
Scalable Computing: Practice and Experience

Volume 17, Number 4, pp. 331–349. http://www.scpe.org

DOI 10.12694/scpe.v17i4.1205
ISSN 1895-1767
c⃝ 2016 SCPE

TILING AND SCHEDULING OF THREE-LEVEL PERFECTLY NESTED LOOPS WITH

DEPENDENCIES ON HETEROGENEOUS SYSTEMS

EBRAHIM ZAREI ZEFREH∗, SHAHRIAR LOTFI†, LEYLI MOHAMMAD KHANLI‡, AND JABER KARIMPOUR§

Abstract. Nested loops are one of the most time-consuming parts and the largest sources of parallelism in many scientific
applications. In this paper, we address the problem of 3-dimensional tiling and scheduling of three-level perfectly nested loops
with dependencies on heterogeneous systems. To exploit the parallelism, we tile and schedule nested loops with dependencies by
awareness of computational power of the processing nodes and execute them in pipeline mode. The tile size plays an important
role to improve the parallel execution time of nested loops. We develop and evaluate a theoretical model to estimate the parallel
execution time of tilled nested loops. Also, we propose a tiling genetic algorithm that used the proposed model to find the near-
optimal tile size, minimizing the parallel execution time of dependence nested loops. We demonstrate the accuracy of theoretical
model and effectiveness of the proposed tiling genetic algorithm by several experiments on heterogeneous systems. The 3D tiling
reduces the parallel execution time by a factor of 1.2× to 2× over the 2D tiling, while parallelizing 3D heat equation as a benchmark.

Key words: Dependence loop, tiling, load balancing, communication, heterogeneous system

AMS subject classifications. 65Y05, 68M14

1. Introduction. Today, there are so many scientific applications in various fields such as meteorology,
biology, medical research, signal and image processing, military industry, etc. that need high performance
computing to be solved. These problems are either computationally intensive, or working on large-scale multi-
dimensional data or both [1, 2]. Nested loops are one of the most time-consuming parts and the largest sources
of parallelism in these problems [3, 4]. In order to meet the ever-increasing computing requirement of scientific
applications, it is necessary to use high-level computational capacity and optimization techniques.

A heterogeneous computing system is a set of multiple computing nodes connected via a high-speed network
interconnection, used for executing parallel and distributed scientific applications [5, 6, 7]. A homogeneous
computing system is a special case of a heterogeneous computing system, in which all computing nodes have
the same computing capabilities [5]. There are several ways to enhance the computational capacity of parallel
computing systems such as (1) scaling up by adding more processing nodes, (2) replacement of all processing
nodes with newer, faster ones, (3) upgrading computing systems by adding newer, faster nodes, (4) combing
multiple clusters into a bigger computational system, known as multi-cluster systems, (5) using hybrid CPU-
GPU architectures, etc. [8, 9, 10, 11]. In cases 1 and 2, the computing system remains homogeneous, but it
can be very costly. In other cases, the computing system becomes heterogeneous. According to the Top500
list (http://www.top500.org), we could witness an increasing trend to heterogeneous computing systems from
a 3.4% to 18.0% between June 2010 and June 2015 [12]. Hence, heterogeneity is one of the most important and
challenging issues in parallel computing systems [13].

Loop optimization and parallelization have always been an important role to achieve higher performance [4].
A lot of loop optimization techniques have been developed to decrease the execution time of the nested loops and
improve the performance. Loop tiling is an important loop optimization technique in scientific applications,
used to improve data locality, expose fine-grained and coarse-grained parallelism, enhance cache reuse, etc.
[14, 15, 16, 17, 18, 19].

In this paper, we consider the parallelization problem of perfectly nested loops with dependencies on het-
erogeneous systems. In order to achieve the maximum performance of nested loops with dependencies on
heterogeneous systems, two issues must be adequately addressed:

• Load balancing: it is a technique that tries to distribute the data and computation across the computing
resources of the parallel machine so that all tasks terminate at approximately the same time. In fact,

∗Department of Computer Science, Faculty of Mathematical Sciences, University of Tabriz, Tabriz, Iran (zarei@tabrizu.ac.ir).
†Department of Computer Science, Faculty of Mathematical Sciences, University of Tabriz, Tabriz, Iran (shahriar lotfi

@tabrizu.ac.ir).
‡Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran (l-khanli@tabrizu.ac.ir).
§Department of Computer Science, Faculty of Mathematical Sciences, University of Tabriz, Tabriz, Iran (karimpour

@tabrizu.ac.ir).

331

332 E. Zarei Zefreh, S. Lotfi, L. Mohammad Khanli, J. Karimpour

the goals of load balancing are optimization of resource utilization, maximization of throughput and
minimization of response time [17, 20]. Processing nodes of heterogeneous systems may have different
computational powers that depend on CPU speed, cache size, RAM size etc. So, load balancing is an
important concept in heterogeneous systems that guarantees the amount of data and computation of
any processing node correspond to their computational power [21].

• Communication: In a distributed-memory parallel architectures, each processing node has its own
memory and nodes communicate together to exchanging data during program execution. Since accessing
to the local memory is much faster than the remote memory, the cost of intra-node communication is
much less than inter-node communication. Due to network latency of inter-node communication, data
should place as close as possible to computation, referred to as the data locality [20, 22, 23, 24]. So,
data and computation can be partitioned into blocks and distributed across the processing node to
improve data locality and reduce communications during program execution.

In order to parallelize perfectly nested loops with dependencies on heterogeneous systems, the loop’s iter-
ation space partitioned into a series of small chunks of given tile size, executed one after another in pipeline
mode. At the runtime, processing nodes communicate each other to exchange data while executing tiles. The
number of inter-node communication (or tiles communication) is corresponding to the inter-tile dependency.
Since communication is one of the most important reasons for performance degradation of the parallelized
loops with data dependencies on heterogeneous systems, inter-tile dependency should be minimize as much as
possible. To overcome communication overhead and improve the pipeline parallelism, we should determine the
optimal tile size. The problem of determining the optimal tile size is NP-Hard [25]. There are many approaches
that attempt to determine the near-optimal tile size in homogeneous platforms such as analytical, auto-tuning
and evolutionary approaches [25, 26]. In heterogeneous platforms, tile size determined by the computational
power awareness of the processing nodes [21, 27, 28]. The 3D tiling of the nested loop with dependencies for
heterogeneous systems has not been given enough attention so far.

We believe that the use of 3D tiling and scheduling of perfectly nested loops with dependencies and taking
into account the characteristics of heterogeneity in heterogeneous systems can enhance the execution time of the
scientific applications. For this purpose, we first calculate the computational power of the processing nodes by
running 3D benchmarks. Then, with computational power awareness of the processing nodes, we tile and sched-
ule perfectly nested loops with data dependencies. Therefore, loop tiling combined with heterogeneity feature
and a pipeline-like execution could help to decrees the execution time and improve efficiency of computation on
heterogeneous computing systems.

In this paper, we propose a 3D tiling and scheduling approach for three-level perfectly nested loops with
data dependencies on heterogeneous systems using the computational power awareness of the processing nodes.
Our idea is to exploit the computational power of the processing nodes of heterogeneous platforms in order
to achieve higher computing power for executing nested loops. In addition, we use loop tiling to partition the
iteration space into chunks and subchunks with equal and unequal size such that the load balancing between the
computational nodes increases and the internode communication is minimized as much as possible. Then, we
use pipeline approaches to achieve the maximum degree of potential parallelism and consequently, the improved
execution time of programs. We provide a theoretical model to estimate the parallel execution time of nested
loop with dependencies and propose a tiling genetic algorithm to determine the near-optimal tile size.

The main contributions of our paper are as follows:
• We propose a 3D tiling and scheduling approach for three-level perfectly nested loops with dependencies
on heterogeneous systems.

• We develop a theoretical model to estimate the parallel execution time.
• We propose a tiling genetic algorithm to determine the near-optimal tile size.

The rest of the paper is organized as follows. Section 2 describes the program model and notation and
discusses an overview of related works. Section 3 describes the proposed method. Section 4 is concerned with
simulations and experimental results. Finally, Section 5 is conclusions and future works.

2. Background and related work.

2.1. Program model and notation. An n-nested loop, a nested loop of depth n, is defined as a set of n
loops where each loop is contained in its previous loops. If all statements are nested inside the innermost loop,

Tiling and Scheduling of Three-level Perfectly Nested Loops with Dependencies on Heterogeneous Systems 333

then it is called perfectly nested loop. Each iteration of n-nested loop is represented as J = (j1, j2, · · · , jn) ∈ Zn.
When a data dependency exists in a nested loop, the result of one loop iteration affects the results of other
loop iterations. In fact, dependencies impose precedence constraints in the execution order of loops iterations
[29]. In an n-nested loop, data dependencies are denoted by a distance dependence vector. Suppose that the
matrix D = [dij]n×m shows the m dependency vectors of the n-nested loop. Intra-iteration dependence occurs
in the same iteration between the statements of nested loop while inter-iteration dependence occurs in different
iterations [30]. Figure 2.1(a) illustrates a three-level perfectly nested loop and its iteration space denoted by
J = {(j1, j2, j3)|1 ≤ j1 ≤ N1, 1 ≤ j2 ≤ N2, 1 ≤ j3 ≤ N3}. Figure 2.1 (b), (c) and (d) illustrate the iteration
space, the intra-iteration and inter-iteration dependencies and the dependency matrix for the following nested
loop. Nested loops categories in parallel and dependence loops. If there are no inter-iteration dependence among
their loops iterations, the nested loop is called a parallel loop otherwise the nested loop is called a dependence
loop [21, 31].

One of the most important of loop optimization techniques is loop tiling that could improve data locality
and expose parallelism. Loop tiling decomposes an n-nested loop into a 2n-nested loop where the outer n loops
move between tiles and the inner n loops traverse iteration within a tile. Suppose that the H ∈ Qn×n be the
tiling matrix that each row is a normal vector and shows the edges of the tile. Vcomp expresses the number of
iterations within a tile and Vcomm expresses the number of iterations that need to send data to the neighboring
tiles (the number of dependences exit from the tile). Vcomp and Vcomm are calculated by the following formulas
[25, 27, 32]:

Vcomp(H) =
1

|det(H)|
(2.1)

Vcomm(H) =
1

|det(H)|

n
∑

i=1

n
∑

k=1

m
∑

j=1

hi,kdk,j(2.2)

Figure 2.1(e) shows the code after loop tiling transform. Figure 2.1(f) shows a 2× 2× 2 parallelepiped tiling of
the 3-nested loop and Fig. 2.1(g) illustrates the tiling matrix H for the parallelepiped tiling in Fig. 2.1(f). So,
Vcomp(H) = 8 and Vcomm(H) = 12.

Pipeline parallelism can improve the efficiency of the nested loop with dependencies. In pipeline parallelism,
each node performs its tasks, then passes its set of data along to the next node and receives the next set of
data from the previous node [17]. In distributed-memory parallel systems, communication and synchronization
overhead between the nodes are the important reasons of the performance degradation when running dependence
loops. So, we use coarse-grain pipeline parallelism to balance trade-offs between parallelization, communication
and synchronization overhead [20, 33].

2.2. Related work. There are a lot of research efforts on determining the optimal partitioning (tiling)
of nested loops without dependencies on heterogeneous systems ([34, 35, 36] and references therein). However,
there are a few research efforts targeting tiling problem for nested loops with dependencies on heterogeneous
systems. Most of these works are bounded into 2D tiling.

Boulet et al. [37, 38] used loop tiling on heterogeneous systems for the first time. Iteration space is divided
into tiles with same size and assigned column blocks with more tiles to the faster node. Then nodes execute the
tiles in a row-wise order within each block to minimize latency between starting of blocks. The authors target
fully permutable 2-nested loops with horizontal and vertical dependencies.

Chen and Xue [27] proposed the 2D partitioning and scheduling loops for a network of heterogeneous
workstations (NOWs). As shown in Fig. 2.2, to consider heterogeneously of NOWs, the iteration space is
partitioned into 2D tiles of the same shape and different sizes according to computational powers of theirs
workstations. The same colored tiles can be executed simultaneously. The authors consider the doubly nested
loop or two adjacent loops of nested loop with constant data dependency.

Ciorba et al. [31, 39] proposed enhancing self-scheduling algorithm for loops with dependencies on hetero-
geneous systems. The self-scheduling algorithms such as chunk self-scheduling, guided self-scheduling, trapezoid
self-scheduling and factoring self-scheduling are dynamic scheduling algorithms that are used to schedule nested

334 E. Zarei Zefreh, S. Lotfi, L. Mohammad Khanli, J. Karimpour

Fig. 2.1. (a) Three-level perfectly nested loop, (b) iteration space and dependencies between iterations, (c) the intra-iteration
and inter-iteration dependencies, (d) dependency matrix, (e) the tiled perfectly nested loop, (f) 3D tiling and (g) the tiling matrix

Fig. 2.2. (a) Iteration space of nested loop with two constant data dependency, (b) 2D heterogeneous tiling and (c) paral-
lelization strategy [27]

loops without dependencies on homogeneous systems. They enhance self-scheduling algorithm to handle nested
loops with dependencies by inserting synchronization points to enable inter-node communication. They also con-
sider a weighted mechanism for self-scheduling algorithms to improve the performance and make them suitable
for heterogeneous systems. Therefore, the iteration space is divided into chunks according to the computational
power of nodes.

Andronikos et al. [21, 33, 40] claimed that the problem of finding the optimal partitioning of nested loops

Tiling and Scheduling of Three-level Perfectly Nested Loops with Dependencies on Heterogeneous Systems 335

Fig. 2.3. Tiling of a 2-nested loop with dependencies on a homogeneous system [21]

Fig. 2.4. (a) Iteration space and data dependencies of three-level nested loop, (b) and (c) partitioning and scheduling of
nested loop with proposed methods in [21, 33, 40] on homogeneous and heterogeneous systems, respectively. The tiles with the
same number can be executed simultaneously.

with dependencies for heterogeneous systems has not been given enough attention. Therefore, they proposed a
theoretical model to estimate parallel execution time as a function of the synchronization frequency for nested
loops with dependencies on heterogeneous systems. As shown in Fig. 2.3, the iteration space partitioned into
chunks along chunk/scheduling dimension based on the computational powers of nodes using self-scheduling
schema. The chunks are divided into subchunks along synchronization dimension by inserting synchronization
points. They find the optimal subchunk size based on the theoretical model. This paper targets n-nested loops
(n >= 2) with dependencies where the outer loop is considered as synchronization dimension and another loop as
scheduling dimension. Figure 2.4 shows how to use this method for three-level nested loop with dependencies on
homogeneous and heterogeneous systems. In this case, the uc-dimension partitioned into chunks corresponding
to the computational power of the processing nodes, the us1 -dimension partitioned into subchunks and the
us2 -dimension executed as serial. Then subchunks are executed in a wavefront fashion to exploit the potential
parallelism.

As mentioned above, these works are generally focused on 2D tiling of the nested loop with dependencies
on heterogeneous systems. The 3D tiling of the nested loop with dependencies for heterogeneous systems has
not been given enough attention so far. In this paper, we address this issue.

3. Proposed methods. In this section, we propose an approach to 3D tiling and scheduling of three-level
perfectly nested loops with dependencies on heterogeneous systems. In the paper, we use the notation in [21, 33],
indicated in Table 3.1. Algorithm 1 outlines the main steps of proposed method.

336 E. Zarei Zefreh, S. Lotfi, L. Mohammad Khanli, J. Karimpour

Table 3.1

Notations used within the proposed method

Parameter Description

P The number of processing nodes
pi The ith processing node
N = Uc × Us1 × Us2 The size of iteration space
Uc The upper bound of uc dimension
Us1 The upper bound of us1 dimension
Us2 The upper bound of us2 dimension
vpi The computational power of ith processing node
Vi The size of chunk i in the uc dimension
h1 and h2 The size of tile in the us1 and us2 dimensions
cpi

The execution cost per iteration of ith processing node
tpi

The computation time of a tile in node i

cd The start-up latency cost
cc The transfer cost per unit of data
ts The send time of message between a pair of nodes
tr The receive time of message between a pair of nodes

Algorithm1: 3D tiling and scheduling

Input:

A heterogeneous system consist of P nodes p1, . . . , pP with computational powers vp1, . . . , vpP
cp: The execution cost per iteration of nodes
cc and cd: Communication parameter
Uc × Us1 × Us2 : The size of iteration space

• Sorting computational power of nodes such that vp1 ≥ vp2 ≥ . . . ≥ vpP
• Partitioning the uc scheduling dimension into chunks of given size Vi by Vi = Uc × vpi

(Figs. 3.1(b) and 3.2(b))
• Partitioning each chunk into subchunks with unknown sizes h1 and h2 along the us1 and

us2 synchronization dimensions (Figs. 3.1(c) and 3.2(c))
• Calculating the computation time of a tile by tp = Vih1h2cp
• Calculating the communication time of a tile by ts = tr = cd + h1h2cc
• Estimation the parallel execution time, TP (h1, h2), based on parallel execution flow of subchunks

with unknown sizes h1 and h2 (Fig. 3.3)

TP (h1, h2) = (tp + ts) +
(

∑P−1

i=2
(tr + tp + ts)

)

+
Us1

Us2

h1h2

(tr + tp) +
(

Us1
Us2

h1h2

− 1
)

tidle + Twa

• Formulate the problem of finding the optimal tiling as follows (Eq. 3.5):
Minimize TP (h1, h2)
Subject to Vih1h2 ≤ CacheSizei, i = 1, 2, . . . , P

h1 and h2 are integer

1 ≤ h1 ≤ Us1

1 ≤ h2 ≤ Us2

• Solving the above optimization problem using:
1- NOMAD (Nonlinear Optimization using the MADS Algorithm)
2- The proposed tiling genetic algorithm

Output: optimal tile sizes

Tiling and Scheduling of Three-level Perfectly Nested Loops with Dependencies on Heterogeneous Systems 337

Fig. 3.1. (a) Iteration space and dependencies vectors, (b) partitioning iteration space into three equal chunks in a homo-
geneous system (c) partitioning each chunk into subchunks, (d) to (k) the execution process of tiles in node 1, 2 and 3, and (l)
pipelined execution of tiles in time

Suppose, there exists P processing nodes p1, p2, · · ·, pP of the computational powers vp1, vp2, · · ·, vpP in the
heterogeneous system such that

∑P
i=1

vpi = 1 and vp1 ≥ vp2 ≥ · · · ≥ vpP . In this paper, we consider the three-
level perfectly nested loops with uniform dependencies in three dimensions. We partition the iteration space
into chunks along one dimension by using self-scheduling algorithms. This dimension is called the scheduling
dimension and is denoted by uc. Let Vi be the size of the chunk i in the uc dimension assigned to ith processing
node of the heterogeneous system. It should be noted that the size of each chucks is corresponding to the
computational power of the processing nodes. If the distributed system has homogeneous nodes, then the sizes
of chunks are equal (see Fig. 3.1(b)), otherwise the sizes of chunks are unequal (see Fig. 3.2(b)). The two other
dimensions are denoted by us1 and us2 consider as synchronization dimensions. Each chunk is partitioned into
subchunks with setting synchronization points along us1 and us2 dimensions (see Fig. 3.1(c) and Fig. 3.2(c)).
Each of 3D boxes of points in the iteration space is considered as a tile.

In the execution flow, the tile first receives the needed data from other tiles, then does computation and

338 E. Zarei Zefreh, S. Lotfi, L. Mohammad Khanli, J. Karimpour

Fig. 3.2. (a) Iteration space and dependencies vectors, (b) partitioning iteration space into three unequal chunks in a het-
erogeneous system, (c) partitioning each chunk to subchunks, (d) to (k) the execution process of tiles in node 1, 2 and 3, and (l)
pipelined execution of tiles in time

finally sends data to other tiles that needed it. Due to the presence of dependencies, no nodes can start the
execution at the same time and we should consider a precedence order. Notice that according to the partitioning
of the iteration space, dependencies (0, 1, 0)T and (0, 0, 1)T occur in each node and the dependency (1, 0, 0)T

occurs between two neighboring nodes. As shown in Fig. 3.1(d), node 1 runs tile (1,1,1) and then sends necessary
data to tile (2,1,1) that schedule on node 2. Then node 1 and node 2 simultaneously run tiles (1,1,2) and (2,1,1)
respectively, as shown in Fig. 3.1(e). After that node 1, node 2 and node 3 simultaneously runs tiles (1,1,3),
(2,1,2) and (3,1,1) respectively, as shown in Fig. 3.1(f). This process continues until the node 3 runs tile (3,2,3).
Actually, the tiles establish a communication and synchronization mechanism between the processing nodes.

Idle time is an important factor that affects the execution time in the tiled loop. At any time during the
execution of the tiled nested loops, some nodes are active and some are idle. Idle time represents the time when
the node is in idle mode during the execution of the tiled iteration space. The idle time can arise due to two
reasons: (1) because of the presence of dependence, a node may have to wait for the necessary data from other

Tiling and Scheduling of Three-level Perfectly Nested Loops with Dependencies on Heterogeneous Systems 339

nodes; (2) some nodes may have completed their works and are waiting for the last node to finish its work
[41]. In homogeneous platforms, the size of tiles is the same, so choosing the shape of tiles is very important
to reduce the idle time in the parallel execution. However, in heterogeneous platforms, both size and shape of
the tiles have significant effect to reduce the idle time. Load balancing can reduce the idle time and guarantee
that the amount of workloads of any processing node corresponds to its computational power. Therefore, in
heterogeneous platforms, we use tiles with the same shape and different sizes such that nodes complete the
execution of their tiles at the same time. Figure 3.2 shows the heterogeneous tiling for a heterogeneous platform
with normalized computational powers V P = {0.5, 0.33, 0.17}.

To estimate the parallel execution time of nested loops with dependencies on heterogeneous systems, we
need a communication and computation cost model. We use the notations in [21] and extend them.

3.1. Computation cost model. The computation time of a tile in node i is defined as a function of
the number of iterations within a tile, Vcomp(H), multiplied by the execution cost per iteration, cpi

. We can
calculate it as follows:

tpi
= Vcomp(H)× cpi

(3.1)

3.2. Communication cost model. We consider heterogeneous computing systems of P processing nodes
p1, p2, · · ·, pP that is connected with homogeneous communication links. In this work, we use the one-port
model as the communication cost model to quantify the communication overhead between the processing nodes.
In one-port model, a node can either send or receive a message at each time step and distinct node pairs
communicate simultaneously. There are two different costs to transfer a message from one node to another:
(1) the start-up latency cost between a pair of nodes, cd; (2) the transfer cost per unit of data between a pair
of nodes, cc [17, 21]. We suppose that the send (ts) and receive (tr) times of a message between each pairs of
nodes are equal since the number of message elements are the same in the process of sending and receiving. The
communication time of a tile is defined as a function of the start-up latency cost and the number of iterations
that need to send data to the neighboring tiles and the transfer cost per unit of data as follows:

ts = tr = cd + Vcomm(H)× cc(3.2)

3.3. The proposed theoretical model. In this paper, we consider parallelizing the three-level perfectly
nested loops with dependencies in three dimensions on heterogeneous computing systems. We tile and schedule
these loops with the computational power awareness of the processing nodes and execute them in pipeline mode.
To estimate the parallel execution time of nested loops, we build a theoretical model as a function of tile sizes.

As shown in Figs. 3.1 and 3.2, we partition the iteration space of nested loop into 3D tiles. Let Vi be the size
of one side of the tile (i, j, k) along the uc dimension assigned to ith processing node. To satisfy load balancing,
we calculate Vi as a function of the computational power of processing node by Vi = Uc × vpi. Suppose that
h1 and h2 are the size of other sides of the tile along the synchronization dimensions us1 and us2 . h1 and h2

are the same for all tiles. So, the computation time of a tile in node i is calculated by tpi
= Vih1h2cpi

and the
communication time of a tile in node i is calculated by ts = tr = cd+h1h2cc because only dependency (1, 0, 0)T

occurs between two neighboring nodes.
Figure 3.3 shows the parallel execution flow of tiled nested loops on homogeneous and heterogeneous plat-

forms for Figs. 3.1 and 3.2. In the following, we consider the parallel execution flow and construct a formula to
estimate the parallel execution time. Here, we use the master-worker model. The processing nodes (or workers)
send a request message for assigning the work to the master. Master, that has all the information about the
nodes, receives the requests, calculates the chunk sizes and assigns them to the processing nodes. The duration
between sending a request and assigning a chunk to nodes is considered as the work assignment time and is
denoted by Twa. The nodes are responsible for executing the assigned chunk. Node 1 starts the execution of
the tile (1, 1, 1). Due to the presence of dependence, node 2 should be expected to receive data from node 1.
This is the idle time and is shown by white strip in Fig. 3.3. Node 1 completes the execution of the tile (1, 1, 1),
sends the necessary data to node 2 and starts the execution of tile (1, 1, 2). Node 2 after receiving the necessary
data from node 1 executes tile (2, 1, 1) and sends the necessary data to node 3. Node 3 is the last node and
does not need to send data. Node 3 should be expected to receive data from node 2, so there is an idle time
between the operations of execution and receiving.

340 E. Zarei Zefreh, S. Lotfi, L. Mohammad Khanli, J. Karimpour

Fig. 3.3. Parallel execution flow for three nodes

Suppose that the theoretical parallel time, TP (h1, h2), is the parallel execution time of the last tile that is
carry out by node P . All nodes have to receive, compute and send except for the first and last nodes. Node
1 only computes and sends data. So, the time required to compute each tile in node 1 and send the necessary
data to node 2 is tp1

+ ts. The time needed to receive data, compute and send data of the first tile in node

2, 3, · · · , P − 1 is
∑P−1

i=2
(tr + tpi

+ ts). The last node, node P , only receives data and computes. So, the time

needed to receive the necessary data from node P −1 and compute all tiles in node P is
Us1

Us2

h1h2

(tr + tpP
). Node

P also spent (
Us1

Us2

h1h2

− 1)tidle idle time for receiving data from node P − 1. tidle approximately equals to ts.
Therefore, the total parallel execution time is

TP (h1, h2) = (tp1
+ ts) +

(

P−1
∑

i=2

(tr + tpi
+ ts)

)

+
Us1Us2

h1h2

(tr + tpP
) +

(

Us1Us2

h1h2

− 1

)

tidle + Twa(3.3)

Since the processing nodes of homogeneous computing systems have the same computational power, Vi and
cpi

are the equivalent for all nodes. In the heterogeneous computing systems, processing nodes have different
computational power. Therefore, the execution costs per iteration cpi

of nodes are different. According to
load balancing, the best state is when all nodes execute their assigned tiles at the same time, in the other
words tp1

= tp2
= · · · = tpi

= · · · = tpP
. It is noticed that a perfect load balancing is not always possible.

In this case, we want that all nodes execute their tiles at approximately the same time as much as possible
tp1

∼= tp2

∼= · · · ∼= tpi ∼= · · · ∼= tpP
. When running multiple tiles in parallel, maybe a node, which finishes the

execution of its tile, has to wait for the other one to complete its execution before they could exchange data.
To control the situation in heterogeneous systems, we consider tp = max (tp1

, tp2
, . . . , tpi

, . . . , tpP
). Therefore,

we have

TP (h1, h2) = (tp + ts) +

(

P−1
∑

i=2

(tr + tp + ts)

)

+
Us1Us2

h1h2

(tr + tp) +

(

Us1Us2

h1h2

− 1

)

tidle + Twa(3.4)

h1 and h2 require fine-tuning so that nodes can start their computation as soon as possible and achieve
minimum parallel execution time. We also consider two constrains:

1. If we want to improve data locality in each node, then data items should stay in the cache between
successive uses. In order to get a good performance, tile sizes are better to fit in the cache of nodes.

2. Since the sides of the tile are positive integer, we need integer solutions for h1 and h2.
Considering these observations, we have a nonlinear pure integer-programming problem (NLIP) as follow:

Minimize TP (h1, h2)

Subject to Vih1h2 ≤ CacheSizei, i = 1, 2, . . . , P(3.5)

1 ≤ h1 ≤ Us1 , 1 ≤ h2 ≤ Us2 , h1 and h2 are integer

Tiling and Scheduling of Three-level Perfectly Nested Loops with Dependencies on Heterogeneous Systems 341

Nonlinear integer programming problems are NP-complete. These problems can solve using nonlinear inte-
ger programming solvers or evolutionary approaches. In this paper, we use the NOMAD (Nonlinear Optimiza-
tion using the MADS Algorithm) [42] as a nonlinear integer programming solver and proposed an evolutionary
approach based on the genetic algorithm to find a near-optimal solution that minimize TP (h1, h2).

3.4. The proposed tiling genetic algorithm. In this section, we use Genetic Algorithm (GA) to solve
the nonlinear integer-programming problem, Eq. 3.5, derived from the 3D tiling of nested loops with dependen-
cies on heterogeneous systems.

The GA is a population-based heuristic search that follows an iterative process toward better solutions. The
GA begins with an initial random population of the problem solution, called chromosomes. In each iteration, the
fitness of every chromosome in the population is evaluated by using objective function. The fitter chromosomes
are stochastically selected and then evolutionary operators such as crossover and mutation are used to generate
new population. The GA is terminated for a maximum number of generations [25, 43].

Problem encoding. Each problem solution is represented by a chromosome. Here, chromosome is specified
as a pair of integer number ⟨h1, h2⟩ where 1 ≤ h1 ≤ Us1 and 1 ≤ h2 ≤ Us2 .

Initial population. We use a random integer number generator to create the initial population of
chromosomes. To generate a chromosome, the h1 and h2 are defined randomly by using formulas h1 =
Round (1 + Us1 ×Rand()) and h2 = Round (1 + Us2 ×Rand()) where Us1 and Us2 are the upper bound of
h1 and h2, respectively. The function Rand() returns standard uniform distribution on the interval (0, 1) and
the function Round(x) returns rounding of the elements of x to the nearest integer. So, hi = Round(1 + Usi×
Rand()) generates integer values from the uniform distribution on the interval [1, Usi] for i = 1, 2.

Fitness function. The main objective is to find integer values h1 and h2 such that the parallel execution
time TP (h1, h2) of the heterogeneous system with P processing nodes is minimized. In addition, we have a
constraint to fit the tiles into the cache memory of the processing nodes of the heterogeneous system. When the
requiring space for the iteration points within tiles is not exceed the cache size of the processing nodes, the tiles
are feasible (on the other hand, the chromosomes are feasible). According to Eq. 3.6, we consider the objective
function as a summation of two positive numbers, the parallel execution time and the penalty value computed
for the chromosomes. We use a constant value for penalty which is zero for feasible chromosomes and c > 0 for
an infeasible one.

Objective(⟨h1, h2⟩) = TP (⟨h1, h2⟩) + Penalty(⟨h1, h2⟩,M)

M = mini=1,...,P

Cache size of node i in byte

Vi × (#Byte of data type)
(3.6)

Penalty(⟨h1, h2⟩,M) = {
0 ifh1 × h2 ≤ M

c ifh1 × h2 > M

We assign a fitness value to each chromosome in the population, calculated by Eq. 3.7. The better chromo-
some, the bigger fitness value.

Fitness(⟨h1, h2⟩) =
1

Objective(⟨h1, h2⟩) + 1
(3.7)

Selection, crossover and mutation operators. After assigning the fitness value to each chromosome in
the current population, the roulette wheel selection method is used to choose a couple of parent chromosomes
for the crossing over operation. The bigger the fitness value of chromosomes are, the more chances to be chosen
they have. Crossover and mutation are two important genetic operators. Crossover is an exploitation operator
that is used to create new population by combining a couple of parent chromosomes. Mutation is an exploration
operator that is used to maintain diversity in the new population [43]. Here, the crossover operator is applied
to the selected parent chromosomes using an arithmetic crossover. The crossover operator is done with the
combined probability, PCrossover, as follows:

0 ≤ λ ≤ 1 is chosen randomly
If Rand() ≤ PCrossover

342 E. Zarei Zefreh, S. Lotfi, L. Mohammad Khanli, J. Karimpour

ChildChromosome1 = λ× ParentChromosome1 + (1− λ)× ParentChromosome2
ChildChromosome2 = (1− λ)× ParentChromosome1 + λ× ParentChromosome2

else
ChildChromosome1 =ParentChromosome1
ChildChromosome2 =ParentChromosome2

end

After applying the crossover operator, the mutation operator with the probability, PMutation, is applied to
newly generated chromosomes. It replaced the value of the chosen chromosomes, ⟨h1, h2⟩, with integer values
from the uniform distribution between the upper and lower bounds of h1 and h2.

Replacement Scheme. After generating the new population using selection, crossover and mutation
operations, the GA replaces the current population with the new one. We use elitism in the replacement
scheme. If the fittest chromosome in the current population is better than the fittest chromosome in the new
population, then it is moved to the next population directly. Elitism is important since it allows preserving the
fittest chromosome over the time.

4. Experiments and results. In this section, our simulation and experimental results are presented.
We evaluate the performance of the proposed theoretical model and tiling genetic algorithm by using the 3D
heat equation, three-level perfectly nested loops with dependencies, as a benchmark. Table 4.1 shows the
specifications of nine classes of processing nodes used in experiments. They are multi-core processors. A 100
Mbits/s fast Ethernet network is used to interconnect processing nodes. The benchmark is implemented in C
using OpenMP for intra-node communication and MPI for inter-node communication.

Table 4.1

Specifications of processing nodes

Processing nodes
1 2 3 4 5 6 7 8 9

Name of processors Intel
Core
2 Duo
T5870

Intel
Pen-
tium
E5300

Intel
Core
2 Duo
E7500

Intel
Core i3
2350M

Intel
Pen-
tium
G620

Intel
Pen-
tium
G2020

Intel
Core i5
2410M

Intel
Pen-
tium
G2030

Intel
Core i7
4710HQ

#Processors 1 1 1 1 1 1 1 1 1
CPU Speed (GHz) 2.00 2.60 2.93 2.30 2.60 2.90 2.30 3.00 2.50
#Cores 2 2 2 2 2 2 2 2 4
L1 Cache (KB) 2 x 32 2 x 32 2 x 32 2 x 32 2 x 32 2 x 32 2 x 32 2 x 32 4 x 32
L2 Cache (KB) 2048 2048 3072 2 x 256 2 x 256 2 x 256 2 x 256 2 x 256 4 x 256
L3 Cache (MB) - - - 3 3 3 3 3 6
Memory type DDR2 DDR2 DDR3 DDR3 DDR3 DDR3 DDR3 DDR3 DDR3
RAM (GB) 4 2 2 4 2 4 4 4 8
Normalized Compu-
tational Power for
3D Heat Equation

0.0529 0.0531 0.0920 0.1029 0.1197 0.1383 0.1405 0.1438 0.1568

We use hierarchical tiling to exploit the computational power of all cores in multi-core nodes. For this
purpose, we first partition the iteration space of nested loops with dependencies into chunks and assign each
chunk to each node. Due to the dependence, each assigned chunk is partitioned to subchunks and run in pipeline
mode to achieve the maximum degree of parallelism between nodes of a heterogeneous system. In multi-core
node, the subchunk is tiled again and assign to their cores. Figures 4.1(a) and (b) show the pseudo code of
a subchunk of size ni × nj × nk of the 3D heat equation and the wavefront-parallel 3D heat equation for a
subchunk of size ni × nj × nk, respectively [44].

We execute the 3D heat equation on each node several times, measure the average execution time and
calculate the computational power of the processing nodes. These values, which are used as weights that scale

Tiling and Scheduling of Three-level Perfectly Nested Loops with Dependencies on Heterogeneous Systems 343

Fig. 4.1. (a) Pseudo code of 3D heat equation and (b) the wavefront-parallel 3D heat equation [44]

Table 4.2

Specifications of experiments

Experiment Node type
#1 1 1 1 1 1 1 1 1 - - - -
#2 3 3 3 3 1 1 1 1 - - - -
#3 8 8 8 8 1 1 1 1 - - - -
#4 7 7 7 7 4 4 4 4 1 1 1 1
#5 9 8 7 6 5 4 3 2 1 - - -

the size of each chunks assigned to each processing node, are normalized and showed in the last row of Table 4.1.

Simulations and experimental results are presented for one homogeneous and several heterogeneous comput-
ing systems to evaluate the performance of the proposed theoretical model for estimating the parallel execution
time and the tiling genetic algorithm for finding the near-optimal tiling. Table 4.2 describes the specification
of experiments.

All nodes of computing systems connected together with homogeneous communication links. An MPI
program in C used to exchange data with different sizes between every pair of processing nodes. We measured
the average time to send and receive messages. The estimated value of the start-up latency, cd, and the transfer
cost per unit of data, cc, between each pairs of nodes are 300e-06 and 0.80e-06, respectively.

We approximate the execution cost per iteration of each node as a function of tile size (namely, the constant
value Vi and variable integer values h1 and h2) to consider processor heterogeneity, the heterogeneity in memory
structure, and the effect of paging [45]. To do so, we run the benchmark for several integer values h1 and h2,
then the execution cost for all integer values of 1 ≤ h1 ≤ Us1 and 1 ≤ h2 ≤ Us2 was predicted using bilinear
interpolation methods. The execution time of each tile is measured once and is used several times in practice.
So, the cost of calculating the execution time of each tile will be amortized on the total execution time. Since
intra-node communication cost is negligible compared to inter-node communication cost, we did not directly
consider intra-node communication cost in Eq. 3.4. In fact, intra-node communication cost indirectly have
regarded in cpi

parameter.

4.1. Evaluation of the theoretical model. In this section, we evaluate the proposed theoretical model
for estimating the parallel execution time and genetic tiling algorithm for finding near-optimal tiling. In ex-
periment 1, we consider a homogeneous computing system consists of eight same processing nodes of type 1 as
mentioned in Table 4.2. First, the computational powers of these nodes are normalized such that the summation
of them equals one. The size of the iteration space is Uc×Us1×Us2 = 1024×1024×1024. The size of the assigned

344 E. Zarei Zefreh, S. Lotfi, L. Mohammad Khanli, J. Karimpour

Fig. 4.2. Parallel execution time for different tile sizes in experiment 1

chunk to the respective nodes in the uc dimension is Vi = Uc × vpi = 1024× 0.125 = 128 for i = 1, . . . , 8. Now,
we can determine the optimal size of other sides of 3D tile, h1 and h2, along the synchronization dimensions
us1 and us2 . Figure 4.2 shows the parallel execution time for various tile sizes (the Vi, h1 and h2). By searching
the entire space of solutions of h1 and h2, the optimal value of ⟨h1, h2⟩ are ⟨128, 16⟩. As theoretically expected,
when the tile sizes fit into the cache of nodes, the cache utilization and data locality maximize and it would
lead to improvement in the parallel execution time.

It is to be noted that searching the entire solution space of tile sizes can be very time consuming, especially
in the large solution space. So, we use proposed tiling genetic algorithm and the nonlinear integer programming
solver, NOMAD, to find the near-optimal value of h1 and h2 from the theoretical model, Eq. 3.5. Table 4.3
shows the results of 30 runs of the tiling genetic algorithm and NOMAD to solve Eq. 3.5 in experiment 1. The

comparison of the average and standard deviation of |AT−OPT |
OPT

indicate that the reliability of the proposed
tiling genetic algorithm to find the near-optimal value of h1 and h2 is better than NOMAD algorithm. On the
other hand, the accuracy of value ⟨h1, h2⟩ of the tiling genetic algorithm and NOMAD is achieved by the error
less than 0.0055 and 0.0248 in 30 runs, respectively.

4.2. Comparison of 3D and 2D Tiling. As mentioned in the related work, the proposed methods in
[21, 33, 40] could find the near-optimal partitioning of 3-nested loop with dependencies for homogeneous/hetero-
geneous computing systems. It targets two loops of the nested loop and considers the outer loop as synchro-
nization dimension and another loop as scheduling dimension. We refer to this work as the 2D tiling. In the
following, we compare the proposed 3D tiling with the 2D tiling for the 3-nested loop with dependencies on
homogeneous/heterogeneous computing systems. We find the near-optimal 3D tiling and 2D tiling for one
homogeneous and several heterogeneous computing systems. Table 4.4 shows the near-optimal tile sizes of 2D
and 3D tiling with/without considering heterogeneity feature and Fig. 4.3 plots their corresponding execution
time. The results presented in Tables 4.5 and 4.6 show the speedup of execution time for the 3D tiling versus

Tiling and Scheduling of Three-level Perfectly Nested Loops with Dependencies on Heterogeneous Systems 345

Table 4.3

The results of 30 runs of the tiling genetic algorithm and NOMAD Algorithm in experiment 1

Run
NOMAD Algorithm Genetic Tiling Algorithm

h1 h2 TT AT
|AT−OPT |

OPT
Generation h1 h2 TT AT

|AT−OPT |
OPT

1 128 16 6.0560 6.0643 0.0000 68 128 16 6.0560 6.0643 0.0000

2 227 9 6.3812 6.3904 0.0538 97 128 16 6.0560 6.0643 0.0000

3 136 15 6.2110 6.2199 0.0257 500 128 15 6.2429 6.2518 0.0309

4 128 16 6.0560 6.0643 0.0000 225 128 16 6.0560 6.0643 0.0000

5 256 8 6.2871 6.2954 0.0381 522 128 16 6.0560 6.0643 0.0000

6 127 16 6.1178 6.1271 0.0104 494 128 16 6.0560 6.0643 0.0000

7 255 8 6.3724 6.3828 0.0525 109 128 16 6.0560 6.0643 0.0000

8 135 15 6.2147 6.2237 0.0263 173 128 16 6.0560 6.0643 0.0000

9 128 16 6.0560 6.0643 0.0000 422 128 16 6.0560 6.0643 0.0000

10 256 8 6.2871 6.2954 0.0381 500 127 16 6.1178 6.1271 0.0104

11 127 16 6.1178 6.1271 0.0104 389 128 16 6.0560 6.0643 0.0000

12 128 16 6.0560 6.0643 0.0000 398 128 16 6.0560 6.0643 0.0000

13 64 32 6.3656 6.3739 0.0511 239 128 16 6.0560 6.0643 0.0000

14 146 14 6.3077 6.3172 0.0417 67 128 16 6.0560 6.0643 0.0000

15 128 16 6.0560 6.0643 0.0000 288 128 16 6.0560 6.0643 0.0000

16 128 16 6.0560 6.0643 0.0000 473 128 16 6.0560 6.0643 0.0000

17 156 13 6.3014 6.3104 0.0406 500 128 15 6.2429 6.2518 0.0309

18 227 9 6.3812 6.3904 0.0538 500 128 16 6.0560 6.0643 0.0000

19 136 15 6.2110 6.2199 0.0257 500 129 15 6.2387 6.2476 0.0302

20 128 16 6.0560 6.0643 0.0000 79 128 16 6.0560 6.0643 0.0000

21 136 15 6.2110 6.2199 0.0257 112 128 16 6.0560 6.0643 0.0000

22 128 16 6.0560 6.0643 0.0000 500 128 15 6.2429 6.2518 0.0309

23 128 16 6.0560 6.0643 0.0000 500 129 15 6.2387 6.2476 0.3022

24 128 15 6.2429 6.2518 0.0309 121 128 16 6.0560 6.0643 0.0000

25 227 9 6.3812 6.3904 0.0538 152 128 16 6.0560 6.0643 0.0000

26 128 16 6.0560 6.0643 0.0000 168 128 16 6.0560 6.0643 0.0000

27 63 32 6.4037 6.4125 0.0574 206 128 16 6.0560 6.0643 0.0000

28 119 16 6.2917 6.3011 0.0390 224 128 16 6.0560 6.0643 0.0000

29 136 15 6.2110 6.2199 0.0257 178 128 16 6.0560 6.0643 0.0000

30 145 14 6.3114 6.3210 0.0423 453 128 16 6.0560 6.0643 0.0000

Average of
|AT−OPT |

OPT
=0.0248 Average of

|AT−OPT |
OPT

=0.0055

Standard Deviation of
|AT−OPT |

OPT
=0.0212 Standard Deviation of

|AT−OPT |
OPT

=0.0114

Comment:

TT is the Theoretical Time for ⟨h1, h2⟩.
AT is the Actual Time for ⟨h1, h2⟩.
OPT is the Optimal Time for ⟨h1, h2⟩.
Optimal values for ⟨h1, h2⟩ via searching the entire space of feasible solutions is ⟨128, 16⟩ with the actual time 6.0643

2D tiling with/without considering heterogeneity feature.

In experiment 1, the homogeneous computing system consists of eight similar nodes of type 1. So, the parallel
execution time in 2D tiling with and without considering heterogeneity feature is the same and similarly for 3D
tiling. In this case, the 3D tiling achieves 1.65× speedup of execution time compared to the 2D tiling.

In experiment 2, the heterogeneous computing system consists of eight processing nodes, four nodes of type
1 and four nodes of type 3, as mentioned in Table 4.2. Since nodes 1 and 3 have the computational power close
to each other, the resulting speedup of execution time is almost close to experiment 1.

In experiment 3, the heterogeneous computing system consists of eight processing nodes, four nodes of type
1 and four nodes of type 8, as mentioned in Table 4.2. The nodes 1 and 8 have the computational power very
different from each other. In this case, the 3D tiling achieves 1.74× speedup of execution time compared to the

346 E. Zarei Zefreh, S. Lotfi, L. Mohammad Khanli, J. Karimpour

Table 4.4

Near-optimal tile sizes of 2D and 3D tiling with/without considering heterogeneity feature

Exp
The sides

of the tile

Without considering heterogeneity With considering heterogeneity

2D Tiling 3D Tiling 2D Tiling 3D Tiling

Exp.1

Vi { 128,128,128,128,128,128,128,128 } { 128,128,128,128,128,128,128,128}
h1 135 128 135 128

h2 1024 16 1024 16

Exp.2

Vi { 128,128,128,128,128,128,128,128 } { 163,163,163,163,93,93,93,93}
h1 135 128 150 74

h2 1024 16 1024 32

Exp.3

Vi { 128, 128, 128, 128, 128, 128, 128, 128 } { 188, 188, 188, 188, 68, 68, 68, 68}
h1 135 128 165 82

h2 1024 16 1024 25

Exp.4

Vi { 86,86,86,86,85,85,85,85,85,85,85,85 } { 122,122,122,122,89,89,89,89,45,45,45,45}
h1 140 192 144 84

h2 1024 16 1024 38

Exp.5

Vi { 114,114,114,114,114,114,114,113,113 } { 161,148,144,142,122,105,94,54,54}
h1 132 32 152 147

h2 1024 64 1024 18

Exp.6

Vi { 114,114,114,114,114,114,114,113,113 } { 152,152,152,152,152,66,66,66,66 }
h1 132 32 156 128

h2 1024 64 1024 20

Exp.7

Vi { 114,114,114,114,114,114,114,113,113 } { 152,152,152,152,101,101,100,57,57 }
h1 132 32 162 80

h2 1024 64 1024 32

Fig. 4.3. Comparison of 3D tiling and 2D tiling

Table 4.5

The speedup of execution time of 3D tiling vs 2D tiling without considering heterogeneity feature

2D Tiling-Heterogeneity
Exp.1 Exp.2 Exp.3 Exp.4 Exp.5 Exp.6 Exp.7

3D Tiling-Heterogeneity 1.65 1.52 1.45 1.89 1.43 1.43 1.43

Tiling and Scheduling of Three-level Perfectly Nested Loops with Dependencies on Heterogeneous Systems 347

Table 4.6

The speedup of execution time of 3D tiling vs 2D tiling with considering heterogeneity feature

2D Tiling+Heterogeneity
Exp.1 Exp.2 Exp.3 Exp.4 Exp.5 Exp.6 Exp.7

3D Tiling+Heterogeneity 1.65 1.67 1.74 2.08 1.76 1.81 1.86

Table 4.7

Partitioning nodes in experiment 5 into two or three groups of similar performance

Computational power of nodes Group 1 Group 2 Group 3
0.1568, 0.1438, 0.1405, 0.1383,
0.1197, 0.1029, 0.0920, 0.0531,
0.0529

0.1568, 0.1438, 0.1405,
0.1383, 0.1197

0.1029, 0.0920,
0.0531, 0.0529

-

0.1568, 0.1438, 0.1405
0.1383

0.1197, 0.1029,
0.0920

0.0531, 0.0529

2D tiling with considering heterogeneity feature.
In experiment 4, the heterogeneous computing system consists of 12 processing nodes of three types 1, 4

and 7 as mentioned in Table 4.2. In this case, the 3D tiling can achieve 1.89× and 2.08× speedup of execution
time compared to the 2D tiling without and with considering heterogeneity feature, respectively.

In experiment 5, the heterogeneous computing system consists of nine nodes of fully different computational
powers as mentioned in Table 4.2. In this case, the 3D tiling can achieve 1.43× and 1.76× speedup of execution
time compared to the 2D tiling without and with considering heterogeneity feature, respectively.

The heterogeneity is an important feature in parallel and distributed computing systems but considering
fully heterogeneity in practice is very difficult. Therefore, we partition nodes of experiment 5 into two or three
groups of almost similar performance in terms of their computational power and consider the weakest node
in each group as the representative. Table 4.7 show the results of the grouping that was done with fastclus

procedure on SAS software. The weakest node in each group is bold. The parallel execution times in experiment
6 and 7 are very close to experiment 5.

According to the experimental results, the parallel execution time of the 2D tiling and 3D tiling with
considering heterogeneity feature is less than the 2D tiling and 3D tiling without considering heterogeneity
feature. Therefore, loop tiling combined with the heterogeneity feature could help to improve the efficiency of
computation on heterogeneous systems. Overall, the results show the minimum parallel execution time for the
3D tiling with considering heterogeneity feature in all experiments.

As already mentioned, Fig. 4.3 shows the cost to implement the obtained solution for 2D and 3D tiling.
The proposed genetic tiling algorithm takes, on average, less than one second to find a solution. Therefore, the
cost to obtain the solution for 3D tiling using the genetic algorithm is higher than 2D tiling, because it involves
the cost of the evolutionary process. However, the results presented in Fig. 4.3 shows that the 3D tiling might
lead to a more parsimonious solution in terms of implementation cost.

5. Conclusions and future work. This paper addresses the problem of 3D tiling and scheduling when
parallelizing three-level perfectly nested loop with dependencies on heterogeneous systems. The tile size plays
an important role to improve the parallel execution time of nested loops. Searching the entire feasible solution
space of tile size can be very time consuming, especially in cases where the solution space is large. We build
a theoretical model to estimate the parallel execution time with the computational power awareness of the
nodes of computing systems. We use the proposed tiling genetic algorithm and nonlinear integer programming
solvers, NOMAD, to find the near-optimal value of tile size from the theoretical model. Experiment results
by 3D heat equation on heterogeneous systems show the accuracy and efficiency of the proposed theoretical
model and the tiling genetic algorithm in estimating the parallel execution time and finding the near-optimal
3D tiling. Furthermore, we show that the 3D tiling combined with heterogeneity feature and a pipeline-like
execution could exploit the potential parallelism and improve the parallel execution time of perfectly nested
loop with dependencies on heterogeneous systems.

The plans for future work include: (i) extend the 3D tiling algorithm for the imperfectly nested loops with

348 E. Zarei Zefreh, S. Lotfi, L. Mohammad Khanli, J. Karimpour

dependencies on heterogeneous computing systems; and (ii) extend the 3D tiling algorithm to handle partially
connected network.

Acknowledgments. The authors would like to thanks the editor and the reviewers for their helpful and
constructive suggestions, which considerably improved the quality of the paper. They would also like to thanks
Nasrin Nasrabadi and Fateme Karimi, PhD Students, for all very valuable comments.

REFERENCES

[1] S. Fide and S. Jenks, A middleware approach for pipelining communications in clusters, Cluster Computing, 10 (2007), pp.
409-424.

[2] I. Riakiotakis and P. Tsanakas, Dynamic scheduling of nested loops with uniform dependencies in heterogeneous networks
of workstations, 8th International Symposium on Parallel Architectures, Algorithms and Network, ISPAN 2005, 2005.

[3] R. L. Cariño and I. Banicescu, A load balancing tool for distributed parallel loops, Cluster Computing, 8 (2005), pp. 313-321.
[4] X. Zhou, M. J. Garzarán, and D. A. Padua , Optimal parallelogram selection for hierarchical tiling, ACM Transactions

on Architecture and Code Optimization, 11 (2015), pp. 1-23.
[5] M. I. Daoud and N. Kharma, An efficient genetic algorithm for task scheduling in heterogeneous distributed computing

systems, IEEE Congress on Evolutionary Computation, CEC, pp. 3258-3265, 2006.
[6] G. Wang, Y. Wang, H. Liu, and H. Guo, HSIP: A Novel Task Scheduling Algorithm for Heterogeneous Computing, Scientific

Programming, 2016 (2016), pp. 1-11.
[7] K. Qinma and H. He, Honeybee mating optimization algorithm for task assignment in heterogeneous computing systems,

Intelligent Automation & Soft Computing, 19 (2013), pp. 69-84.
[8] C.-T. Yang and L.-H. Cheng, Implementation of a performance-based loop scheduling on heterogeneous clusters, Algorithms

and Architectures for Parallel Processing, Springer, pp. 44-54, 2009.
[9] J. Dongarra and A. L. Lastovetsky, High performance heterogeneous computing, John Wiley & Sons, 2009.

[10] K. Hwang, J. Dongarra, and G. C. Fox, Distributed and cloud computing: from parallel processing to the internet of thing,
Morgan Kaufmann, 2013.

[11] R. Bleuse, S. KedadSidhoum, F. Monna, G. Mounié, and D. Trystram, Scheduling independent tasks on multicores with
GPU accelerators, Concurrency and Computation: Practice and Experience, 27 (2015), pp. 1625-1638.

[12] M. G. Lopez, J. Young, J. S. Meredith, P. C. Roth, M. Horton, and J. S. Vetter, Examining recent many-core
architectures and programming models using SHOC, Proceedings of the 6th International Workshop on Performance
Modeling, Benchmarking, and Simulation of High Performance Computing Systems, 2015.

[13] P. A. La Fratta and P. M. Kogge, Heterogeneity in parallel and distributed computing, Journal of Parallel and Distributed
Computing, 73 (2013), pp. 1523-1524.

[14] M. E. Wolf and M. S. Lam, A data locality optimizing algorithm, ACM Sigplan Notices, pp. 30-44, 1991.
[15] G. Rivera and C.-W. Tseng, Tiling optimizations for 3D scientific computations, ACM/IEEE Conference in Supercomput-

ing, pp. 32-32, 2000.
[16] M. E. Wolf and M. S. Lam, A loop transformation theory and an algorithm to maximize parallelism, IEEE Transactions

on Parallel and Distributed Systems, 2(1991), pp. 452-471.
[17] D. Padua, Encyclopedia of parallel computing , Springer Science & Business Media, 2011.
[18] M. Kowarschik and C. Weib, An overview of cache optimization techniques and cache-aware numerical algorithms, Algo-

rithms for Memory Hierarchies, LNCS 2625, Springer, pp. 213-232, 2003.
[19] S. Parsa and M. Hamzei, Locality-Conscious Nested-Loops Parallelization, ETRI Journal, 36 (2014), pp. 124-133.
[20] I. Riakiotakis, F. M. Ciorba, T. Andronikos, and G. Papakonstantinou, Distributed dynamic load balancing for pipelined

computations on heterogeneous systems, Parallel Computing, 37 (2011), pp. 713-729.
[21] T. Andronikos, F. M. Ciorba, I. Riakiotakis, G. Papakonstantinou, and A. T. Chronopoulos, Studying the impact of

synchronization frequency on scheduling tasks with dependencies in heterogeneous systems, Performance Evaluation, 67
(2010), pp. 1324-1339.

[22] U. Bondhugula, Compiling affine loop nests for distributed-memory parallel architectures, International Conference in High
Performance Computing, Networking, Storage and Analysis (SC), pp. 1-12, 2013.

[23] H. El-Rewini and M. Abd-El-Barr, Advanced computer architecture and parallel processing, John Wiley & Sons, 2005.
[24] C. L. Abad, Y. Lu, and R. H. Campbell, DARE: Adaptive data replication for efficient cluster scheduling, International

Conference on Cluster Computing (CLUSTER), IEEE, pp. 159-168, 2011.
[25] S. Parsa and S. Lotfi, A new genetic algorithm for loop tiling, The Journal of Supercomputing, 37 (2006), pp. 249-269.
[26] S. Mehta, G. Beeraka, and P.-C. Yew, Tile size selection revisited, ACM Transactions on Architecture and Code Opti-

mization, 10 (2013).
[27] S. Chen and J. Xue, Partitioning and scheduling loops on NOWs, Computer Communications, 22 (1999), pp. 1017-1033.
[28] F. M. Ciorba, I. Riakiotakis, G. K. Papakonstantinou, T. Andronikos, and A. T. Chronopoulos, Studying the impact

of synchronization frequency on scheduling tasks with dependencies in heterogeneous systems, PACT, 2007.
[29] J. Ramanujam and P. Sadayappan, Nested loop tiling for distributed memory machines, Proceedings of the Fifth Conference

in Distributed Memory Computing, pp. 1088-1096, 1990.
[30] D. Liu, Y. Wang, Z. Shao, M. Guo, and J. Xue, Optimally maximizing iteration-level loop parallelism, IEEE Transactions

on Parallel and Distributed Systems, 23(2012), pp. 564-572.

Tiling and Scheduling of Three-level Perfectly Nested Loops with Dependencies on Heterogeneous Systems 349

[31] F. M. Ciorba, I. Riakiotakis, T. Andronikos, G. Papakonstantinou, and A. T. Chronopoulos, Enhancing self-
scheduling algorithms via synchronization and weighting, Journal of Parallel and Distributed Computing, 68 (2008),
pp. 246-264.

[32] J. Xue, Communication-minimal tiling of uniform dependence loops, Journal of Parallel and Distributed Computing, 42
(1997), pp. 42-59.

[33] I. Riakiotakis, F. M. Ciorba, T. Andronikos, G. Papakonstantinou, and A. T. Chronopoulos, Towards the opti-
mal synchronization granularity for dynamic scheduling of pipelined computations on heterogeneous computing systems,
Concurrency and Computation: Practice and Experience, 24 (2012), pp. 2302-2327.

[34] P. Crandall , M. J. Quinn, Three-Dimensional Grid Partitioning for Network Parallel Processing, ACM Conference on
Computer Science. Citeseer, pp. 210-217, 1994.

[35] O. Beaumont, V. Boudet, F. Rastello and Y. Robert, Matrix multiplication on heterogeneous platforms, IEEE Trans-
actions on Parallel and Distributed Systems, 12 (2001), 1033-1051.

[36] E. Z. Zefreh, S. Lotfi, L. M. Khanli, and J. Karimpour, 3D data partitioning for three-level perfectly nested loops on
heterogeneous distributed systems, Concurrency and Computation: Practice and Experience, accepted, 2016.

[37] P. Boulet, J. Dongarra, F. Rastello, Y. Robert, and F. Vivien, Algorithmic issues on heterogeneous computing
platforms, Parallel processing letters, 9 (1999), pp. 197-213.

[38] P. Boulet, J. Dongarra, Y. Robert, and F. Vivien, Static tiling for heterogeneous computing platforms, Parallel Com-
puting, 25 (1999), pp. 547-568.

[39] F. M. Ciorba, T. Andronikos, I. Riakiotakis, A. T. Chronopoulos, and G. Papakonstantinou, Dynamic multi phase
scheduling for heterogeneous clusters, 20th International in Parallel and Distributed Processing Symposium, IPDPS, 2006.

[40] F. M. Ciorba, I. Riakiotakis, T. Andronikos, A. T. Chronopoulos, and G. Papakonstantinou, Optimal synchronization
frequency for dynamic pipelined computations on heterogeneous systems, International Conference on Cluster Computing,
IEEE, pp. 410-415, 2007.

[41] F. Desprez, J. Dongarra, F. Rastello, and Y. Robert, Determining the idle time of a tiling: new results, International
Conference on Parallel Architectures and Compilation Techniques, pp. 307-317, 1997.

[42] S. Le Digabel, NOMAD: Nonlinear optimization with the MADS algorithm, ACM Transactions on Mathematical Software
(TOMS), 37 (2011).

[43] M. Gen and R. Cheng, Genetic algorithms and engineering optimization, John Wiley & Sons, 2000.
[44] G. Hager and G. Wellein, Introduction to high performance computing for scientists and engineers, CRC Press, 2010.
[45] A. Lastovetsky and R. Reddy, Data partitioning with a functional performance model of heterogeneous processors, Inter-

national Journal of High Performance Computing Applications, 21 (2007), pp. 76-90.

Edited by: Dana Petcu
Received: May 28, 2016
Accepted: August 2, 2016

