DOT 10.12694 /scpe.v17i4.1207
SCALABLE COMPUTING: PRACTICE AND EXPERIENCE ISSN 1895-1767
Volume 17, Number 4, pp. 369-391. http://www.scpe.org (© 2016 SCPE

AQSORT: SCALABLE MULTI-ARRAY IN-PLACE SORTING WITH OPENMP

DANIEL LANGR, PAVEL TVRDIK AND IVAN SIMECEK *

Abstract. A new multi-threaded variant of the quicksort algorithm called AQsort and its C++/OpenMP implementation are
presented. AQsort operates in place and was primarily designed for high-performance computing (HPC) runtime environments.
It can work with multiple arrays at once; such a functionality is frequently required in HPC and cannot be accomplished with
standard C pointer-based or C++ iterator-based approach. An extensive study is provided that evaluates AQsort experimentally
and compares its performance with modern multi-threaded implementations of in-place and out-of-place sorting algorithms based
on OpenMP, Cilk Plus, and Intel TBB. The measurements were conducted on several leading-edge HPC architectures, namely Cray
XE6 nodes with AMD Bulldozer CPUs, Cray XC40 nodes with Intel Hasswell CPUs, IBM BlueGene/Q nodes, and Intel Xeon Phi
coprocessors. The obtained results show that AQsort provides good scalability and sorting performance generally comparable to
its competitors. In particular cases, the performance of AQsort may be slightly lower, which is the price for its universality and
ability to work with substantially larger amounts of data.

Key words: C++, high performance computing, in-place sorting, many-core, multi-array sorting, multi-core, multi-threaded
algorithm, OpenMP, parallel partitioning, parallel sorting

AMS subject classifications. 68P10, 68W10

1. Introduction. The demand for sorting multiple arrays at once emerges not only in high-performance
computing (HPC) codes. Such codes are mostly written in C/C++ and Fortran, however, common imple-
mentations of sorting algorithms in these languages do not support multi-array sorting. Pointer-based sorting
routines—such as gsort from the C standard library [10, §7.20.5.2]—and their iterator-based generalizations—
such as std::sort from the C++ standard library [11, §25.4.1.1]—can operate on a single array only. The
Boost library [28] has introduced so-called zip iterators that can work with multiple arrays at once; however,
Boost zip iterators are read-only iterators and therefore do not provide a solution for multi-array sorting. Gen-
erally, it is not feasible to create a portable standard-compliant implementation of zip iterators that can modify
underlying arrays.!

The multi-array sorting problem has been frequently addressed by developers; numerous threads of C/C++
mailing lists and web forums have been devoted to this topic.? The suggested solution is practically always the
same—to transform the structure of arrays (SoA) into a single array of structures (AoS), then perform sorting,
and finally copy data back from AoS to SoA. Such a solution has the following drawbacks:

1. There must be enough free memory to perform the SoA-to-AoS transformation. Namely, the amount of
free memory must be at least the same as the amount of memory occupied by the data that need to be
sorted. Such a constraint might be inconvenient especially in HPC, where not the computational power
but the amount of memory often limits the sizes of problems being solved. Users of HPC programs
thus might in practice need to work with multi-array data structures that occupy more than the half
of available memory, e.g., with representations of sparse matrices or meshes for spatial discretization
of PDEs. Sorting/reordering of these data structures via SoA-to-AoS transformation would be not
possible under such conditions.

2. The SoA-to-AoS and back AoS-to-SoA transformations imposes into programs a runtime overhead.

Sorting algorithms can be classified as being either in-place or out-of-place. We define an out-of-place /not-
in-place sorting algorithm as an algorithm that requires Q(n) extra space for auxiliary data structures, where
n denotes the number of sorted elements; for a multi-array sorting problem, n denotes the number of sorted
elements of each of the arrays. On the contrary, we define an in-place sorting algorithm as an algorithm that
needs o(n) extra space. Out-of-place sorting algorithms, such as mergesort, have typically the same amortized
memory requirements as the SoA-to-AoS transformation. That is, the amount of free memory must be at

*Department of Computer Systems, Faculty of Information Technology, Czech Technical University in Prague, Thikurova 9,
160 00, Praha, Czech Republic (langrd@fit.cvut.cz).

IThe problem stems from the fact that it is not possible to create a pointer or a C++ reference to multiple data entities. For
example, the following code is perfectly valid for an implementation of a sorting algorithm in C++: auto& next_elem = x(iter +
1); next_elem = std::move(...);. But in case of multiple arrays, there does not exist any entity that next_elem could reference.
A detailed discussion about this problem is beyond the scope of this text.

2Look, e.g., for posts regarding multiple arrays/vectors sorting in C/C++ on the Stack Overflow community developer site
(http:/ /stackoverflow.com).

369

370 D. Langr, P. Tvrdik, I. Simecek

least the same as is occupied by the sorted data. Within this article, we primarily address multi-array sorting
problems where such an amount of free memory is not available. Therefore, for the solution of these problems,
neither the SoA-to-AoS transformation nor the out-of-place sorting can be used.

Growing capacities of shared memories of computer hardware architectures and growing numbers of their
computational cores have raised the demand for parallel /multi-threaded algorithms; we do not consider distribu-
ted-memory parallelism in this text, therefore, we use the terms parallel and multi-threaded as synonyms. In
HPC, the utilization of shared memories via hybrid parallel paradigms, such as the combination of MPI and
OpenMP, often outperforms distributed-memory implementations (pure MPI). However, the amount of data
that fit shared memories might become so large that their sequential sorting would introduce into applications
significant hotspots. For illustration, sorting of an array of 6.4 billions of integers, which fit 64 GB of memory,
with sequential std: :sort took in our measurements over 18 minutes on a contemporary CPU-based system.
Using parallel in-place sorting algorithms, we were able to reduce the sorting time to less than 2.5 minutes
(speedup 7.5) utilizing all 16 system cores. Similarly, we observed the reduction of runtime from 12 minutes
to less than 24 seconds (speedup over 30) when sorting 1.6 billions of integers on an Intel Xeon Phi many-core
COProcessor.

Available parallel C/C++ implementations of sorting algorithms usually adopt the pointer-/iterator-based
approach of their sequential counterparts. Consequently, they are not able to work with multiple arrays at
once. In this article, we present a new parallel variant of the in-place quicksort algorithm called AQsort that
does not impose such a constraint. Instead of pointers/iterators, AQsort works with user-provided routines for
comparing and swapping sorted data. The drawback of this approach is that it hinders some possibilities to
optimize and tune resulting programs by developers and compilers (see Sect. 6 for details). One of the purpose
of the presented experimental study is therefore to evaluate the effects of such a restriction.

The structure of this article is as follows. Section 2 introduces the state-of-the-art implementations of
parallel sorting algorithms. Sections 3 and 4 describe the AQsort algorithm itself and its C++/OpenMP
implementation, respectively. Section 5 presents a study that evaluates AQsort experimentally on modern
HPC architectures and compares its performance with its not-multi-array competitors. Section 6 discusses
the problem of choosing the most suitable sorting solution according to user’s needs and constraints. Finally,
Section 7 summarizes our work and concludes the article.

1.1. Motivation. Our research is tightly connected to sparse-matrix computations, mainly to sparse ma-
trix storage formats. These formats determine the way how matrix nonzero elements are stored in computer
memory. The simplest format is so-called coordinate storage format (COO) [1,27] that consists of three ar-
rays containing row indexes, column indexes, and values of matrix nonzero elements. COO does not prescribe
any order of the elements in these arrays and it is the most suitable format for assembling sparse matrices—
generated nonzero elements are simply to the arrays appended. However, COO has high memory requirements;
it is therefore not a suitable format for sparse-matrix computations, which are generally bound in performance
by memory bandwidth [14, 35].

In practice, likely the most commonly-used format for sparse matrix computations is the compressed sparse
row format (CSR, CRS), together with its compressed sparse column (CSC, CCS) counterpart [1,27]. The
conversion of sparse matrices from COO to CSR consists of two steps: First, the nonzero elements in COO
arrays are sorted lexicographically, which represents a multi-array sorting problem. Then, the array of row
indexes is substituted by an (hopefully much smaller) array that indicates how many nonzero elements are in
each row and where their column indexes and values can be found.

Numerous other formats have been developed in the past that were shown to provide high performance of
sparse matrix computations on modern multi-core and many-core architectures, typically in comparison with
CSR. Generally, these formats have two common features: (1) they store matrix nonzero elements in memory
in some particular order, and (2) they are more or less parametrized. Finding (pseudo)optimal parameters
for a given matrix and transforming this matrix into a given format typically involves multiple sorting of the
COO arrays. For example, uniformly-blocking formats are parametrized by the block size [13]. To find an
optimal block size, matrix nonzero elements need to be sorted repeatedly with respect to different tested block
sizes [12,29].

To amortize the usage of a given format in subsequent matrix-related computations, we thus need a fast
scalable sorting algorithm. To allow users to work in their HPC programs with large matrices that occupy more
than a half of available memory and thus effectively allow them to solve correspondingly large computational

AQsort: Scalable Multi-Array In-Place Sorting with OpenMP 371

problems, we need this algorithm to be in-place. Finally, to allow developers to integrate such an algorithm into
their codes, we need its efficient portable OpenMP implementation, since the OpenMP threading paradigm [5]
prevails in sparse matrix-related and HPC codes in general. All of these requirements AQsort fulfils.

2. Related Work. Many C/C++ implementations of parallel sorting algorithms have been developed in
the past. To our best knowledge, we have not found any one capable of generic multi-array in-place sorting.
To evaluate AQsort, we therefore compared its performance with the performance of iterator-based sorting
functions from forefront libraries provided by GNU, Nvidia, and Intel.

GNU implements parallel sorting algorithms in the scope of its parallel version of the C++ Standard
Library, namely the GNU Libstdc++ Parallel Mode [30]. It provides functions for both in-place and out-of-
place sorting; the former implements the parallel quicksort algorithm proposed by Tsigas and Zhang [34], the
latter implements a parallel multi-way mergesort. Moreover, the parallel quicksort exists in the library in a
balanced and an unbalanced variant, which differ in the way of assigning threads to partitions of unequal sizes.
The library uses the OpenMP threading paradigm and was originally developed as a standalone software project
called the Multi-Core Standard Template Library (MCSTL) [31]. At the time of writing this article, the GNU
Libstdc++ Parallel Mode was referred to as “an experimental parallel implementation of many C++ Standard
Library algorithms”.

Nvidia provides parallel sorting functions in the scope of its library called Thrust. The documentation does
not discuss the implementation in detail, but according to the source code, the functions seemingly implement an
out-of-place parallel mergesort. Thrust was primarily designed for GPGPU programming, but it also supports
OpenMP as an underlying threading paradigm [3].

Intel provides parallel sorting functions for their own threading paradigms/frameworks Cilk Plus [26] and
Thread Building Blocks (TBB) [24]. Cilkpub—a library of community-contributed Cilk Plus code—contains
functions that implement both a parallel in-place quicksort and a parallel out-of-place samplesort. Intel TBB
contains an implementation of an in-place parallel quicksort. Some details of these functions are provided by
McCool et al. [18].

We have chosen the above mentioned (iterator-based) implementations since, thanks to their providers, we
presumed highly efficient and optimized codes targeting modern hardware architectures. However, note that
there are numerous other parallel implementations of sorting algorithms as well, available either in the form
of standalone codes or within some more generic libraries/frameworks. These include, e.g., Intel PSS [25],
OMPTL [2], Parallel STL [19], ParallelSort [21], psort [16], STAPL [33], and STXXL [7].

2.1. Parallel Quicksort. Current implementations of generic in-place sorting algorithms are mostly based
on quicksort [8,9]. Quicksort partitions sorted data according to a so-called pivot element and then recursively
calls itself for both resulting parts. In multi-threaded environments, the recursive calls are natural candidates
for task parallelism, which is available, e.g., in OpenMP since version 3.0, Intel TBB, and Intel Cilk Plus.
However, partitioning needs to be parallelized as well; sequential partitioning at top levels of recursion would
significantly hinder the scalability of parallel quicksort.

Tsigas and Zhang [34] proposed a parallel quicksort with efficient parallel partitioning that is widely used in
practice and frequently mentioned in literature. Alternative solutions and their comparison has been presented
by Pasetto and Akhriev [22,23]. Within they work, they also proposed a new approach to parallel partitioning,
however, they defined it only by words and did not provide a corresponding algorithm [23, Section 2.4].

Another parallel quicksort have been proposed by Mahafzah [15], however, he does not provide experimental
comparison with other solutions. Moreover, he presents results only for small data up to 80 MB of memory
footprint and small number of threads up to 8. Siis and Leopold [32] compared several parallel implementations
of quicksort based on OpenMP and POSIX threads (Pthreads).

In practice, efficient implementations frequently combine quicksort with other sorting algorithms. One
reason is the quicksort’s worst-case complexity O(n?). To deal with the worst cases, such implementations
allow the recursive process happen only to some maximum depth, commonly set to |2log, n]. If it is exceeded,
the quicksort is abandoned and the rest of the not-yet sorted data is processed by another sorting algorithm with
the O(nlogn) worst-case complexity, typically by heapsort [6]; such a combination of quicksort and heapsort
is referred to as introspective sort or shortly introsort [20]. Another reason for combining quicksort with other
algorithms is that applying quicksort to very small partitions might be inefficient; recursive calls are relatively
expensive here. When partitions of sizes below some cutoff parameter are reached, they are thus usually sorted
with some simple O(n?) algorithm, typically with insertion sort [6].

372 D. Langr, P. Tvrdik, I. Simecek

3. Algorithm Design. Available iterator-based C++ sorting functions—both sequential and parallel—
typically adhere to the following declaration pattern:

template <class RandomAccessIterator, class Compare>
void sort(RandomAccessIterator first, RandomAccessIterator last, Compare comp);

The first and last parameters represent random-access iterators that determine data to be sorted. The
comp binary function decides whether its first argument should appear before the second in the sorted data.
Unfortunately, there is no portable way how to construct writable random-access iterators for multiple arrays.
To solve the in-place multi-array sorting problem, we thus need to give up the iterator-based approach.

Let us introduce some terminology used in the text below. Up to now, we have spoken about multi-array
sorting, i.e., sorting of multiple arrays at once. However, by the term array, we generally mean any sequence
of data, i.e., any data structure that contains multiple elements accessible via indexes; in C++, such data
structures can be represented, e.g., by the std::vector and std::array STL containers, or ordinary C-style
one-dimensional arrays. We assume that all the arrays have n elements indexed from 0 to n — 1. We refer to
the elements with the same index in all these arrays as to a multielement.

In a multi-array sorting problem, we thus want to sort n multielements according to some order given
by sorting keys that can be derived from multielements data. We say that a multielement M; is less than
another multielement M; if M; should take place before M in the sorted arrays, according to their sorting keys.
Otherwise, we say that M; is greater than or equal to Mj.

Let us consider reordering of sparse matrix nonzero elements; a multielement is then represented by a
single matrix nonzero element, i.e., by its row index, column index, and value. If we want to sort matrix
nonzero elements, e.g., lexicographically (such as for conversion to CSR), we might define sorting keys for the
ith multielement as

std::size_t key(std::size_t i) { return rows[i] * n_cols + cols[i]; }

where n_cols equals the number of matrix columns and the arrays rows/cols contain row/column indexes of
matrix nonzero elements.
The AQsort implementation declares sorting functions as follows:

template <typename Comp, typename Swap>
void sort(std::size_t length, Comp* const comp, Swap* const swap);

The parameter length represents the number of multielements that need to be sorted, i.e., n. The parameter
comp is a pointer to a binary function that takes two arguments and returns true if the multielement indexed by
the first argument is less than the multielement indexed by the second argument; otherwise, it returns false.
Finally, the parameter swap is a pointer to a function that takes two arguments and swaps multielements indexed
by these arguments.

Thanks to this approach, AQsort has no information about data being sorted. The algorithm does not
know how many arrays are sorted at once, it cannot recognize the types of the elements in these arrays, and
there is no way how it could access these elements. It also does not work with sorting keys, only indirectly
through the comp function. This function needs to derive sorting keys for both indexed multielements, compare
them, and return the appropriate binary value. It is up to AQsort users to provide the expected functionality
of comp and swap over the sorted arrays.

Let us now present the AQsort algorithm itself. Parallel quicksort is carried out by the ParallelQuickSort
procedure presented by Algorithm 1. Its input consists of the following parameters:

1. n: total number of sorted multielements,

numthreads: total number of threads,
start: index of the first multielement to be sorted by this call,
count: number of multielements to be sorted by this call,
Comp: reference to a binary function that compares multielements with two different indexes and returns
true if the first multielement is less than the second one; otherwise returns false,

6. Swap: reference to a procedure that swaps multielements with two different indexes,

7. level: auxiliary parameter for preventing quicksort worst case complexity O(n?).
Initially, ParallelQuickSort is called from a single thread with the following arguments:

Gt oD

start =0, count =n, level =2 |logy(n)], (3.1)

AQsort: Scalable Multi-Array In-Place Sorting with OpenMP 373

Algorithm 1 Main recursive procedure of AQsort

1
2
3
4:
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:

: procedure ParallelQuickSort(n, numthreads, start, count, Comp, Swap, level)

while true do
if level = 0 then
SequentialSort (start, count, Comp, Swap, level)
return
end if
level < level — 1
T « | numthreads X count/n]|
end while
if T < 2 then
SequentialSort (start, count, Comp, Swap, level)
return
end if
pivot <— SelectPivotMoM(start, count, Comp)
Swap (pivot, start + count — 1)
pivot < start + count — 1
lessthan <— ParallelPartition(start, count, pivot, Comp, Swap, 17
Swap (start+ lessthan, pivot)
greaterthan < count — lessthan — 1
while greaterthan > 0 and Comp (start + lessthan, start+ count — greaterthan) = false and Comp (start +

count — greaterthan, start + lessthan) = false do

21:
22:
23:
24:

greaterthan < greaterthan — 1
end while
if lessthan > greaterthan then
run ParallelQuickSort (n, numthreads, start + count — greaterthan, greaterthan, Comp, Swap, level)

in a new parallel task

25:
26:
27:
28:
29:
30:

count <— lessthan
else
run ParallelQuickSort (n, numthreads, start, lessthan, Comp, Swap, level) in a new parallel task
start < start + count — greaterthan
count < greaterthan
end if

31: end procedure

and numthreads set to the number of threads that a user wants to use for parallel sorting.
The ParallelQuickSort procedure works as follows:

1.

If the maximum allowable depth of recursion is reached, SequentialSort is called, which further
immediately proceeds to heapsort.

. The number of threads that proportionally falls on the number of multielements processed by this

call (count) is calculated and stored in T'; the total number of threads as well as the total number of
multielements therefore need to be passed to ParallelQuickSort as arguments. When T drops below
2, the processed multielements are sorted sequentially by calling the SequentialSort procedure.
Otherwise, a pivot multielement is selected and the processed multielements are partitioned with respect
to this pivot using T' threads by calling the ParallelPartition function.

In ParallelQuickSort, the pivot is chosen using the median of medians (MoM) strategy referred also
to as ninther, which is usually recommended for large arrays; see, e.g., [4]. The MoM pivot selection is
represented by the SelectPivotMoM function.

After parallel partitioning, multielements that lays behind the pivot and are equal to it are excluded
from further processing, since they are already at their final positions. This might considerably improve
the algorithm efficiency in cases when sorted arrays contain only few unique sorting keys.

So-called tail call elimination is applied to reduce the required call stack space (see, e.g., [6, Sect. 7-4]).
ParallelQuickSort thus recursively calls itself only once instead of twice, and uses a while loop to

374 D. Langr, P. Tvrdik, I. Simecek

Algorithm 2 Parallel partitioning—Part 1

1: function ParallelPartition(start, count, pivot, Comp, Swap, T')
2 m < | count/PBS|

3 tleft[] < integer array of size T

4: tstart]] + integer array of size T + 1

5: fort=0toT —1do

6 tstart[t] < start + PBS x [t x m/T |

7 end for

8 tstart[T] < start + PBS x'm

9: for T threads do in parallel

10: t < actual thread number

11: left + tstart|t]

12: right < tstart[t +1] — 1

13: tleft[t] « left+ SequentialPartition(left, right — left + 1, pivot, Comp, Swap)
14: perform parallel barrier synchronization

15: end for

16: 1+ 0

17: j<T -1
18: while i < j do

19: imod < (tleft[i] — start) mod PBS
20: gmod < (tleft[j] — start) mod PBS
21: if 9mod = 0 then

22: t+—1+1

23: continue

24: end if

25: if jmod = 0 then

26: jej—1

27: continue

28: end if

29: ilast < tleft[i] — imod + PBS — 1
30: Jfirst «+ tleft[j] — jmod

31: while tleft[i] < ilast and tleft[j] — 1 > jfirst do
32: Swap (teft[i], tleft[j] — 1)

33: tleft[i] « tleftli] + 1

34: tleft[j] + tleft[j] — 1

35: end while

36: end while

process the second partition. The recursive call is always performed for the smaller partition.

The key for the good scalability of AQsort is efficient parallel partitioning at the high levels of the quicksort’s
recursive process accomplished by the ParallelPartition function. Its functionality stems from the solution
described by Pasetto and Akhriev that was introduced in Section 2.1. We elaborated their concept into an
fully-defined efficient blocking-based algorithm that is introduced by Algorithm 1.

The ParallelPartition function takes the following arguments:

1. start: index of the first multielement to be partitioned,

2. count: number of multielements to be partitioned,

3. pivot: index of a pivot multielement,

4. Comp, Swap: see Algorithm 1,

5. T: number of threads to be used for partitioning,
and returns the number of multielements that are less than the pivot. The functionality of ParallelPartition
is as follows: It first splits the processed multielements into T parts of the same size, where T is the number
of threads that are required to participate in parallel partitioning (lines 2-8). Each part is then independently
partitioned by a single thread with respect to the pivot by calling the SequentialPartition function (lines 9-

AQsort: Scalable Multi-Array In-Place Sorting with OpenMP 375

Algorithm 3 Parallel partitioning—Part 2

37: lessthan < 0

38: for k< 0toT —1do

39: lessthan < lessthan + tleft[k] — tstart[k]
40: end for

41: temp < (tleft[i] — start) mod PBS
42: if temp # 0 and (start + lessthan < tleft[i] — temp or start + lessthan > tleft[i] — temp + PBS) then

43: if Comp (start + lessthan, pivot) then

44: q < PBS — temp

45: while ¢ > 0 do

46: Swap (tleft[i], start + lessthan + q — 1)
47: tleft[i] < tleftli] + 1

48: qg+—q—1

49: end while

50: else

51: q < temp

52: while ¢ > 0 do

53: Swap (tleft[i] — 1, start + lessthan — q)
54: tleft[i] « tlefti] — 1

55: qg+—q—1

56: end while

57: end if

58: end if

59: lthread <+ 0

60: rthread < T — 1

61: gleft « tleft[0]
62: gright < tleft[T — 1]

15), which represents a standard sequential partitioning algorithm. For efficiency, multielements are processed
in blocks, and the size of blocks represents a global AQsort parameter called PBS; such a blocking approach
is inevitable for multi-core and many-core environments to avoid cache contention. The size of split parts is
chosen to be an exact multiple of the block size.

We further distinguish 3 different types of blocks. A block is called black if all its multielements are less
than the pivot. A block is called white if all its multielements are greater than or equal to the pivot. A block is
called grey if it contains multielements of both types and the multielements less than the pivot are placed on its
left side, thus have lower indexes, than the multielements greater than or equal to the pivot. After performing
SequentialPartition by each thread, the corresponding part of multielements contains at most one grey block;
the other blocks are either black or white. The next step is to “neutralize” these at most T grey blocks by
swapping their multielements such that as a result, either only one or no grey block exists (lines 16-36). If it
does, it is placed to its final position, which is already known (lines 37-58). The neutralization of grey blocks is
performed sequentially; this step is very fast and there would be only little or no benefit from its parallelization.

After neutralization of the grey blocks—up to at most the single one—all black and white blocks are swapped
in parallel so that all black blocks are finally placed left from white blocks (lines 59-105). Thought the most of
the pseudocode of this step consists of a critical section, the most runtime is spent outside of it (lines 100-102).

In the end, ParallelPartition needs to process multielements that did not fit the blocking scheme. This
consists of placing the remaining not-yet-processed multielements that are less than the pivot to the left side of
the position where the pivot finally belongs (lines 106-111). This last step is performed sequentially (again, it
is very fast and there would be only little or no benefit from its parallelization).

Now, it remains to show how sequential sorting is performed. AQsort uses the combination of quicksort,
insertion sort, and heapsort. Heapsort is conditionally applied to prevent quicksort’s worst case complexity
O(n?). Insertion sort is applied to partitions smaller than a threshold given by an AQsort global parameter
called IST. The SequentialSort procedure therefore first checks the number of multielements to be sorted.
If it is greater than IST), it calls the SequentialQuickSort procedure, which performs a standard recursive

376 D. Langr, P. Tvrdik, I. Simecek

Algorithm 4 Parallel partitioning—Part 3

63: for T threads do in parallel

64: done < false

65: while true do

66: enter critical section

67: if gleft > gright or gleft > start + lessthan or gleft — PBS < start + lessthan then
68: done + true

69: break

70: end if

71: while gleft > tstart[lthread 4+ 1] do
72: lthread < lthread + 1
73: if lthread > T then

74: done + true

75: break

76: end if

e gleft < tleft[lthread]

78: end while

79: myleft < gleft

80: gleft < gleft + PBS

81: while gright > PBS and gright — PBS < tstart[rthread] do
82: if rthread = 0 then

83: done < true

84: break

85: end if

86: rthread < rthread — 1
87: gright < tleft[rthread)
88: end while

89: if gright < PBS then

90: done + true

91: break

92: end if

93: myright <— gright — PBS
94: gright <— gright — PBS

95: exit critical section

96: if done = true then

97: break

98: end if

99: if myleft < myright then

100: for k£ <+ 0 to PBS — 1 do
101: Swap (myleft + k, myright + k)
102: end for

103: end if

104: end while

105: end for

quicksort. Then, insertion sort is executed to finally sort multielements not sorted by quicksort.
The SequentialQuickSort procedure works as follows:

1. If the maximum allowable depth of recursion is reached, the quicksort is abandoned and the processed
multielements are sorted with the HeapSort procedure.

2. Otherwise, a pivot multielement is selected and the processed multielements are partitioned with respect
to this pivot by calling the SequentialPartition function.

3. The pivot is chosen using so-called median of three (Mo3) strategy, which is faster than MoM.

4. As in ParallelQuickSort, after partitioning, multielements that are equal to the pivot are excluded

AQsort: Scalable Multi-Array In-Place Sorting with OpenMP 377

Algorithm 5 Parallel partitioning—Part 4

106: for k < tstart[T] to start + count do
107: if Comp (k, pivot) then

108: Swap (k, start + lessthan)

109: lessthan + lessthan + 1

110: end if

111: end for

112: return lessthan

113: end function

from further processing.
5. As in ParallelQuickSort, the tail call elimination is applied to reduce the required call stack space.
6. Quicksort is performed only for partitions with sizes greater than IST. Smaller partitions are left to
be sorted by insertion sort.

4. Implementation. We provide an AQsort implementation in the form of an open-source GitHub
project?. It is written in C4++ and uses OpenMP as a threading paradigm; OpenMP version 3.0 or higher
is required because of task parallelism. Its usage consists of:
1. including the main AQsort header file agsort.h,
2. defining functions for comparing and swapping multielements,
3. calling one of the provided sorting functions.

The contents of agsort.h is shown in Figure 4.1.

There are three sorting functions defined, all within the aqsort namespace. The first function called
parallel_sort performs sorting in parallel by using OpenMP. The second function called sequential_sort
performs sequential sorting. The third function called sort is a simple “switch” that proceeds to parallel_sort
if OpenMP is available and to sequential_sort otherwise. Note that parallel_sort is accessible only if the
_OPENMP preprocessor macro is defined. This macro is typically provided automatically by compilers in case that
OpenMP threading is activated (as, e.g., when the -fopenmp command line argument is passed to the GNU
C/C++ compilers).

The sequential_sort function can be employed in codes where OpenMP threading is not available, such
as sequential programs. In HPC, these may also be pure MPI-based programs; their MPI processes are typically
mapped to all available system cores and, consequently, there is no room for shared-memory parallelism.

Both parallel_sort and sequential_sort functions are only simple wrappers. The implementation of
sorting algorithms defined in Section 3 is hidden in the agsort: :impl namespace and the corresponding codes
are stored in the impl subdirectory. There is no need for building and linking the AQsort library; its functionality
is provided purely in the form of C++ header files.

In Section 3, we introduced two AQsort global algorithm parameters, namely PBS and IST. These pa-
rameters are represented within the implementation by preprocessor macros called AQSORT_PARALLEL PARTI-
TION_BLOCK_SIZE and AQSORT_INSERTION_SORT_THRESHOLD, respectively. If users want to change their default
values for their codes, they need to define these macros before the agsort.h header file is included.

Let us now show how to define comparison and swapping functions for AQsort. Primarily, we can define
them either as function objects, or as lambda functions, which were introduced by the C++11 standard. Both
options are illustrated by Figures 4.2 and 4.3, respectively; note that the latter is considerably clearer and more
concise. These example codes show how to sort nonzero elements of a sparse matrix A, where:

1 0 0 2
0 3 0 O

A= 00 4 0 and n =6. (4.1)
5 0 0 6

Note that it would have no sense to perform such sorting in parallel; multi-threaded functionality of AQsort
was designed for very large arrays. The reasonable condition for efficient parallel sorting with AQsort is

n > PBS x numthreads, (4.2)

Shttps://github.com/Daniellangr/AQsort

378 D. Langr, P. Tvrdik, I. Simecek

#ifndef AQSORT_INSERTION_SORT_THRESHOLD
#define AQSORT_INSERTION_SORT_THRESHOLD 16
#endif

#include "impl/sequential_sort.h"

#ifdef _OPENMP
#ifndef AQSORT_PARALLEL_PARTITION_BLOCK_SIZE
#define AQSORT_PARALLEL_PARTITION_BLOCK_SIZE 1024
#endif

#include "impl/parallel_sort.h"
#endif

namespace aqsort
{
#ifdef _OPENMP
template <typename Comp, typename Swap>
inline void parallel_sort(std::size_t length, Comp* const comp, Swap* const swap)
{
impl::parallel_sort(length, comp, swap);
}
#endif

template <typename Comp, typename Swap>
inline void sequential_sort(std::size_t length,
Comp* const comp, Swap* const swap)
{
impl::sequential_sort(length, comp, swap);

}

template <typename Comp, typename Swap>
inline void sort(std::size_t length, Comp* const comp, Swap* const swap)
{
#ifdef _OPENMP
parallel_sort(length, comp, swap);
#else
sequential_sort(length, comp, swap);
#endif
}
}

Fig. 4.1: Contents of the AQsort main header file agsort.h. Comments and some unimportant preprocessor
directives are omitted.

where numthreads denotes the number of utilized OpenMP threads.

5. Experiments. We have conducted an extensive experimental study to evaluate the performance and
scalability of AQsort and to compare it with existing forefront implementations of parallel sorting algorithms.
Measurements were run on modern HPC hardware architectures, namely 3 types of multi-core computational
nodes of large-scale HPC systems and a many-core Intel Xeon Phi coprocessor/accelerator; see Table 5.1 for
details.

The utilized Intel Xeon processors of the Cray XC40 system supported hyper-threading, i.e., running two
threads per a single physical core. However, within preliminary test measurements, hyper-threading brought

4Formerly known as Hornet (the system was renamed /upgraded during our work).

5High Performance Computing Center Stuttgart, University of Stuttgart, Stuttgart, Germany.
SNational Center for Supercomputing Applications, University of Illinois, Urbana-Champaign, USA.
"Faculty of Information Technology, Czech Technical University in Prague, Prague, Czech Republic.
8 Jiilich Supercomputing Centre, Institute for Advanced Simulation, Jiilich, Germany.

9Non-uniform memory access.

10Symmetric multiprocessing.

AQsort: Scalable Multi-Array In-Place Sorting with OpenMP 379

#include <algorithm>
#include <vector>

#include <agsort.h>

template <typename T> struct Comp {
Comp (std: :vector<T>& rows, std::vector<T>& cols) : rows_(rows), cols_(cols) { }

inline bool operator() (std::size_t i, std::size_t j) const {
// lexicographical ordering:
if (rows_[i] < rows_[j]) return true;
if ((rows_[i] == rows_[j]) && (cols_[i] < cols_[j])) return true;
return false;

}

/* private: */ std::vector<T> &rows_, &cols_;

};

template <typename T, typename U> struct Swap {
Swap(std::vector<T>& rows, std::vector<T>& cols, std::vector<U>& vals)
: rows_(rows), cols_(cols), vals_(vals) { }

inline void operator() (std::size_t i, std::size_t j) {
std: :swap(rows_[i], rows_[jl);
std::swap(cols_[i], cols_[j1);
std::swap(vals_[i], vals_[j1);

}

/* private: */ std: :vector<T> &rows_, &cols_;
/* private: x/ std::vector<U> &vals_;
g

int main() {
typedef unsigned int uint32_t;

// sparse matriz in COO
std::vector<uint32_t> rows, cols;
std: :vector<double> vals;

// matriz assembly in reverese lexicographical order

rows.push_back(0); cols.push_back(0); vals.push_back(1.0);
rows.push_back(3); cols.push_back(0); vals.push_back(5.0);
rows.push_back(1); cols.push_back(1l); vals.push_back(3.0);
rows.push_back(2); cols.push_back(2); vals.push_back(4.0);
rows.push_back(0); cols.push_back(3); vals.push_back(2.0);
rows.push_back(3); cols.push_back(3); vals.push_back(6.0);

// sorting in lexicographical order:
Comp<uint32_t> comp(rows, cols);
Swap<uint32_t, double> swap(rows, cols, vals);

agsort: :sort(rows.size(), &comp, &swap);
// matriz elements are now sorted lexicographically

Fig. 4.2: Custom reordering of sparse matrix nonzero elements with AQsort using function objects.

no speedup in comparison with a default single-thread-per-core configuration. The AMD Opteron processors of
the Cray XEG6 system did not support hyper-threading. Therefore, within the presented study, we did not use
more than a single thread per core on these architectures. On the contrary, on IBM BlueGene/Q (BG/Q) nodes
and Intel Xeon Phi coprocessors, we usually achieved the highest sorting performance when running multiple
threads per a single core. Both IBM BG/Q and Intel Xeon Phi support up to 4 simultaneously running threads

380 D. Langr, P. Tvrdik, I. Simecek

#include <cstdint>
#include <utility>
#include <vector>

#include <agsort.h>

int main() {
// sparse matriz in COO, matriz elements in reverese lexicographical order
std::vector<uint32_t> rows { 0, 3, 1, 2, 0, 3 };
std::vector<uint32_t> cols { 0, 0, 1, 2, 3, 3 };
std: :vector<double> vals { 1.0, 5.0, 3.0, 4.0, 2.0, 6.0 };

// sorting in lexicographical order:

auto comp = [&rows, &cols] (std::size_t i, std::size_t j) /x —> bool x/ {
if (rows[i] < rows[j]) return true;
if ((rows[i] == rows[j]) && (cols[i] < cols[j])) return true;
return false;

g

auto swap = [&rows, &cols, &vals] (std::size_t i, std::size_t j) {
std: :swap(rows[i], rows([jl);
std::swap(cols[i], cols[j1);
std: :swap(vals[i], vals[jl);

};

agsort: :sort(rows.size(), &comp, &swap);
// matriz elements are now sorted lexicographically

Fig. 4.3: Custom reordering of sparse matrix nonzero elements with AQsort in C++11 using lambda functions.

Table 5.1: Configurations of HPC systems and their run-time environments used for experiments.

Architecture: Cray XC40 Cray XE6 Intel Xeon Phi IBM BlueGene/Q

System: Hazel Hen* Blue Waters Star Juqueen

Provider: HLRS® NCSAS CTUu” Jsce

Processor: Intel Xeon E5-2680 v3 AMD Opteron 6276 Xeon Phi 7120P IBM PowerPC A2

Frequency: 2.5 GHz 2.3 GHz 1.238 GHz 1.6 GHz

Cores per node: 24 16 61 16

Node memory: 128 GB 64 GB 16 GB 16 GB

Memory access: NUMA? NUMA SMP10 SMP

Used compilers: GNU g++ 4.9.2 GNU g++ 4.8.2 Intel icpc 15.0.2 GNU g++ 4.8.1
Intel icpc 15.0.2 Intel icpc 15.0.3

per core, therefore, we present measurements for up to 64 and 244 threads for these architectures, respectively.
All the measurements on Intel Xeon Phi were performed in the native mode, i.e., test programs were run directly
on the coprocessor.

Please note that we do not provide results of all the measurements for IBM BG/Q, since the Juqueen’s
runtime environment was not intended for such types of experiments. There was neither a possibility to obtain
an interactive access to computational nodes nor a possibility to use a single node only. The smallest allocation
unit for a job consisted of 32 nodes and such an allocation had wall clock time limited to 30 minutes. We
therefore performed only selected experiments on IBM BG/Q.

Within measurements, we used 3 types of data sets for sorting:

1. integer numbers (IN) represented with the 64-bit unsigned integer data type,

2. binary numbers (BN) represented with the 8-bit unsigned integer data type,

3. sparse matriz nonzero elements (SM) in the COO format represented with the 32-bit unsigned integer
indexes and double-precision 64-bit values.

Characteristics of these data sets and experiments performed with them are shown in Table 5.2. Although

AQsort: Scalable Multi-Array In-Place Sorting with OpenMP 381

Table 5.2: Characteristics of data sets and experiments performed with them.

Data: IN BN SM

Number of arrays: 1 1 3
(Multi)element memory footprint: 8 bytes 1 byte 2 -4+ 8 =16 bytes
Data generation: random random random
Random distribution: uniform uniform uniform

Initial ordering;: none none reverse lexicographical
Final ordering: natural natural lexicographical

AQsort is primarily intended for multi-array sorting, we chose the IN and BN single-array sorting problems for
this study since it allowed us to directly compare AQsort with its iterator-based competitors. In case of the SM
data sets, such a comparison had to be performed indirectly by running the SoA-to-AoS and back AoS-to-SoA
transformations.

For sake of readability, we generally refer to the elements of IN and BN arrays as to multielements, even
though they are in fact “single elements” only. For all types of data sets, multielements were generated randomly;
we used the implementation of the Mersene Twister pseudorandom number generator [17] provided by C++11
and Boost. In the IN and BN cases, data were sorted directly, which corresponded to sorting of randomly shuffled
integer/binary numbers. The matrix nonzero elements (SM) were first sorted in the reverse lexicographical order
and the measurements were performed while sorting them in the lexicographical order.

Each particular measurement within this study can be characterized by the following input parameters:

1. the algorithm/its implementation used for sorting,
2. the utilized hardware architecture,

3. the type of sorted data (IN, BN, SM),

4. the number of sorted multielements (n),

5. the number of utilized threads.

Due to the randomness in the input data, sorting times generally differ for the same input parameters
across different algorithm runs. Let algorithm’s performance stability denote a degree of its ability to sort data
with the same input parameters in the same runtime; we call it stability only if the context is clear. (We could
quantify stability, e.g., as an inverse of the standard deviation of the sorting time from multiple algorithm runs.
Note that the defined stability has nothing to do with sorting algorithms being either stable or unstable in the
sense of preserving the order of elements with equal keys. Quicksort, and therefore AQsort as well, in inherently
unstable in this sense.) The reported results represent average sorting times from multiple measurements.
Typically, we used between 6 and 12 measurements for the same input parameters, depending mostly on the
algorithm’s stability and required computational resources.

The multielements of the IN, BN, and SM data sets have different memory footprints. Their different counts
thus fit memories of the architectures presented by Table 5.1. For instance, 230 ~ 1.07 - 10° SM elements can
be stored in a memory of an Intel Xeon Phi coprocessor or an IBM BG/Q node. However, we could not work
with such large data sets, since even in-place variants of quicksort require some call stack space to perform
the recursion. Moreover, there has to be some amount of memory reserved for system processes. We therefore
decided to work within our measurements with data sets of sizes n = 2¥ - 108, where k € Z. Such a choice
allowed us to cover a wide range of data set sizes and also guaranteed enough memory for system processes
and the call stack. On Intel Xeon Phi coprocessors and IBM BG/Q nodes, we thus sorted at most 8 - 103 SM
multielements. However, AQsort was the only implementation that was able to sort such an amount. If the
SoA-to-AoS transformation and/or out-of-place sorting was performed, the maximum number of sorted SM
multielements was only 4 - 108.

All the presented results were obtained for default values of the AQsort parameters, i.e., IST = 16 and
PBS = 1024 (see Figure 4.1), if not specified otherwise.

5.1. Evaluation of AQsort. First, we measured the strong scalability of AQsort, i.e., the response of
the sorting time to a different number of OpenMP threads with constant n. Results of these experiments are
shown in Figure 5.1. Due to different memory footprints of multielements, we set different n for different types
of sorted data (IN, BN, SM). However, for each particular type, n was fixed for all the considered architectures
to allow their mutual comparison with respect to AQsort performance.

382 D. Langr, P. Tvrdik, I. Simecek

Table 5.3: Maximum measured speedup of parallel AQsort with respect to std::sort (left) and sequential
AQsort (right).

Speedup with respect to

std: :sort sequential AQsort
Architecture IN BN SM IN BN SM
Cray XC40 8.8 20.4 8.8 9.9 6.5 8.8
Cray XE6 5.2 17.6 4.6 6.9 3.8 5.2
Intel Xeon Phi 30.7 16.5 28.1 41.8 4.1 41.3
IBM BG/Q 11.8 36.9 14.3 15.6 5.6 16.2

To illustrate the benefits of parallel sorting, Figure 5.1 also shows sorting times for the sequential std: : sort
function from the C++ Standard Library. Clearly, AQsort reduced these sorting times in all cases considerably.
The maximum obtained speedup with respect to std: :sort, and also with respect to the sequential version of
AQsort, are shown in Table 5.3.

The results for the IN and SM data sets are similar—the maximum obtained speedup with respect to
std: :sort falls between about 1/4 and 1/3 of the number of threads. The BN case is specific—the total memory
footprint of the data being sorted was the same as in the IN case, but the number of sorted multielements was
8 times higher, which caused much longer sorting times of std::sort. On the contrary, sorting times of the
sequential version of AQsort were actually lower in the BN case than in the IN case. The speedup of parallel
AQsort with respect to sequential AQsort was relatively low in the BN case, especially on Intel Xeon Phi and
IBM BG/Q. We attribute this effect to the saturation of the memory subsystems; on all utilized architectures,
the number of memory controllers/channels was much lower than the number of their computational cores.

Note that for AMD and Intel CPU-based nodes, the lowest sorting times were always obtained when the
number of OpenMP threads equaled the number of node cores (one-thread-per-core configuration). For Intel
Xeon Phi and IBM BlueGene/Q, the lowest sorting times mostly occurred for the two-threads-per-core config-
uration, and, even if not, the differences were minimal. We can thus generally recommend these configurations
for AQsort maximum speedup on given architectures.

Second, we measured the relation between AQsort sorting times and the number of sorted multielements n;
results are shown in Figure 5.2. On all architectures, we performed experiments up to the maximum number of
multielements that fitted the available memory. The number of threads was always set to a value that provided
highest speedup within the strong scalability results. The results show that the sorting time grew linearly with
n and that the rate of this growth was close to 1 in all cases. Such a growth clearly does not correspond to a
quicksort complexity O(n -logn). In auxiliary measurements, we have observed similar linear growth with all
the considered implementations of sorting algorithms, including std: :sort.

The third experiment evaluated the dependence of AQsort sorting time on the algorithm global parameter
PBS; results are presented in Figure 5.3. They show that, as might have been expected, small block sizes
provided low algorithm performance. As the block size grew, the sorting time decreased accordingly. At some
point sorting time established and no longer improved with higher block sizes; small variances in sorting times
were caused by the instability of the algorithm. Generally, setting a higher block size is seemingly preferable.
However, users need to be sure that there is enough data to be sorted efficiently according to condition (4.2).

The fourth experiment evaluated the dependence of AQsort sorting time on the second algorithm global
parameter IST; results are presented in Figure 5.4 (for space reasons, we show the measurements for the IN
data sets only). According to these results, users should not set too high values of the threshold for insertion
sort; again, small variances in sorting times were caused by the instability of the algorithm.

The last experiment evaluated the stability of AQsort. We performed 200 runs of the algorithm with each
particular set of input parameters and processed the results statistically, see Table 5.4. For easier comparison, we
show relative sorting times that are sorting times in percents normalized by the their average values. Obviously,
the sorting times can vary significantly in practice, especially for the BN data sets. However, standard deviations
reveal that typical sorting times might be expected much closer to the average than the measured extrema.

For the above described experiments, we build test programs with the GNU C++ compiler for both AQsort
and std: :sort, with the exception of Intel Xeon Phi, where we used the Intel C++ compiler.

AQsort: Scalable Multi-Array In-Place Sorting with OpenMP 383

2048 T I]
—e— Cray XC40
1024 & |
SSoy------------------4 = Cray XE6 -
- 512 —A— Intel Xeon Phi ||
o —4— IBM BG/Q
E 256 -~ -y - - - -
o e TS S e
2 128
£
I}
2 64
32
16
1 2 4 8 16 32 64 128 256
Number of threads
(a) integer numbers (IN), n = 1.6 - 10°
8192 T I]
4096 |- - ------------------- -4 —@— Cray XC40 -
2048 —m— Cray XE6
- 1024 —A— Intel Xeon Phi
——IBM BG
g) /Q
=
" 256
5 128
A 64
32
16
8
1 2 4 8 16 32 64 128 256
Number of threads
(b) binary numbers (BN), n = 12.8 - 109
1024 T] T
512 —e— Cray XC40 B
< -oooooooooooooooooj—mCray XE6 -
- 256 —A— Intel Xeon Phi | |
uEJ 128 —4— IBM BG/Q
:o [e .
£
£ 32
A
16
8
\ \

\
1 2 4 8 16 32 64 128 256
Number of threads

(c) sparse matrix nonzero elements (SM), n = 0.4 - 10°

Fig. 5.1: Strong scalability of AQsort measured on different architectures. Dashed lines show the sorting times
of the sequential std: :sort function.

384 D. Langr, P. Tvrdik, I. Simecek

256
128 f
__ 64
M,
v 32
£
=
o 16
‘8 —e— Cray XC40 (24)
A . —m— Cray XE6 (16) |
—aA— Intel Xeon Phi (122)
2 —4—IBM BG/Q (32) h
1 | | I I I
0.1 0.2 0.4 0.8 1.6 3.2 6.4 12.8
Number of sorted multielements in billions
(a) integer numbers (IN)
256
128 b
64
Z 32
(]
E 16
=]
2
kS 4 —eo— Cray XC40 (24)
A —m— Cray XE6 (16)
—a— Intel Xeon Phi (61)
1 —4— IBM BG/Q (64) .
05 ! ! ! I I I
0.8 1.6 3.2 6.4 12.8 25.6 51.2 102.4
Number of sorted multielements in billions
(b) binary numbers (BN)
256
128 b
64
Z 3
[
£ 16
2
S —e— Cray XC40 (24)
A —m— Cray XE6 (16)
—aA— Intel Xeon Phi (122) | |
~4IBM BG/Q (32) :
0.5 | I I I
0.05 0.1 0.2 0.4 0.8 1.6 3.2 6.4

Number of sorted multielements in billions

(c) sparse matrix nonzero elements (SM)

Fig. 5.2: Relation between AQsort sorting times and the number of multilements n, measured on different
architectures. Numbers in parentheses in the legend denote the number of utilized OpenMP threads.

AQsort: Scalable Multi-Array In-Place Sorting with OpenMP 385

512 T T T T
—e— Cray XC40 (24)
256 —m— Cray XE6 (16) :
= —a— Intel Xeon Phi (122)
£ 128
=
2
£ 64
S
»
32
1Gb Vv » > o & X VY © £z 3 g ©
N > © W) > v M O o el o o)
N Vv) Q Q Q A) N\ 5]
S S N SO AR
Block size (PARTITION BLOCK SIZE)
(a) integer numbers (IN), n = 1.6 - 10°
1024 T T T T T
512 —o— Cray XC40 (24)
—m— Cray XEG6 (16)
£ 256 —A— Intel Xeon Phi (61)
v
£ 128
B
2 64
€
& 32
16 >
8 | | | | | | | | | | |
o v X > © V2 X G © v S ©
% > o \2) N > O O > o >
SLEE SRR SN AN RN & & G &
Block size (PARTITION BLOCK SIZE)
(b) binary numbers (BN), n = 12.8 - 10°
128 T I T T T
—e— Cray XC40 (24)
64 —m— Cray XE6 (16)
= —A— Intel Xeon Phi (122)
[
g 32
5
2
5 16
[*]
»
8
4 | | | | | | | | | | |
o Y X SeJ [NZ X ' © v X S ©

Block size (PARTITION BLOCK SIZE)

(c) sparse matrix nonzero elements (SM), n = 0.4 - 10°

Fig. 5.3: AQsort sorting times for different partitioning block sizes (parameter PBS) measured on different
architectures. Numbers in parentheses in the legend denote the number of utilized OpenMP threads.

386 D. Langr, P. Tvrdik, I. Simecek

128 T T T
—e— Cray XC40 (24)
—m— Cray XE6 (16)

64 || —— Intel Xeon Phi (122)

32

Sorting time [s]

16 | | | | | | |
2 4 8 16 32 64 128 256 512

Insertion sort threshold (INSERTION SORT THRESHOLD)

Fig. 5.4: AQsort runtimes for different values of the insertion sort threshold (parameter IST) measured with
the IN data sets on different architectures. Numbers in parentheses in the legend denote the number of utilized
OpenMP threads.

Table 5.4: Statistical values for 200 sorting times of parallel AQsort in percents normalized by their average
values. The number in parentheses denote the number of utilized OpenMP threads.

Cray XC40 (24) Cray XE6 (16) Intel Xeon Phi (122)
Statistics IN BN SM IN BN SM IN BN SM
Minimum 87.0 77.6 90.9 87.8 80.9 88.2 94.0 93.1 92.1
Average 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Maximum 108.4 135.7 108.9 110.6 129.9 112.6 109.6 110.0 116.7
Stddev 4.7 6.6 3.8 4.7 7.9 5.2 2.6 4.8 3.5

5.2. Comparison of AQsort with Modern Implementations of Sorting Algorithms. In this sec-
tion, we show the results of experiments that were designed to compare the performance of AQsort and modern
implementations of sorting algorithms introduced in Section 2. Namely, we considered the following parallel
solutions:

1. in-place std::__parallel::sort(..., quicksort_tag()) function from GNU Libstdc++ Parallel
Mode (further referred to as GNU-QS),
2. in-place std::__parallel::sort(..., balanced quicksort_tag()) function from GNU Libstdc++
Parallel Mode (GNU-BQS),
3. out-of-place std::__parallel::sort(..., multiway mergesort_tag()) function from GNU Libstd-
c++ Parallel Mode (GNU-MWMS),
in-place tbb: :parallel _sort function from Intel TBB (TBB),
in-place cilkpub::cilk_sort_in_place function from Cilkpub (CP-IP),
out-of-place cilkpub: :cilk_sort function from Cilkpub (CP-OoP),
. out-of-place thrust: :sort function from Nvidia Thrust (Thrust).

N oo

The cilkpub::cilk_sort function calls cilkpub: :cilk_sort_in_place if there is not enough memory to per-
form out-of-place sorting; we avoided this approach within our study. Cp-OoP thus always refer to the out-of-
place sorting.

To evaluate the benefits of parallel sorting, we show the sorting times for the sequential std: : sort function
as well. The version of GNU Libstdc++ was given by the version of the GNU C++4 compiler, see Table 5.1. As
for other libraries, we compiled test programs against Intel TBB version 4.3 Update 4, Cilkpub version 1.05,
and Nvidia Thrust version 1.8.0.

AQsort was the only implementation that could sort multiple arrays. To compare its performance with
other implementations, we thus either measured runtime of sorting single arrays (the IN and BN cases), or we
had to encapsulate sorting with the SoA-to-AoS and back AoS-to-SoA transformations (the SM case). Presented
measurements were on all architectures made over the largest possible data sets, i.e., data sets that fitted the half

AQsort: Scalable Multi-Array In-Place Sorting with OpenMP 387

N — < L
o)) =}
=) — < =]
©) ™ <

200 1

154.5
160.8

150 +

100 +

Sorting time [s]

a1
o
I
+

Cray XC40, n=6.4-10° Cray XE6, n = 3.2 - 10° Xeon Phi, n=0.8-10° IBM BG/Q, n=0.8-10°

I std: :sort M AQsort I TBB o CP-1P mm CP-OoP
I GNU-QS m GNU-BQS mmm GNU-MWMS il Thrust

Fig. 5.5: Comparison of sorting times for different implementations of sorting algorithms for IN data sets.

< ©o (=)} — <

— ~ © — ~ 0

o <t ’ N ~]

— — — ~ =} ©

— — o — i i
o

800 +

600 |

400 +

Sorting time [s]

Cray XC40, n =51.2-10° Cray XE6, n =25.6-10° Xeon Phi, n=6.4-10° IBM BG/Q, n = 6.4 - 10°

I std: :sort M AQsort I TBB o CP-IP mmmm CP-OoP
I GNU-QS mmm GNU-BQS mmm GNU-MWMS ml Thrust

Fig. 5.6: Comparison of sorting times for different implementations of sorting algorithms for BN data sets.

of the available memory because of either out-of-place sorting and/or the SoA-to-AoS transformation. When
both the SoA-to-AoS transformation and out-of-place sorting took place, the memory of the original arrays had
to be released before sorting and reallocated afterwards.

All the mentioned implementations were available in the runtime environments of Cray XC40 and Cray XE6
nodes. The runtime environment of available Intel Xeon Phi accelerator did not contain the GNU Libstdc++
Parallel Mode functionality (GNU-QS, GNU-BQS, GNU-MWMS). The runtime environment of IBM BG/Q did
not contain solutions provided by Intel (TBB, CP-IP, CP-OoP).

For experiments run on Intel Xeon Phi, we used exclusively the Intel C++ compiler. Otherwise, we used
the GNU C++ compiler for std::sort, AQsort, GNU-QS, GNU-BQS, GNU-MWMS, and Thrust; and the
Intel C++ compiler for TBB, CP-IP, and CP-OoP.

The obtained results are shown in Figures 5.5-5.7. The “N/A” labels denote an absence of a given imple-
mentation on a given architecture. The “FAILED” labels denote measurements that were repeatedly terminated
due to runtime errors, typically segmentation faults; we have not performed analyses of these errors. Based on
these results, we can make the following observations:

1. All the parallel solutions considerably reduced sorting times in comparison with sequential std: :sort.

388 D. Langr, P. Tvrdik, I. Simecek

€ ™~ <
N~ bl Ronl
) o o
— & ™

— 100 |
A,
v
£
=
o
£ 50
£
o
2]
0 R

Cray XC40, n=3.2-10° Cray XE6, n = 1.6 - 10° Xeon Phi, n=0.4-10° 1BM BG/Q, n=0.4-10°

I std: :sort [AQsort I TBB o CP-1P mmm CP-OoP
N GNU-QS mm GNU-BQS mmm GNU-MWMS i Thrust

Fig. 5.7: Comparison of sorting times for different implementations of sorting algorithms for SM data sets.

An exception was only GNU-QS in combination with the BN data sets.

2. Thrust performed poorly in comparison with other parallel solutions. Recall that though Thrust sup-
ports OpenMP, it was primarily designed as a library for Nvidia GPU accelerators. It thus seems that
the optimization level for OpenMP is in Thrust relatively low, at least for its sorting functionality.

3. The other out-of-place sorting implementations, i.e., CP-OoP and GNU-MWMS, mostly, but not always,
provided the lowest sorting times.

4. GNU-BQS always outperformed GNU-QS.

5. AQsort outperformed for BN data sets all other implementations—even the out-of-place ones—on all
architectures.

6. For IN and SM data sets, AQsort run slowly on IBM BG/Q in comparison with GNU-QS, GNU-BQS,
and GNU-MWMS. This might have been caused by not-so-well optimized OpenMP environment for
task-based parallelism on this architecture; AQsort was the only implementation build upon OpenMP
tasks.

7. AQsort provided lowest sorting times of all in-place sorting implementations on Intel Xeon Phi.

8. For IN data sets and Cray architectures, AQsort performed slightly worse than its in-place competitors
(TBB, CP-IP, GNU-QS, and GNU-BQS).

9. For SM data sets, AQsort provided higher sorting times than most of other implementations. How-
ever, these sorting times do not include the overhead given by the SoA-to-AoS and back AoS-to-SoA
transformations; see Section 5.3 for details.

5.3. SoA-to-AoS and AoS-to-SoA Transformations. The reason why we did not include the SoA-
to-AoS and AoS-to-SoA transformations in measurements presented by Figure 5.7 was that the performance
and efficiency of theses transformations are highly implementation-dependent. For illustration, consider the
following C++ solution for the SoA-to-AoS transformation that we used within our codes:

// sparse matriz in COO
std::vector<uint32_t> rows, cols;
std: :vector<double> vals;

struct element_t {
uint32_t row, col;
double val;
g
const std::size_t n = rows.size();
std::vector<element_t> elements(n);
#pragma omp parallel for
for (std::size_t k = 0; k < n; k++) { elements[k].row = rows[k]; ... }

AQsort: Scalable Multi-Array In-Place Sorting with OpenMP 389

Profiling of this code on a Cray XC40 node for n = 3.2 - 10° and 24 threads revealed that the parallel for
loop took only 1.58 seconds, while the initialization of the elements vector took 23.15 seconds (subsequent
sorting with GNU-MWMS took 32.75 seconds). A similar problem arose in the case of out-of-place sorting,
where memory occupied by the rows, cols, and vals arrays had to be released prior to sorting and reallocated
afterwards. This consisted of 3 calls of the std: :vector: :resize function, which took in this experiment 24.61
seconds, while the final parallel AoS-to-SoA transformation took only 2.13 seconds. A detailed analysis of this
problem is beyond the scope of this article. Let us just note that it is caused by so-called zero-initialization of
elements during resizing of C++ std: :vectors, which is inherently carried out sequentially.

6. Discussion. A straightforward conclusion of our work is that though speedups are far from being
linear, parallel/multi-threaded sorting considerably reduces sorting times on modern multi-core and many-core
hardware architectures. The question that remains to be answered is which implementation to choose for
particular sorting problems.

If we need to sort multiple arrays at once and suppose that there might not be enough available memory
for the SoA-to-AoS transformation, then AQsort is the only option of all the considered solutions. This might
happen, e.g., when developing scientific or engineering applications where multi-array sorting is required for
possibly very large data, such as large sparse matrices or discretization meshes. In such cases, we do not want
to limit the sizes of users’ problems being solved just because of sorting. AQsort is the only implementation
that does not need to run the SoA-to-AoS transformation. Therefore, it is the only implementation that can
be straightforwardly applied to multiple arrays large enough to fill more than the half of the available memory.

On the contrary, if we certainly know that there is enough memory available, there will be no simple
answer. Generic sorting of a single array with a lot of distinct sorting keys would be likely most efficient with
some parallel out-of-place implementation. However, one might need to implement the SoA-to-AoS and back
AoS-to-SoA transformations carefully to prevent its large runtime overhead.

Another aspects that play a crucial role in the selection of sorting implementation are threading paradigms
and portability. Generally, OpenMP prevails in the domains of HPC, mathematical, scientific, and engineering
software. Of all the considered implementations, only AQsort and Nvidia Thrust provide portable OpenMP
solutions. GNU Libstdc++ Parallel Mode implementations are tightly bound to the GNU C++ compiler;
except of this compiler, we succeeded in compiling programs that called the GNU Libstdc++ Parallel Mode
sorting functions only with the newest versions of the Intel C++ compiler, namely versions 14 and 15. PGI,
Cray, IBM, and older versions of Intel C++ compilers failed in such a compilation. The portability of sorting
implementations based on Intel TBB and Intel Cilk Plus is relatively low in comparison with OpenMP. Moreover,
though it is technically possible to integrate TBB or Cilk Plus routines into OpenMP code, such a combination
of threading paradigms might result in malformed parallelism; we encountered such a behavior in the Cray
runtime environments. Generally, it is not recommended to combine multiple threading paradigms within a
single code.

Moreover, the interface of AQsort allows its integration with C and Fortran codes through explicit instan-
tiation of its sorting functions with fixed footprints of comparison and swapping functions. Such an option is
not feasible with other iterator-based sorting solutions.

AQsort generally seems to provide somewhat longer sorting times when compared with the sorting imple-
mentation that is most suitable for each particular case. We attribute this fact to the AQsort’s universality
represented by the usage of user-provided compare and swap functions. Recall that within AQsort implemen-
tation, we cannot directly touch sorted data. We therefore cannot optimize and tune the code with respect
to cache subsystems, which is a common practice, e.g., in the form of software prefetching, vectorization, or
accessing data with respect to their alignment. Or, for instance, we cannot store a pivot during partitioning
in a temporary variable, which might cause its storage in registers during runtime for suitable types of data.
Moreover, calling compare and swap functions via pointers might generally hinder many optimizations carried
out by compilers on a regular basis. Users/developers therefore need to decide themselves whether they require
maximum sorting performance with all that restrictions given by current implementations or whether they are
willing to abandon a bit of performance for the possibility to work with larger data sets in a fully portable way.

7. Conclusions. The contribution of this article is a new parallel /multi-threaded version of the quicksort
sorting algorithm and its implementation called AQsort. This implementation, written in C++ and using
OpenMP, is available in the form of an open-source software project. It is primarily intended to be integrated into
scientific and engineering HPC codes that operate in modern multi-core and many-core runtime environments

390 D. Langr, P. Tvrdik, I. Simecek

where OpenMP parallel paradigm is dominant.

AQsort fills some gaps in modern implementations of parallel sorting algorithms. Moreover, it provides also
sequential sorting functionality that can be exploited either in sequential codes or in HPC codes based on pure
MPI parallelism.

The main features of AQsort are:

1. Generality—it works with user-provided functions for comparing and swapping sorted data. Con-
sequently, in contrast to pointer-based/iterator-based sorting functions, it can directly sort multiple
arrays at once (see Section 3).

2. Space-efficiency—it operates in place and for multiple arrays it does not require the SoA-to-AoS and
back AoS-to-SoA transformations. Therefore, it is the only implementation that can be straighforwardly
applied to multiple arrays large enough to fill more than the half of the available memory (see Section 1).

3. Scalability—it considerably reduces sorting time with respect to optimized implementations of sequential
sorting algorithms and it efficiently utilizes all the cores of modern multi-core and many-core hardware
architectures (see Section 5.1).

4. Portability—it is implemented with standard OpenMP pragmas and functions. It is build upon the
combination of nested parallelism and tasking, which are supported by majority of modern C++ com-
pilers (see Section 4). Moreover, AQsort allows to create wrappers for C and Fortran programming
languages. Of all the considered parallel implementations, only AQsort and Thrust were available on
all the tested architectures. In comparison with AQsort, Thrust provided longer runtimes in all mea-
surements and required more memory due to the implementation of an out-of-place sorting algorithm
(see Section 5.2).

5. Efficiency—its performance is generally comparable with modern implementations of sorting algorithms
when running on forefront HPC hardware architectures (see Section 5.2). It seems to be especially
suitable for Xeon Phi coprocessors and for data that contain only few distinct sorting keys. In other
cases, AQsort might be outperformed by its competitors, which is a price for its universality (see
Section 6).

In addition to the presentation of AQsort, this article also:

1. serves as a brief updated survey of existing implementations of parallel sorting algorithms and their ex-
perimental comparison on leading-edge shared-memory hardware architectures (see Sections 2 and 5.2),

2. presents a parallel partitioning algorithm briefly proposed by Pasetto and Akhriev [23] in terms of
detailed pseudocode (see Section 3),

3. generally evaluates the universal approach to parallel sorting that uses custom compare and swap
functions with traditional solutions (see Section 6).

Acknowledgements. The authors would like to thank T. Dytrych of the Louisiana State University for
providing an access to the Blue Waters system. The authors would like to thank M. Vaclavik of the Czech
Technical University in Prague for providing an access to the Star university cluster. The authors acknowledges
support from M. Pajr of CQK Holding and International HPC Initiative.

We acknowledge PRACE for awarding us access to resource JUQUEEN based in Germany at the Gauss
Center for Supercomputing. We acknowledge PRACE for awarding us access to resource Hornet based in
Germany at the High Performance Computing Center Stuttgart. This research is part of the Blue Waters
sustained-petascale computing project, which is supported by the National Science Foundation (awards OCI-
0725070 and ACI-1238993) and the state of Illinois. Blue Waters is a joint effort of the University of Illinois at
Urbana-Champaign and its National Center for Supercomputing Applications.

REFERENCES

[1] R. BARRETT, M. BERRY, T. F. CHAN, J. DEMMEL, J. DONATO, J. DONGARRA, V. EJKHOUT, R. Pozo, C. ROMINE, AND H. V.
DER VORST, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia,
PA, 2nd ed., 1994.

[2] F. BEEKHOF, OMPTL: OpenMP multi-threaded template library, 2012. Accessed July 17, 2015 at
http://tech.unige.ch/omptl/.

[3] N. BELL AND J. HOBEROCK, Thrust: A productivity-oriented library for CUDA, in GPU Computing GEMs: Jade Edition,
W.-M. Hwu, ed., Morgan Kaufmann, 2011.

[4] J. L. BENTLEY AND M. D. McILROY, Engineering a sort function, Software: Practice and Experience, 23 (1993), pp. 1249-1265.

AQsort: Scalable Multi-Array In-Place Sorting with OpenMP 391

[5] B. CHAPMAN, G. JoST, AND R. v. D. Pas, Using OpenMP: Portable Shared Memory Parallel Programming (Scientific and
Engineering Computation), The MIT Press, 2007.
[6] T. H. CorMEN, C. E. LEISERSON, R. L. RIVEST, AND C. STEIN, Introduction to Algorithms, Third Edition, The MIT Press,
Cambridge, Massachusetts, USA, 3rd ed., 2009.
[7] R. DEMENTIEV, L. KETTNER, AND P. SANDERS, STXXL: standard template library for XXL data sets, Software: Practice
and Experience, 38 (2008), pp. 589-637.
C. HOARE, Algorithm 64: Quicksort, Communications of the ACM, 4 (1961), pp. 321-322.

]
9] , Quicksort, The Computer Journal, 5 (1962), pp. 10-16.
[10] ISO/IEC, ISO/IEC 9899:1999: Information Technology — Programming languages — C, 1999.
[11] , ISO/IEC 14882:2011: Information Technology — Programming languages — C++, 2011.
[12] D. LANGR, I. SIMECEK, AND T. DYTRYCH, Block iterators for sparse matrices, in Proceedings of the Federated Conference on

Computer Science and Information Systems (FedCSIS 2016), IEEE Xplore Digital Library, 2016. Accepted for publication.

[13] D. LANGR, L SIMEGEK, P. TVRDIK, T. DYTRYCH, AND J. P. DRAAYER, Adaptive-blocking hierarchical storage format for
sparse matrices, in Proceedings of the Federated Conference on Computer Science and Information Systems (FedCSIS
2012), IEEE Xplore Digital Library, 2012, pp. 545-551.

[14] D. LANGR AND P. TVRDIK, Ewvaluation criteria for sparse matriz storage formats, IEEE Transactions on Parallel and
Distributed Systems, 27 (2016), pp. 428-440.

[15] B. A. MAHAFZAH, Performance assessment of multithreaded quicksort algorithm on simultaneous multithreaded architecture,
The Journal of Supercomputing, 66 (2013), pp. 339-363.

[16] D. MaN, Y. ITo, AND K. NAKANO, An efficient parallel sorting compatible with the standard gsort, International Journal of
Foundations of Computer Science, 22 (2011), pp. 1057-1071.

[17] M. MATSUMOTO AND T. NISHIMURA, Mersenne Twister: a 623-dimensionally equidistributed uniform pseudo-random number
generator, ACM Transactions on Modeling and Computer Simultaion, 8 (1998), pp. 3-30.

[18] M. McCooL, R. A. D., AND R. JAMES, Structured Parallel Programming: Patterns for Efficient Computation, Morgan
Kaufmann, 2012.

[19] MICROSOFT, Parallel STL, 2014. Accessed July 17, 2015 at https://parallelstl.codeplex.com/.

[20] D. R. MUSSER, Introspective sorting and selection algorithms, Software: Practice and Experience, 27 (1997), pp. 983-993.

[21] R. NAIR, ParallelSort: Parallel sorting algorithm using OpenMP, 2014. Accessed July 17, 2015 at
https://github.com/rsnair2/ParallelSort.

[22] D. PASETTO AND A. AKHRIEV, A comparative study of parallel sort algorithms, in Proceedings of the ACM International
Conference Companion on Object Oriented Programming Systems Languages and Applications Companion, OOPSLA
’11, New York, NY, USA, 2011, ACM, pp. 203—-204.

, A comparative study of parallel sort algorithms. Accessed July 17, 2015 at http://researcher.watson.ibm.com/files/ie-
albert_akhriev/sort2011-full.pdf, 2011.

[24] J. REINDERS, Intel Threading Building Blocks, O’Reilly & Associates, Inc., Sebastopol, CA, USA, 2007.

[25] A. D. ROBINSON, A parallel stable sort using C++11 for TBB, Cilk Plus, and OpenMP, 2014. Accessed July 17, 2015 at
https://software.intel.com/en-us/articles/a-parallel-stable-sort-using-cl1-for-tbb-cilk-plus-and-openmp.

[26] A. RoBISON, Composable parallel patterns with Intel Cilk Plus, Computing in Science Engineering, 15 (2013), pp. 66-71.

[27] Y. SAAD, Iterative Methods for Sparse Linear Systems, Society for Industrial and Applied Mathematics, Philadelphia, PA,
USA, 2nd ed., 2003.

(28] B. SCHALING, The Boost C++ Libraries, XML Press, 2nd ed., 2014.

[29] 1. SIMECEK AND D. LANGR, Efficient parallel evaluation of block properties of sparse matrices, in Proceedings of the
Federated Conference on Computer Science and Information Systems (FedCSIS 2016), IEEE Xplore Digital Library,
2016. Accepted for publication.

[30] J. SINGLER AND B. KONSIK, The gnu libstdc++ parallel mode: Software engineering considerations, in Proceedings of the 1st
International Workshop on Multicore Software Engineering, IWMSE ’08, New York, NY, USA, 2008, ACM, pp. 15-22.

[31] J. SINGLER, P. SANDERS, AND F. PUTzZE, MCSTL: The multi-core standard template library, in Proceedings of the Euro-Par
2007 Parallel Processing, vol. 4641 of Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2007, pp. 682-694.

[32] M. Siis AND C. LEOPOLD, A wuser’s experience with parallel sorting and OpenMP, in Proceedings of the Sixth European
Workshop on OpenMP, EWOMP’04, 2004, pp. 23-28.

[33] N. Tuomas, G. TANASE, O. TKACHYSHYN, J. PERDUE, N. M. AMATO, AND L. RAUCHWERGER, A framework for adaptive
algorithm selection in STAPL, in Proceedings of the Tenth ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP ’05, New York, NY, USA, 2005, ACM, pp. 277-288.

[34] P. TSIGAS AND Y. ZHANG, A simple, fast parallel implementation of Quicksort and its performance evaluation on SUN
Enterprise 10000, in Proceedings of the 11th Euromicro Conference on Parallel, Distributed and Network-Based
Processing (PDP 2003), 2003, pp. 372-381.

[35] S. WiLLIAMS, A. WATERMAN, AND D. PATTERSON, Roofline: An insightful visual performance model for multicore
architectures, Commun. ACM, 52 (2009), pp. 65-76.

Edited by: Dana Petcu
Received: July 22, 2016
Accepted: August 31, 2016

