xeon E5603 quad core processor with 1.6 GHz
clock speed, 16 GB DDR3 memory and 8 Gigabit Ethernet ports. Each storage tray consists of twelve 1 TB
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harddrives (Ultrastar A7K1000 [8], Barracuda ES.2 [2], Western Digital RE4 WD1003FBYX [12]), of which
only four of each tray will be used for the experiment, but all disks are part of the cluster. The Ceph cluster
network uses NIC bonding (IEEE 802.3ad [9]) with four network links for increased bandwidth. The Ceph
public network uses three links in the same way. The operating system used for the testbed is Ubuntu 14.04
LTS with the 14.04.2 hardware enablement stack (Ubuntu Utopic) which uses Linux kernel version 3.16, which
includes many patches for BTRFS and XFS. The mounting options used for both file systems were the default
settings of Ceph. The mounting settings can have an influence on the performance of a file system, but they
are not in the focus for this paper.

To run the benchmarks against the Ceph cluster an OpenStack cloud (version Kilo) is used. The OpenStack
cloud consists of a dedicated cloud controller and of three Dell R710 servers with two Intel Xeon E5645 hexa
cores with 2.4 GHz clock speed and Intel Hyper Threading enabled acting as compute nodes. Each server is
connected to the Ceph public network with three bonded Gigabit Ethernet links. The used switch is a Dell
PowerConnect 6248 [5]. Jumbo frames were enabled on the switch and all Ethernet links.

The network bandwidth between the nodes is measured using iperf. The results are shown in Table 5.1
with the Storage network representing the Ceph cluster network and the Management network being the Ceph
public network. The 2 bonded port configuration is used on the controller to access the Ceph cluster for handling
the Cinder and Glance volumes and images whereas the 3 bonded ports are used on the compute nodes to run
the virtual machines directly off the Cinder volumes.

5.2. Cluster configuration. The Ceph cluster is configured to host multiple pools, pinned to different
drives. The pool used for the benchmarks is isolated on the 12 Western Digital RE4 drives. To reduce the
impact of the cluster network bandwidth limitation of about 3 Gb/s shown in Table 5.1 the replication count
is set to 2. This ensures that each block is transferred only once through the cluster network for replication.
With a replication count of three the file would be written to two other hosts which would double the network
traffic and therefore reduce the write performance. In a bigger cluster the load from replication is spread and
therefore the network bandwidth dependency will be less crucial overall, but in a small cluster it is a limiting
factor.

The Ceph configuration for these experiments is left to the default settings and the parameters that are set
can be seen in the following configuration snippet. It has the debugging and reporting function on the OSD
and Monitors disabled and uses CephX for authentication.

[global]

osd_pool_default_pgp_num = 1024

osd_pool_default_pg_num = 1024

osd_pool_default_size = 2

osd_pool_default_min_size = 2

[client]

rbd_cache = false

[osd]

debug ms = 0

debug osd = 0

debug filestore = 0

debug journal = 0

debug monc = 0

[mon]

debug ms = 0

debug mon = 0

debug paxos = 0

debug auth = 0

The specific cluster wide parameters tested differ from the default configurations in exactly one parameter.
This allows to detect parameters being harmful or beneficial for specific workloads. The tested parameters are
listed in Table 5.2.

The selected parameters are all for settings related to the OSDs and the filestore. Using Ceph in combination
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Table 5.1

Measured (iperf) bandwidth on the different networks.

Network Storage Management

Bonded Ports 4 2 3
Bandwidth 3.08 Gb/s 1.96 Gb/s 2.50 Gb/s

Table 5.2

Tested parameter values and their default configuration.

Parameter Default Tested

osd op threads 2 1 (B), 4 (C), 8 (D)
osd disk threads 1 2 (E), 4 (F), 8 (G)
filestore op threads 2 1 (H), 4 (I), 8 (J)
filestore wbthrottle xfs bytes start flusher 41943040 4194304 (K), 419430400 (L)
filestore wbthrottle xfs ios start flusher 500 5000 (M), 50 (N)
filestore wbthrottle xfs inodes start flusher 500 5000 (O), 50 (P)
filestore queue max bytes 104857600 1048576000 (Q), 10485760 (R)
filestore queue committing max bytes 104857600 1048576000 (S), 10485760 (T)
objecter inflight op bytes 104857600 1048576000 (U), 10485760 (V)
objecter inflight ops 1024 8192 (W), 128 (X)

with OpenStack Cinder and Glance does not require using components such as the RADOS Gateway, which
would be necessary when using OpenStack Swift, or the metadata server (MDS).

The osd op threads parameter sets number of threads to service Ceph OSD Daemon operations. When
set to 0 it will disable multi-threading. Increasing the number may increase the request processing rate. Ceph
uses a 30 seconds timeout for the requests. So it depends on the used hardware if altering the parameter has a
positive or a negative effect.

osd disk threads sets the number of disk threads, which are used to perform background disk intensive
OSD operations. These include scrubbing, which is analogous to fsck on the object storage layer, and snapshot
handling. This can effect the performance when the scrubbing process happens while there is concurrent data
access. Otherwise only one operation can be worked on at one time.

filestore op threads sets the number of file system operation threads that execute in parallel.

filestore wbthrottle xfs bytes start flusher, filestore wbthrottle xfs ios start flusher and
filestore wbthrottle xfs inodes start flusher configure the filestore flusher that forces data from large
writes to be written out before the sync in order to (hopefully) reduce the cost of the eventual sync. Previously,
the filestore had a problem when handling large numbers of small ios. Ceph throttles dirty data implicitely
via the journal, but a large number of inodes can be dirtied without filling the journal resulting in a very long
sync time when the sync finally does happen. The flusher was not an adequate solution to this problem since
it forced writeback of small writes too eagerly killing performance.

filestore queue max bytes and filestore queue committing max bytes set the size of the filestore
queue and the amount of data that can be commited in one operation.

objecter inflight op bytes and objecter inflight opsmodify the Ceph objecter, which handles where
to place the objects within the cluster.

5.3. Performance evaluation. To evaluate the impact of the different configurations the Ceph cluster
is exercised using the OpenStack cloud system described in Section 5.1. As the benchmark the tool fio [1] is
used. The benchmark settings are set to 300 seconds runtime and a 10GB testsize. The IO engine is set to
sync, which uses fseek to position the I/O location. Access is set to direct and buffering is disabled. For each
run there is a start and a ramp delay of 15 seconds. Random and sequential access patterns are tested for
both reads and writes. Block sizes to test are 4k, 128k, 1MB and 32MB. A total of 9 runs for each benchmark
configuration is executed to achieve a representative average over multiple runs.
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Fig. 5.1. FIO random read 4k.
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Fig. 5.2. FIO random write 4k.

A total of 12 virtual machines, equally distributed across the three compute hosts, is used to stress the
system. Each VM is set to use 4 cores and 4GB of memory. The virtual disk is set to use a 100GB Cinder
volume. Rados Block Device (RBD) caching is disabled on the Ceph storage nodes and on the compute hosts in
the QEMU/KVM hypervisor settings. The diagrams show the mean value across all 12 VMs and their 9 runs.

5.3.1. 4k. The smallest file block size tested is 4k. The performance of mechanical hard drives suffers
quite a lot under such loads, whereas SSDs perform much better well under such loads. The unit used to in
these graph is IOPS (Input/Output Operations Per Second).

Figure 5.1 and 5.2 show the performance under random access workloads for reading and writing. Under
random read workloads the most disruptive configuration is with osd op threads=1 (B) with 159 IOPS. In
comparison to the other configurations that achieve between 189 (X) and 213.5 (E) IOPS this configuration
performs 15% lower than the second lowest and 25% less than the default configuration. In comparison to
the default configuration the performance can only be matched, but not be surpassed. For random writes the
performance is more even with a difference of 3 IOPS between the best and the worst performing configuration.
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Fig. 5.3. FIO sequential read 4k.
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Fig. 5.4. FIO sequential write 4k.

Due to the low number of IOPS there can’t be any real conclusions about the impact of the parameters.

When the storage system is tested against 4k sequential read access (see Figure 5.3), the difference between
the lowest performing configuration (osd disk thread=4 (F)) and the highest (default configuration (A)) is over
105% or 378 IOPS. Well performing configurations, but worse than the default, are filestore queue max bytes

=1048576000 (Q), osd disk threads=2 (E) and filestore wbthrottle xfs ios start flusher=50 (N). For
writing (see Figure 5.4) the results are very even again, except for configuration N, that scores well for read
accesses. When this configuration is used the performance drops by 25% in comparison to the others. This
means when writing small blocks the small flusher threshold is harmful, whereas it is beneficial when used for
reading.

5.3.2. 128k. When using 128k block sizes for random read accesses (see Figures 5.5) all but two configura-
tion (B and N) achieve gains over the default configuration. A maximum gain of 8% is observed for configuration
K. When writing random blocks with the same block size the difference is much more significant with K being
14% faster than the default. The performance difference between filestore wbthrottle xfs bytes start



Impact of Single Parameter Changes on Ceph Cloud Storage Performance 293

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

A
(7

.8
3
5
)

B
(7

.7
8
)

C
(8

.3
2
)

D
(8

.4
4
)

E
(8

.3
1
)

F
(8

.1
8
)

G
(8

.1
6
5
)

H
(8

.3
)

I(8
.3

8
5
)

J(8
.1

2
)

K
(8

.4
8
5
)

L
(8

.2
6
5
)

M
(8

.4
5
5
)

N
(7

.6
6
5
)

O
(8

.2
2
5
)

P
(8

.3
1
)

Q
(8

.3
1
)

R
(8

.2
3
)

S
(8

.3
1
5
)

T
(8

.4
2
)

U
(8

.1
8
5
)

V
(8

.2
5
5
)

W
(8

.3
4
)

X
(8

.3
3
5
)

M
B

/s

Runs A-X with median speed in parentheses

Fig. 5.5. FIO random read 128k.
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Fig. 5.6. FIO random write 128k.

flusher being 4194304 (K) and 419430400 (L) is almost 30%. The interesting part is that it is the same
parameter with different values that changes the behaviour. A similar behaviour can be observed for the pairs
M to X where the smaller value performs better than the larger. The default configurations performance for
these runs is always in between the lower and higher configurations.

For sequential read access (Figure 5.7) the performance is very even with a difference of 9% between
configuration O (lowest) and Q (highest). The default configuration is surpassed by only four configurations.
For sequential write access (Figure 5.8) configurations N and K are the most disruptive, with K performing
16.5% lower than the default configuration. Gains are not observed under this workload.

5.3.3. 1MB. For random 1MB block access (Figure 5.9) disk threads=4 (F), filestore queue max

bytes equals 10485760 (R) and 1048576000 (Q) perform better than the rest. Configuration F is able to improve
performance by 10% over the default. The most disruptive configuration is filestore op threads=8 (J) that
reduces performance by 13%. For random write access (Figure 5.10) configuration filestore wbthrottle xfs

bytes start flusher=4194304 (K) improves the performance by 44.5% over the default configuration. Only
configuration Q shows reduced performance. All other configurations improve performance.
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Fig. 5.7. FIO sequential read 128k.
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Fig. 5.8. FIO sequential write 128k.

Under sequential 1MB read workloads (Figure 5.11) there is no configuration that improves performance.
The maximum regression observed is 8% (W). For writing (Figure 5.12) configuration K show the highest gains
of 28%.

5.3.4. 32MB. In random 32MB read and write access loads, see Figures 5.13 and 5.14, configuration
filestore queue max bytes=1048576000 (Q) are able to improve performance over the default configuration.
For random writes the same parameter with a hundred times smaller queue size (R) is able to surpass it,
but not for random reads. Configuration filestore wbthrottle xfs inodes start flusher=5000 (O) is the
most disruptive for random reads, reducing performance by more than 2 MB/s in comparison to the default
configuration. For random writes multiple configurations (E, H, O) have a strong negative impact. In comparison
to the default configuration changing the parameters for 32MB random access workloads is more harmful than
useful.

For sequential 32MB read access (see Figure 5.15) all configurations that deviate from the default reduce
the performance by up to 14% (C) or 2.2 MB/s. Configurations B and Q reduce performance the least. With
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Fig. 5.9. FIO random read 1MB.
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Fig. 5.10. FIO random write 1MB.

sequential writes (see 5.16) the results look a bit different. Configuration R can improve performance by 6%,
whereas the other configurations reduce performance by up to 14.5% (L).

6. Conclusion. The experiments show that changing a single parameter of a Ceph cluster configuration
can have a significant impact on performance when used as a storage back-end for virtual machines. Under
specific workloads an improvement of up to 44.5% was observed. In other access patterns the improvement is
not that significant, but still an improvement over the default configuration.

Configurations that showed performance degradations of up to 50% under certain workloads have also
been observed. The severity of losses in comparison to the default configuration are heavily depending on the
workload.

Overall the performance of the default configuration is well balanced. The other configurations were not
always able to achieve better performing. Only with some access patterns the majority of the tested configu-
rations was able to improve performance. This shows that with the used hardware configuration the default
settings are working well, but leave room for improvement and are not the best possible.
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Fig. 5.11. FIO sequential read 1MB.
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Fig. 5.12. FIO sequential write 1MB.
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Fig. 5.15. FIO sequential read 32MB.
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Fig. 5.16. FIO sequential write 32MB.
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