
Scalable Computing: Practice and Experience

Volume 18, Number 1, pp. 1–15. http://www.scpe.org

DOI 10.12694/scpe.v18i1.1230
ISSN 1895-1767
c⃝ 2017 SCPE

EFFICIENT PARALLEL TREE REDUCTIONS

ON DISTRIBUTED MEMORY ENVIRONMENTS ∗

KAZUHIKO KAKEHI†, KIMINORI MATSUZAKI‡, AND KENTO EMOTO§

Abstract. A new approach for fast parallel reductions on trees over distributed memory environments is presented. The
start point of our approach is to employ the serialized representation of trees. Along this data representation with high memory
locality and ease of initial data representation, we developed an parallelized algorithm which shares the essence with the parallel
algorithm for parentheses matching problems. Our algorithm not only is proven to be theoretically efficient, but also has a fast
implementation in a BSP style.

Key words: Parallel tree reduction, parentheses matching, serialized representation, the tree contraction algorithm, Bulk
Synchronous Parallelism.

AMS subject classifications. 68W10, 05C05

1. Introduction. Research and development of parallelized algorithms have been intensively done toward
matrices or one dimensional arrays. Looking at recent trends in applications, another data structure has also
been calling for efficient parallel treatments: the tree structures. Emergence of XML as a universal data format,
which takes the form of a tree, has magnified the impact of parallel and distributed mechanisms toward trees
in order to reduce computation time and mitigate limitation of memory.

Consider, as a simple and our running example, a computation maxPath to find the maximum of the values
each of which is a sum of values in the nodes from the root to each leaf. When it is applied to the tree at the left
of Fig. 2.2, the result should be 12 contributed by the path of values 3, −5, 6 and 8 from the root. Recalling the
research on parallel treatments on trees, the parallel tree contractions algorithm, first proposed by Miller and
Reif [34], have been known as one of the most fundamental techniques to realize parallel computation over trees
efficiently. One attractive feature of parallel tree contractions is that no matter how imbalanced a tree is, the
tree can be reduced in parallel to a single node by repeatedly contracting edges and merging adjacent nodes.
This theoretical beauty, however, may not necessarily shine in practice, because of the following two source of
problems.

First, parallel tree contractions, originally being developed under the assumption of shared memory en-
vironments, have been intensively studied in the context of the PRAM model of parallel computation. This
assumption does not apply to the recent trends of popular PC clusters, a common and handy approach for
distributed memory environments, where the treatment and cost of data arrangement among processors need
taking into account. It should be noted that efficient tree contractions under PRAM model are realized by
assigning contractions to different processors each time.

Second, the parallel tree contractions algorithm assumes that the tree structures are kept as linked struc-
tures. Such representations using links are not suitable for fast execution, since linked structures often do not
fit in caching mechanism, and it is a big penalty on execution time under current processor architectures.

This paper gives a clear solution for parallel tree reductions with its start point to use serialized forms of

trees. Their notable examples are the serialized (streamed) representations of XML or parenthesized numeric
expressions which are obtained by tree traversals. The problems mentioned above are naturally resolved by this
choice, since distribution of serialized data among processors and realization of routines running over them with
high memory locality are much simpler than that of trees under linked structures.

Our algorithm over the serialized tree representations is developed along with the parentheses matching

∗An earlier version of this paper appeared in PAPP2007, part of ICCS2007[23].
†Academic Co-Innovation Division, UTokyo Innovation Platform Co., Ltd., 3–40–10 Hongo, Bunkyo-ku, Tokyo 113-0033 Japan

(k.kakehi@utokyo-ipc.co.jp)
‡School of Information, Kochi University of Technology, 185 Tosayamadacho-Miyanokuchi, Kami, Kochi 782–8502 Japan

(matsuzaki.kiminori@kochi-tech.ac.jp)
§Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-

8502, Japan (emoto@ai.kyutech.ac.jp)

1

2 K. Kakehi, K. Matsuzaki and K. Emoto

!

"

#$

%& #%

'$

#" (#'

&

' " ! & % $

)*+,-*./0*12,

/,.3

Fig. 2.1. A rose tree (left), and the rose tree representation of [[1, 2], [3, 4, 5], [6]] (right)

problems. As instances of serialized trees, parallelization of parentheses matching problems, which figures out
correspondence between brackets, have plenty of work ([4, 36, 13, 25, 21] for example). Our algorithm, with
good resemblance to the one under BSP [43], also has a BSP implementation with three supersteps.

The contributions of our work are briefly summarized as follows:
• A New viewpoint at the parallel tree contractions algorithm—connection to parentheses matching : We
cast a different view on computing tree structures in parallel. The employed data representation, a
serialized form of trees by tree traversals, has massive advantages in the current computational environ-
ments: namely XML as popular data representations, cache effects in current processor architectures,
and ease in data distribution among popular PC clusters. Tree computations over its serialized rep-
resentation has much in common with parentheses matching. It is common to see that this problem
has connection with trees, like binary tree reconstruction or computation-tree generation, but to the
best of our knowledge we are the first to apply the idea of parentheses matching toward parallel tree
reductions, and to prove its success.

• Theoretical and practical efficiency : The previous work of parallel tree contractions on distributed
memory environments, namely hypercube [32] or BSP [16], both of which require O(n/p log p) execution
time. Contrasting to other work, our approach employs serialized tree representations. As a result, we
realized an O(n/p+ p) algorithm.

This paper is organized as follows. After this Introduction Sect. 2 observes our tree representations and
tree reductions. Section 3 explains an additional condition which enables efficient parallelization. We show
that this condition is equivalent to that of the parallel tree contractions algorithm. Section 4 develops the
parallelized algorithm. Our algorithm consists of three phases, where the first two perform computation along
with parentheses matching, and the last reduces a tree of size less than twice of the number of processors.
Section 5 supports our claims by some experiments. They demonstrate good scalability in computation. On
the other hand, we also observe fluctuation of data transactions. We discuss the related work in Sect. 6. Finally
we conclude this paper in Sect. 7 with mentioning future directions.

2. Preliminaries. This section defines the target of our parallelization, namely tree structures and their
serialized form, and tree homomorphism.

2.1. Trees and their serialized representation. We treat trees with unbound degree (trees whose nodes
can have an arbitrary number of subtrees), which is often referred as “rose trees” in functional programming
communities.

Definition 2.1. A data structure RTree is called rose tree defined as follows.

RTree α = Node α [Rtree α]

Fig. 2.1 shows examples of rose trees The left tree is set to be used as our running example. Rose trees are
general enough to represent nested lists; the right part of Fig. 2.1 is what [[1, 2], [3, 4, 5], [6]] is formatted into
a rose tree, whose internal nodes do not have their value. Binary trees are also covered by limiting degrees of
each node to be either zero or two.

As was explained in Introduction, our internal representation is to keep tree-structured data in a serialized
manner like XML. For example, if we are to deal with a tree with just two nodes, parent a and its child b,
the serialized equivalent is a list of four elements [<a>,,,] . This is a combination of a preorder
traversal (for producing the open tag <a> and then) and a postorder traversal (for producing the close tag
 and afterwards). This representation has information enough to obtain back the original tree. In

Efficient Parallel Tree Reductions on Distributed Memory Environments 3

!

"

#$

%& #%

'$

#" (#'

&

)*
+,

-.)
/+

0,1+2,3.4,)5+

.+36

!"##$!"%&#"'%($)$

*%"'+,-

789!:

7'9&: 7'9#%:

7"9$:

7!9#": 7!9(: 7!9#':

7"9':

7&9;: 7'9":

7"9#$:7'9;:7'9;: 7!9;: 7!9;: 7&9&: 7!9;:

7"9;: 7"9;:

7'9;:

7'9%: 7"9;:

7'9;:

789;:

.

/

0

1

!

& #%

$

#" (#'

&

'

"

#$

%

2

%(+-,#3$45$3#*!6

<
Fig. 2.2. A rose tree (upper left), its serialized representation as a sequence of pairs (middle) and another representation

according to the depth (lower)

this paper we treat only well-formed serialized representation, which is guaranteed to be parsed into trees. To
make such serialized representation easy to observe, we assume (1) to ignore information in the closing tag, and
(2) to assign the information about the depth in the tree instead. We therefore assume to deal with a list of
pairs [(0,a), (1,b), (1,/), (0,/)], where / denotes closing tags. The associated depth information can be easily
obtained by prefix sum computation [5].

The sequence of the middle in Fig. 2.2 is our internal representation of the example tree. We later see the
information of depth helps us to have insight for deriving parallelized algorithms. Following these figures, list
elements describing the entrance (which corresponds to open tags) are called open, and ones describing the exit
(close tags) are called close. These close elements without any value can be soon wiped away when we perform
computation.

2.2. Tree homomorphism. Algorithms are often tightly connected with the data structure. A general
recursive form naturally arises here, which we call tree homomorphism [42].

Definition 2.2. A function h defined as follows over rose trees is called tree homomorphism.

h(Node a [t1, . . . , tn]) = a⊕ (h(t1)⊗ · · · ⊗ h(tn))
h(Leaf a) = h′(a)

We assume the above operator ⊗ is associative and has its unit ι⊗.

This definition consists of a function h′ for leaves, and two kinds of computation for internal nodes: ⊗
to reduce recursive results from subtrees into one, and ⊕ to apply the result to the internal node. For later
convenience, we define ⊖ as (a, b, c)⊖e = a⊕(b⊗e⊗c), and we call (a, b, c) appearing at the left of ⊖ a “triple”.
The computation maxPath mentioned in Introduction is also a tree homomorphism.

maxPath(Node a [t1, . . . , tn]) = a+ (maxPath(t1) ↑ · · · ↑ maxPath(tn))
maxPath(Leaf a) = id(a)

= a

Here, id is the identify function, and ↑ returns the bigger of two numbers whose unit is −∞. When it is applied
to the tree in Fig. 2.2, the result should be 12 = 3 + (−5) + 6 + 8. For other examples please see [27].

3. Parallelization Condition. When we develop parallel implementations we often utilize associativity of
computations, in order to change the order of computation with guaranteeing the same result. The framework
of tree homomorphism only requires the condition that the operator ⊗ is associative. This property of the
horizontal directions is indeed necessary for parallelization, but not yet sufficient: we currently lack the effective
measure toward computation of the vertical directions.

4 K. Kakehi, K. Matsuzaki and K. Emoto

!"#!$%!%&

&&%'(#)'*+#','#-

! !

"

$%

&

!

"'

$'
"(

#($(

#'

%

&

!

")

#) $)%
&

!

(au, bu, cu) ⊖ ((al, bl, cl) ⊖ e) = (a′, b′, c′) ⊖ e(a, b, c) ⊖ e = a ⊕ (b ⊗ e ⊗ c)

Fig. 3.1. A triple (left) and extended distributivity (right)

Before we start algorithm development, this section observes an additional property. What we use is known
as extended distributivity [27]. This property is explained using the operator ⊖ as follows.

Definition 3.1. The operator ⊗ is said extended distributive over ⊕ when the following equation holds

for any au, bu, cu, al, bl, cl, and e:

(au, bu, cu)⊖ ((al, bl, cl)⊖ e) = au ⊕ (bu ⊗ (al ⊕ (bl ⊗ e⊗ cl))⊗ cu)
= a′ ⊕ (b′ ⊗ e⊗ c′)
= (a′, b′, c′)⊖ e

with appropriate functions pa, pb and pc which calculate

a′ = pa(au, bu, cu, al, bl, cl) ,
b′ = pb(au, bu, cu, al, bl, cl) , and

c′ = pc(au, bu, cu, al, bl, cl) .

Efficient parallel tree reductions require these properties as well as ⊗ and ⊕ to be constant-time. Our
running example satisfies them, implicitly with its characteristic functions a′ = au + al, b′ = bu − al ↑ bl,
c′ = cl ↑ cu − al, as the following calculation shows.

(au, bu, cu)⊖ ((al, bl, cl)⊖ e)
= au + (bu ↑ (al + (bl ↑ e ↑ cl)) ↑ cu)
= (au + al) + ((−al + bu ↑ bl) ↑ e ↑ (cl ↑ −al + cu))
= ((au + al), (−al + bu ↑ bl), (cl ↑ −al + cu))⊖ e

The triple and extended distributivity from the viewpoint of their tree structures are depicted in Fig. 3.1.
We show the property of extended distributivity is equivalent to the condition for realizing the parallel tree
contractions algorithm with respect to rose trees. Parallel tree contractions require two operations rake and
compress are efficiently computed. The operation rake is to contract an edge between a leaf node and its parent
internal node; the other operation compress is to contract the last remaining edge of an internal node. Once
these treatments are possible, tree computations are performed in parallel (see Fig. 3.2).

Theorem 3.2. Assume computation of ⊕ and ⊗ requires constant time. Extended distributivity is equivalent

to the conditions for parallel tree contractions with respect to rose trees.

Proof. [⇐] We are treating rose trees whose nodes have unbound degree. We assume leaves from outer
positions into inner positions are gradually raked. A node with its value a can be regarded as (a, ι⊗, ι⊗) . Take
its leftmost subtree. Let b be its computed value, and y the computed value of the remaining siblings appearing
on its right. The reduced value of the subtrees under a is therefore b ⊗ y . The rake operation is to merge
(a, ι⊗, ι⊗) with b, and returns (a, b, ι⊗) using associativity of the operator ⊗ .

(a, ι⊗, ι⊗)⊖ (b⊗ y) = a⊕ (ι⊗(b⊗ y)⊗ ι⊗)
= a⊕ (b⊗ y ⊗ ι⊗)
= (a, b, ι⊗)⊖ y

Efficient Parallel Tree Reductions on Distributed Memory Environments 5

!"#$

%&'(!$))

Fig. 3.2. Tree contractions rake (upper left) and compress (lower left), and an example of parallel tree contractions (right)

Routine 4.1. First phase applied to each fragment

Input: Sequence (d0, a0), . . . , (dn−1, an−1) (n ≥ 1).
Variables: Arrays as, bs, cs (behaving as stacks growing from left to right), an integer d, and a value t.

(1) Set d← d0. If a0 is “/” then cs← [ι⊗, ι⊗], as← [], bs← []; else cs← [ι⊗], as← [a0], bs← [ι⊗].
(2) For each i in {1, . . . , n− 1}

(2-a) if ai is not “/” (namely a value), then push ai to as and ι⊗ to bs;
(2-b) else if as is empty, then push ι⊗ to cs, and set d← di;
(2-c) else pop a′ from as and b′ from bs.

if b′ = ι⊗ (implying a′ is a leaf) then t← h′(a′); else t← a′ ⊗ b′;
if bs is not empty, then pop b′′ from bs and push b′′ ⊗ t to bs; else pop c′′ from cs and push c′′ ⊗ t to cs.

(3) If p ̸= 1 then remove ι⊗ at the bottom of cs0 and csp−1.

In terms of the value c of its rightmost leaf, the rake operation similarly succeeds to produce (a, ι⊗, c) . The
same arguments apply to the cases in which there are already raked values, namely (a, b, c) in general.

The compress operation is to merge a node (au, bu, cu) with its subtree whose computed value can be
written as (al, bl, cl)⊖ e . This is what extended distributivity deals with, and we successfully have (a′, b′, c′) =
(au, bu, cu)⊖ ((al, bl, cl)⊖ e) .

[⇒] When extended distributivity holds, we have the implementation of the tree homomorphism based on
tree contractions over a binary tree representation of rose trees [27].

4. Parallelized Algorithm. This section develops a parallel algorithm for tree homomorphism which
satisfies extended distributivity. Our algorithm consists of three phases: (1) the first phase applies tree ho-
momorphism toward segments (consecutive subsequences) as much as possible which is distributed to each
processor; (2) after communications among processors the second phase performs further reduction using ex-
tended distributivity, producing a binary tree as a result whose internal nodes are specified as triples, and size
is less than twice of the number of processors; finally (3) the third phase reduces the binary tree into a single
value.

As was used in Introduction, we set to use n to denote the number of nodes in the tree we apply computations
to, and p the number of available processors. The serialized representation has therefore 2n elements. During
the explanation we assume p = 4. Each processor is assumed to have O(n/p) local memory, and to be connected
by a router that can send messages in a point-to-point manner. Our algorithm developed here involves all-to-all
transactions; such a mechanism is available in MPI on many PC clusters. We assume BSP model [43, 33].

4.1. First phase. Each processor applies tree homomorphism to its given segment of size 2n/p. The
process is summarized as Routine 4.1. This process leaves fragments of results, in arrays asi, bsi, csi and an
integer di for each processor number i. The array asi is to keep the open elements without their corresponding
close element. Each element of asi can have subtrees before the next one in asi, and their reduced values are kept

6 K. Kakehi, K. Matsuzaki and K. Emoto

!

"#

"$

%

$

!

"#

&

3

1

5

$∞

$∞

Fig. 4.1. An illustrating example of the first phase—applying tree homomorphism maxPath to a segment of Fig. 2.2 (lined
and dashed ovals indicate values obtained by reduction and −∞ (the unit of ↑), respectively)

!"#$%&' !"#$%&(!"#$%&) !"#$%&*

!

"

#$ #%

#"

&

4

"∞

"∞

"∞ "∞

8

"∞4

"∞

1

"∞

"∞

"4

"∞

'

(

)

*

+

'

(

)

*

!

' #"

&

#$ (#%

'

%

$

#&

"

+

cs0 = [] cs1 = [−∞, 8] cs2 = [−∞,−∞, 1,−∞] cs3 = [−∞,−4]
as0 = [3,−5, 6, 2] as1 = [−1] as2 = [5] as3 = []
bs0 = [4,−∞,−∞,−∞] bs1 = [4] bs2 = [−∞] bs2 = []
d0 = 0 d1 = 3 d2 = 1 d3 = 0

Fig. 4.2. The results by First phase (upper: illustration, lower: data)

in bsi. Similar treatments are done to unmatched close elements, leaving values in csi (we remove unmatched
close elements thanks to the absence of values). The integer di denotes the shallowest depth in processor i.
While both of elements in asi and bsi are listed in a descending manner, those of csi are in ascending manner;
the initial elements of asi and bsi and the last one of csi are at height di (except for cs0 and csp−1 whose last
element at depth 0 is always ι⊗ and therefore is set to be eliminated).

In Fig. 4.1 we show a case of the illustrating segment from the 10th element (3,−1) to the 21st (2,−6) of
the sequence in Fig. 2.2. We have, as depicted:

cs = [−1 + id(4), id(1), id(5)] as = [2,−6], d = 1.
= [3, 1, 5], bs = [−∞,−∞],

Please note that we regard absence of subtrees as an empty forest to which the tree homomorphism returns
−∞, the unit of ↑ (at depth 2 and 3 kept in bs). When we distribute the whole sequence in Fig. 2.2 evenly
among four processors (6 elements for each), the results by this phase is shown in Fig. 4.2.

4.2. Second phase. The second phase matches data fragments kept in each processor into triples (a, b, c)
using communication between processors. Later, we reduce consecutive occurrences of triples into a value, or
into one triple by extended distributivity.

When we look carefully at Fig. 4.3, we notice that 3 in as0 at depth 0 now has five parts at depth 1 as its
children: the value 4 in bs0, a subtree spanning from processors 0 to 2 whose root is −5 in as0, the value −∞
in cs2, a subtree from processor 2 to 3 whose root is 5 in as2, and the value −4 in cs3. As these subtrees need
reducing separately, we focus on the leftmost and the rightmost values in bs0 and cs3 (we leave the value −∞
in cs2 for the time being). We notice that the group of the value 3 in as0 with these two values in processors 0
and 3 forms a triple (3, 4,−4).

Efficient Parallel Tree Reductions on Distributed Memory Environments 7

!

"

#$ #%

#"

&

!"#$%&' !"#$%&(!"#$%&) !"#$%&*

'

(

)

*

+

↑
4

"∞

"∞

"∞ "∞

8

"∞4

"∞

1

"∞

"∞

"4

"∞

↑

"∞↑5

8↑3"2

(3,4,"4)
(1,-∞,"5)

Fig. 4.3. Triples between two processors (left) and the resulting tree (right) after the second phase

Similarly, two elements in as0 at depth 1 and 2, with two elements each in bs0 and cs2 at depth 2 and 3,
respectively, form two triples (−5,−∞, 1) and (6,−∞,−∞). The former triple indicates a tree that awaits the
result of one subtree specified by the latter. This situation is what extended distributivity takes care of, and
we can merge two triples (a sequence of triples in general) into one:

(−5,−∞, 1)⊖ ((6,−∞,−∞)⊖ e)
= ((−5 + 6), (−6−∞ ↑ −∞), (−∞ ↑ −6 + 1))⊖ e
= (1,−∞,−5)⊖ e

for any e. In this way, such groups of data fragments in two processors turn into one triple.
Groups from two adjacent processors are reduced into a single value without any missing subtrees in between.

Instead of treating using extended distributivity, the values −2 in as0 and −1 in as1 at depth 3, and 5 in
as2 at depth 2 with their corresponding values in bsi and csi+1 (i = 0, 1, 2) turn into values id(−2) = −2,
−1 + (4 ↑ −∞) = 3, id(5) = 5, respectively.

We state the following lemma to tell the number of resulting groups in total.

Lemma 4.1. Given p processors. The second phase produces groups of the number at most 2p− 3.
Proof. For simplicity we first assume the shallowest depths di for 0 < i < p− 1 are disjoint for each other

(both d0 and dp−1 are 0). Under this assumption the equality Rp = 2p−3 holds. Proof is given by mathematical
induction.

Consider the case p = 2. We immediately see that R2 = 1 = 2 · 2 − 3 . Assume Ri = 2i − 3 holds for
2 ≤ i < p, and we have p processors each of which holds the results by Routine 4.1. First, we need to observe
that d0 = dp−1 = 0 and d0 < di for 0 < i < p− 1, since we deal with well-formed trees only. By the assumption
of disjoint di we can find 0 < i < p such that di > dj for 0 < j < p, i ̸= j . Using the height di, we find a
group between processors 0 and p; we continue investigation of groups for each of i+ 1 processors (from 0 to i)
and p− i processors (from i to p− 1) with their initial height di instead of 0. Hence the following holds, using
induction hypothesis.

Rp = 1 +Ri+1 +Rp−1−i+1

= 1 + (2(i+ 1)− 3) + (2(p− i)− 3)
= 2p− 3

Inequality appears in case there appear the same shallowest depths. For example, assume there are four
processors, and processors 1 and 2 have the same peak depth, namely d1 = d2 > d0 = d3 = 0. In this case, the
groups are created between processors 0 and 3, 0 and 1, 1 and 2, 2 and 3. This partitioning produces 4 groups,
one smaller than 5 = 2 · 4− 3 . Generalization of this argument proves Rp ≤ 2p− 3 .

This lemma guarantees that, the number of groups this phase produces is less than twice of the number of
processors. Notice that the groups form a tree (Fig. 4.3, right). This observation enables us to have another
explanation on the number of groups. Given p processors, we soon notice that there exist groups between two
adjacent processors. They are regarded as leaves, without any missing subtrees in between. The number of

8 K. Kakehi, K. Matsuzaki and K. Emoto

Routine 4.2. Second phase computing groups among processors.

Input: Sequence (p, dp) is given in the ascending order of p.
Variables: A stack is used whose top is referred as (ps, ds).

(1) Push the first pair (0, 0) on a stack
(2) For each i in {1, . . . , p− 1}

(2-1) prepare a variable d←∞.
(2-2) while di < ds, produce Mps↔i

[ds,d]
, set d← ds and pop from the stack;

(2-3) if di = ds, then produce Mps↔i

[ds,d]
and M ↔

[di,ds]
, and pop from the stack; else produce Mps↔i

[di,d]
.

(2-4) push (i, di).
(3) Finally eliminate the last mating pair (that is M ↔

[0,0]).

leaves are therefore one smaller than the processor numbers, namely p − 1. Other groups behave as internal

nodes which have two or more subtrees (otherwise we can simplify two groups of direct filiation into one group

using extended distributivity). In case the number of leaves are fixed, binary trees have the largest number of
internal nodes among trees in general. The number of internal nodes in a binary tree is one smaller than that
of leaves, and if there are p − 1 leaves we have p − 2 internal nodes. Hence the number of groups is no more
than 2p− 3 .

The Routine 4.2 figures out groups among processors. Mpl↔pr

[du,dl]
denotes a group between processors pl and

pr whose data fragments span from the depth du until dl (∞ in dl indicates “everything starting from du”).
This Routine inserts M ↔

[du,dl]
as a dummy group in case the same d appear among more than two consecutive

processors. It is assumed to be reduced into ι⊖, a virtual left unit of ⊖ (namely ι⊖ ⊖ e = e). This routine
produces 2p− 3 groups in the post-order traversal over the binary tree.

The remaining task in this phase is to perform data transactions of asi, bsi, csi among processors according
to the groups information Mpl↔pr

[du,dl]
, and apply further computation toward each group. There can be a couple of

approaches of data transaction. One simple idea is to transfer fragments of csi to their corresponding processors.
When we apply computation for each group, the computed value at the shallowest depth dp in each processor
are associated to the group on their right for later computation by ⊗ (8 in cs1, −∞ in cs2; see Fig. 4.3).

4.3. Third phase. This last phase compiles obtained triples or values and reduce them into a single
value. As Fig. 4.3 shows, the obtained triples and values in the previous phase form a binary tree of size 2p− 3
(including dummies by M ↔

[0,0]). We collect triples or values in one processor, and apply tree reduction in O(p)
time.

4.4. Cost estimation. The whole procedures are summarized as Algorithm 4.1. As the summary of this
section, we estimate the cost of this algorithm.

Ch, Ced, and Ct are, respectively, the computational cost of tree homomorphism (using h′, ⊗ and ⊕), that
of merging two triples into one by extended distributivity using its characteristic functions, and that of groups
generation by Routine 4.2. The length of an array xs is written as |xs| . The cost ratio of communication
compared to computation is written as g, and L is the time required for barrier synchronization among all
processors.

The cost is summarized in Table 4.1. Step (1) takes time linear to the data size in each processor. The
memory requirement of this sequential procedure (Routine 4.1) is O(n/p) as well. The worst case in terms of
the size of the results occurs when an sequence of only open (or close) elements is given, resulting in two arrays
asi and bsi (or csi) of the length 2n/p for each. Step (2-2) takes O(p) time and space.

Step (2-3) requires detailed analysis. The cost depends on how each processor sends out its fragment of
data. This depends on the size of csi, namely |csi| . When we analyze the worst case, it is possible that a
processor sends out all of its csi whose size can be at most 2n/p . Therefore the worst cost is estimated as
g · 2n/p, and this is O(n/p).

Similar analysis applies to Step (2-4), by changing the viewpoint from the transmitter to the receiver. It is
often the case that the computational cost Ced is heavier than Ch. The worst case occurs when the length of

Efficient Parallel Tree Reductions on Distributed Memory Environments 9

Algorithm 4.1. The whole procedure of tree reduction.

Input: Assume the serialized representation of a tree of size n (the length of the list is 2n) is partitioned into p sublists,
which are distributed among processors 0, . . . , p− 1 .

First phase:

(1) Each processor sequentially performs tree computation using Routine 4.1, and produces arrays asi, bsi, csi and
the shallowest depth di .

Second phase:

(2-1) All values of di are shared through global communication using all-to-all transactions.

(2-2) Each processor performs Routine 4.2 to figure out the structures groups have.

(2-3) Each processor transmits fragments of csi to their corresponding processor according to the information obtained
in Step (2-2).

(2-4) Each processor reduces groups into single values or single triples.

Third phase:

(3-1) Values and triples obtained in Step (2-4) are collected to processor 0.

(3-2) Processor 0 reduces the binary tree into the result.

Table 4.1

Cost estimation of our algorithm under BSP

Step computation communication synch.

(1) C1 · 2n/p

(2-1) g · p L

(2-2) C3 · p

(2-3) maxi{g · |csi|} L

(2-4) ≤ Ced ·maxi{|asi|}

(3-1) ≤ g · p L

(3-2) Ch · ((2p− 3)− 1)

asi is 2n/p, and when the groups in that processor behave as internal nodes, requiring computation of extended
distributivity.

After Step (2-4) we have a binary tree of size 2p− 3 whose nodes are distributed among p processors. The
processor 0 collects these results and applies the final final reduction. The cost for the final computation (3-2)
is therefore O(p).

We conclude this section by stating the following theorem.

Theorem 4.2. Tree homomorphism with extended distributivity has a BSP implementation with three

supersteps of at most O(p+ n/p) communication cost for each.

5. Experiments. We performed experiments using our implementation using C++ and MPI. The envi-
ronment we used was semi-uniform PC clusters which consist of 2.4GHz or 2.8GHz processors with 2GB memory
each and are connected with Gigabit Ethernet. The compiler and MPI library are gcc 4.1.1 and MPICH 1.2.7.
We tested the efficacy of our algorithm using two kinds of experiments. The first is a querying operations over
given trees. These computations are specified as a tree homomorphism using operations over matrices of size
10 × 10. The second is what we have seen as the running example, namely maxPath. The former examines
the cases where heavy computation is involved, while the latter with simple computations will exhibit the com-
munication costs which our algorithm introduces. We prepared trees of size 1,000,000 in three types, namely
(F) a flat tree, (M) a monadic tree, and (R) 10 examples of randomly generated trees. A flat tree of size n is
a tree with n − 1 leaves just below the root. A monadic tree is a tree-view of a list, and has internal nodes
with just one subtree for each. We executed the program over each type using 2i processors (i = 0, . . . , 6). We

10 K. Kakehi, K. Matsuzaki and K. Emoto

Table 5.1

Execution times of the first experiments (querying, time in seconds)

Random Trees (R) Flat (F) Monadic (M)
p dist. comp. min. max. dist. comp. dist. comp.

1 0.088 5.546 5.494 5.613 0.090 3.833 0.109 11.924
2 0.210 2.814 2.753 2.892 0.208 1.886 N.A. N.A.
4 0.252 1.493 1.469 1.527 0.250 1.037 0.248 12.474
8 0.308 0.751 0.736 0.762 0.301 0.529 0.301 6.810

16 0.339 0.377 0.367 0.381 0.354 0.287 0.332 3.939
32 0.375 0.191 0.188 0.196 0.366 0.138 0.395 2.057
64 0.447 0.101 0.097 0.105 0.459 0.070 0.422 1.587

 0

 2

 4

 6

 8

 10

 12

 14

 0 10 20 30 40 50 60 70

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Number of Processors

Flat (F)
Monadic (M)

Random Trees (R)

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50 60 70

R
e
la

ti
v
e
 S

p
e
e
d
u
p
s

Number of Processors

Flat (F)
Monadic (M)

Random Trees (R)
linear

Fig. 5.1. Plots of Table 5.1 by total execution time (left) and by speedups of computation time (right)

repeated the same experiments five times, and their average times of the initial data distribution and of the
computation itself (“dist.” and “comp.”, respectively) are summarized in the following tables (measurement in
second). Randomly shaped trees (R) has various shapes and their computation time can naturally vary. The
minimum and maximum are also put in Tables (“min.” and “max.”, respectively).

Table 5.1 shows the results of the first experiments of querying operations. As their plots in the left of
Fig. 5.1 indicates, our algorithm exhibited good scalability. Results of (M) fell behind the other two. We can
point out three reasons. The first reason is failure to use caches effectively. Routine 1 in (1) which uses arrays
in a stack-like manner can enjoy caching effects when the corresponding open and close elements are located
closely. The serialized representation of monadic trees is a sequence of open elements and a sequence of close
elements afterwards. This hampers locality, and we can observe the penalties of high cache misses under a single
processor p = 1 where no parallelization is taken place. The second reason is communication and computation
cost in Steps (2-3) and (2-4). We cannot apply any computation with monadic trees at (1), and this step
has to leave asi, bsi and csj intact with their length 2n/p (0 ≤ i < p/2, p/2 ≤ j < p). The third reason
is communication anomalies when larger data are passed at Step (2-3). We will analyze this using the next
experiments.

The results of the second experiments using our running example maxPath appear in Table 5.2. Since
the required computations are quite cheap, improvements by parallelization are limited, and it does not pay
off to perform parallelization for this data size. Instead, these experiments exhibit the cost of parallelization,
especially that of data transactions. We make two notes on anomalies of communications. The first is that
the variance of execution time becomes large as the number of processors increases. We observed that there
were at large 10 msecs difference in execution time under p = 64. The flat trees has least communication and
computation cost, but there appears inversion phenomena that our algorithm ran faster over random trees than
over a flat tree (p = 4, 8, 16). The second is about congestion of network, which apparently happens toward the

Efficient Parallel Tree Reductions on Distributed Memory Environments 11

Table 5.2

Execution times of the second experiments (maxPath, time in second)

Random Trees (R) Flat (F) Monadic (M)
p dist. comp. min. max. dist. comp. dist. comp.

1 0.088 0.055 0.054 0.058 0.086 0.044 0.086 0.086
2 0.207 0.028 0.027 0.032 0.226 0.022 0.210 0.170
4 0.252 0.016 0.014 0.019 0.248 0.018 0.250 0.086
8 0.309 0.013 0.007 0.016 0.306 0.016 0.301 0.049

16 0.342 0.010 0.005 0.012 0.355 0.011 0.333 0.031
32 0.375 0.013 0.004 0.028 0.397 0.011 0.366 0.022
64 0.450 0.019 0.007 0.033 0.456 0.007 0.490 0.139

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 10 20 30 40 50 60 70

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Number of Processors

Flat (F)
Monadic (M)

Random Trees (R)

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50 60 70

R
e
la

ti
v
e
 S

p
e
e
d
u
p
s

Number of Processors

Flat (F)
Monadic (M)

Random Trees (R)
linear

Fig. 5.2. Plots of Table 5.2 by total execution time (left) and by speedups of computation time (right)

monadic tree under p = 64. Monadic trees require Step (2-3) to transmit data of large size, but the amount
of whole transmitted data through network does not change as

∑
i |csi| = 2n/p + O(p) for any p ≥ 2. Our

algorithm with all-to-all transactions has to have vulnerability to the configuration and status of networks.
As a final note, it is natural that no difference existed in terms of costs of initial data distribution regardless

of the shape of the trees.

6. Related Work. This section compares our proposed framework with related work. It mainly spans
parallel tree contractions and list ranking algorithms, flattening transformation, parentheses matching, list
homomorphism, and MapReduce-based implementation.

6.1. Parallel tree contractions. The parallel tree contractions algorithm, first proposed by Miller and
Reif [34], are very important parallel algorithms for trees. Many researchers have devoted themselves to devel-
oping efficient implementations on various parallel models [18, 14, 1, 3, 31, 32, 16, 2]. Among researches based
on shared memory environments, Gibbons and Rytter developed an optimal algorithm on CREW PRAM [18];
Abrahamson et al. developed an optimal and efficient algorithm in O(n/p+ log p) on EREW PRAM [1].

Recently parallel tree contractions as well as list ranking, which serves the basis of parallel tree contractions,
have been analyzed under the assumption of distributed memory environments. Mayr and Werchner showed
O(⌈n/p⌉ log p) implementations on hypercubes or related hypercubic networks [31, 32]. Dehne et al. solved
list ranking and tree contractions on CGM/BSP using O(n/p log p) parallel time [16]. Sibeyn proposed a list
ranking algorithm which aimed at reduction of communication costs [40].

Our refined algorithm runs in O(n/p+ p) and is much improved result which comes close to the algorithms
under PRAMmodel. The advantage of our algorithm is not limited to the theoretical aspect. As our experiments
demonstrated, the data representation we employed suits current computer architectures which extensively relies
on caching mechanism for fast execution. Linked structures, namely dynamic data structures, involve pointers

12 K. Kakehi, K. Matsuzaki and K. Emoto

and their data fragments can scatter over the memory heap. Flexible though they are in terms of structure
manipulation like insertion and deletion, scattered data can easily lack locality.

The second advantage is the cost and concerns of data distribution. In case we have sophisticated distribu-
tion approaches of tree structures we can employ the EREW-PRAM parallel tree contraction algorithm. One
such technique is based on m-bridges [38]. This technique translates a binary tree into another binary tree in
each of whose nodes locates a subtrees of the original tree partitioned into almost the same size. Our group has
another implementation for parallel tree computation based on this approach [41, 29, 28, 26]. The drawback
of the approach using m-bridge is its cost. When trees are kept distributively among processors, the algorithm
for realizing m-bridges requires Euler tour and list ranking, which as a result spoils theoretical complexity
and running time in total. It should be noted that the parallelized algorithm presented in this paper runs in
O(n/p+ p). This cost is theoretically comparable to the EREW-PRAM parallel tree contractions algorithm,
using ignorable cost and troubles of initial data distribution.

6.2. Nested parallelism and flattening transformation. Blelloch’s nested parallelism and the lan-
guage NESL addresses the importance of data-parallel computation toward nested structures (often in the
form of nested lists), where the length of each list can differ [6]. The idea proposed is flattening of the struc-
tures [7]. The importance of this problem domain ignited a lot of researches afterwards, theoretically and in
real compilers [8, 39, 10].

Our idea presented in this paper is one instance of flattening transformation where segment descriptors are
diffused into the flattened data. To cope with irregularity of tree structures we format trees into its serialized
representation with an additional tags indicating the depth. The flattening of tree structures has already been
researched. Prins and Palmer developed data-parallel language Proteus, and nesting trees were treated [37, 35].
Chakravarty and Keller extended the structure to involve trees and recursive data structures in general [24, 9].
Their computation framework, however, stayed to treat horizontal computation in parallel. As far as we are
aware, this paper is the first to relate flattening transformations with the parallel tree contractions to derive
parallelism in the vertical direction.

6.3. Parentheses matching. The process of our algorithm development much resembles parentheses
matching algorithms, or the All Nearest Smaller Values Problems (often called ANSV for short). Their algo-
rithms have been analyzed under CRCW PRAM [4], EREW PRAM [36], hypercube [25] and BSP [21]. The
resemblance naturally comes from how tree structures are translated in sequence; the generation of groups in
Routine 2 follows the process to find matching of ANSV developed in [4]. We have made a step forward to
apply computation over the data structures. The implementation under BSP has complexity of O(n/p+ p).
Our algorithm naturally has complexity comparable to it.

He and Huang analyzed that the cost of data transaction becomes constant toward sequences of random
values [21]. Unfortunately this observation does not hold when we are to compute tree reductions. The first
reason is that we have to transmit not only the information of shallowest depth di, but the computed results
csi to realize reduction computations. Secondly, their style of analysis based on the assumption of random
input does not apply since the serialized representation of trees has certain properties. For example, given a
sequence A = a0, a1, . . . , a2n−1 which consists of open and close elements. In order to be a well-formed serialized
representation, A has exactly n open and n close elements, and the number of open elements in any subsequence
of A, namely a0, . . . ai (i < 2n), has to be no less than that of close elements. While we haven’t developed
qualitative analyses so far, the experiments using randomly generated trees in this paper indicates that the
communication cost stays in a reasonable amount.

6.4. List homomorphism. List homomorphism is a model that plays an important role for developing
efficient parallel programs [13, 19, 20, 22]. A function hL is a homomorphism if there exist an associative
operator ⊕ and a unary function g such that

hL(x++y) = hL x⊙ hL y ,
hL [a] = g a .

This function can be efficiently implemented in parallel since it ideally suits for divide-and-conquer, bottom-
up computation: a list is divided into two fragments x and y recursively, and the computations of hL x and

Efficient Parallel Tree Reductions on Distributed Memory Environments 13

hL y can be carried out in parallel. For instance, the function sum, which computes the sum of all the elements
in a list, is a homomorphism because the equations sum (x++y) = sum x+ sum y and sum [a] = a hold. This
indicates that we can reduce parallel programming into construction of list homomorphism.

In further detail, parallel environments for distributed lists evaluate list homomorphism in two phases after
distribution of data: (a) the local computation at each processor (using g and ⊙), and (b) the global computation
among processors (using ⊙). Assume the computation of g and ⊙ requires constant time. By evenly distributing
consecutive elements to processors, the phase (a) takes O(n/p) cost. The phase (b) reduces these p values into
a single value tree-recursively in log p iterations. The total cost is therefore estimated as O(n/p+ log p).

Tree-recursive data communication, which is the basis of efficient execution for list homomorphism, however,
seems restrictive for this problem. Its resulting complexity is, even with nested use of homomorphism, O(log2 n)
for abundance of processors. We made a test implementation for this approach, and we observed the scalability
was tamed much earlier: the speedup ratios from p = 16 to 32, and from 32 to 64 using the first experiments
of querying were, respectively, 1.81 and 1.26, and they did not catch up the respective ratios 1.97 and 1.89
obtained by the approach in this paper.

6.5. MapReduce-based Implementation. MapReduce is a framework for large-scale data processing
proposed by Google [15], and its open-source implementation in Hadoop [44] is now widely used. Though the
conventional programming model of MapReduce is for unordered data (sets), with some extension in Hadoop
MapReduce we can deal with ordered data including serialized representation of trees. Recently, dealing XML
documents on MapReduce has been studied actively. For example, Choi at al. developed an XML querying
system on Hadoop MapReduce [11]. They also proposed algorithms for labeling XML trees with MapReduce [12].
It is worth noting that the idea similar to parentheses matching was used in the latter to process unmatching
tags in XML fragments.

The serialized representation of trees and flexibility of partitioning in our approach is also suitable for the
implementation of tree manipulations on MapReduce. Based on the earlier version of this work, Emoto and
Imachi developed a MapReduce algorithm for tree reductions [17]. Furthermore, the algorithm was extended
to tree accumulations by Matsuzaki and Miyazaki [30], which can be implemented with two-round MapReduce
computation.

7. Concluding Remarks. In this paper we have developed a new approach for parallel tree reductions.
The essence of our approach is to make good use of the serialized representation of trees in terms of initial data
distribution and computation using high memory locality. The results by the local computation forms a binary
tree of size less than twice of the number of processors and each node has size O(n/p) . Our algorithm has a
BSP implementation with three supersteps. Our test implementation showed good scalability in general, but
we also observed network fluctuation under PC clusters.

This research will be improved in the following aspects. Our experiments exhibited good performance toward
random inputs. It is an interesting mathematical question how much amount of transactions and computation
we have to execute in Steps (2-3) and (2-4) in average. The flexibility in partitioning our representations will
be beneficial under heterogeneous environments with different processor ability. After the process of group

generation, data can be reallocated among processors, regardless of their computational power. Theoretical
support for these issues are needed.

Acknowledgment. This research was partially supported by the Ministry of Education, Culture, Sports,
Science and Technology, Grant-in-Aid for Young Scientists (B), 17700026, 2005–2007.

REFERENCES

[1] K. R. Abrahamson, N. Dadoun, D. G. Kirkpatrick, and T. M. Przytycka, A simple parallel tree contraction algorithm,
J. Algorithms, 10 (1989), pp. 287–302.

[2] D. A. Bader, S. Sreshta, and N. R. Weisse-Bernstein, Evaluating arithmetic expressions using tree contraction: A fast
and scalable parallel implementation for symmetric multiprocessors (SMPs) (extended abstract), in High Performance
Computing - HiPC 2002, 9th International Conference, Bangalore, India, December 18-21, 2002, Proceedings, S. Sahni,
V. K. Prasanna, and U. Shukla, eds., vol. 2552 of Lecture Notes in Computer Science, Springer, 2002, pp. 63–78.

14 K. Kakehi, K. Matsuzaki and K. Emoto

[3] R. P. K. Banerjee, V. Goel, and A. Mukherjee, Efficient parallel evaluation of CSG tree using fixed number of processors,
in Solid Modeling and Applications, 1993, pp. 137–146.

[4] O. Berkman, B. Schieber, and U. Vishkin, Optimal doubly logarithmic parallel algorithms based on finding all nearest
smaller values, J. Algorithms, 14 (1993), pp. 344–370.

[5] G. E. Blelloch, Scans as primitive parallel operations, IEEE Trans. Computers, 38 (1989), pp. 1526–1538.
[6] , Programming parallel algorithms, Commun. ACM, 39 (1996), pp. 85–97.
[7] G. E. Blelloch and G. Sabot, Compiling collection-oriented languages onto massively parallel computers, J. Parallel Distrib.

Comput., 8 (1990), pp. 119–134.
[8] D. C. Cann, Retire fortran? A debate rekindled, Commun. ACM, 35 (1992), pp. 81–89.
[9] M. M. T. Chakravarty and G. Keller, More types for nested data parallel programming, in Proceedings of the Fifth ACM

SIGPLAN International Conference on Functional Programming (ICFP ’00), Montreal, Canada, September 18-21, 2000.,
M. Odersky and P. Wadler, eds., ACM, 2000, pp. 94–105.

[10] M. M. T. Chakravarty, G. Keller, R. Lechtchinsky, and W. Pfannenstiel, Nepal — nested data parallelism in Haskell,
in Euro-Par 2001: Parallel Processing, 7th International Euro-Par Conference Manchester, UK August 28-31, 2001,
Proceedings, R. Sakellariou, J. A. Keane, J. R. Gurd, and L. Freeman, eds., vol. 2150 of Lecture Notes in Computer
Science, Springer, 2001, pp. 524–534.

[11] H. Choi, K.-H. Lee, S.-H. Kim, Y.-J. Lee, and B. Moon, HadoopXML: A suite for parallel processing of massive XML
data with multiple twig pattern queries, in Proceedings of the 21st ACM International Conference on Information and
Knowledge Management (CIKM’12), ACM, 2012, pp. 2737–2739.

[12] H. Choi, K.-H. Lee, and Y.-J. Lee, Parallel labeling of massive XML data with MapReduce, Journal of Supercomputing, 67
(2014), pp. 408–437.

[13] M. Cole, Parallel programming with list homomorphisms, Parallel Processing Letters, 5 (1995), pp. 191–203.
[14] R. Cole and U. Vishkin, Optimal parallel algorithms for expression tree evaluation and list ranking, in VLSI Algorithms

and Architectures, 3rd Aegean Workshop on Computing, AWOC 88, Corfu, Greece, June 28 - July 1, 1988, Proceedings,
J. H. Reif, ed., vol. 319 of Lecture Notes in Computer Science, Springer, 1988, pp. 91–100.

[15] J. Dean and S. Ghemawat, MapReduce: Simplified data processing on large clusters, in 6th Symposium on Operating System
Design and Implementation (OSDI2004), December 6–8, 2004, San Francisco, California, USA, 2004, pp. 137–150.

[16] F. K. H. A. Dehne, A. Ferreira, E. Cáceres, S. W. Song, and A. Roncato, Efficient parallel graph algorithms for
coarse-grained multicomputers and BSP, Algorithmica, 33 (2002), pp. 183–200.

[17] K. Emoto and H. Imachi, Parallel tree reduction on MapReduce, in Proceedings of the International Conference on Compu-
tational Science (ICCS 2012), vol. 9 of Procedia Computer Science, Elsevier, 2012, pp. 1827–1836.

[18] A. Gibbons and W. Rytter, An optimal parallel algorithm for dynamic expression evaluation and its applications, in
Foundations of Software Technology and Theoretical Computer Science, Sixth Conference, New Delhi, India, December
18-20, 1986, Proceedings, K. V. Nori, ed., vol. 241 of Lecture Notes in Computer Science, Springer, 1986, pp. 453–469.

[19] S. Gorlatch, Constructing list homomorphisms, Tech. Report MIP-9512, Fakultät für Mathematik und Informatik, Univer-
sität Passau, August 1995.

[20] Z. N. Grant-Duff and P. G. Harrison, Parallelism via homomorphisms, Parallel Processing Letters, 6 (1996), pp. 279–295.
[21] X. He and C. Huang, Communication efficient BSP algorithm for all nearest smaller values problem, J. Parallel Distrib.

Comput., 61 (2001), pp. 1425–1438.
[22] Z. Hu, H. Iwasaki, and M. Takeichi, Formal derivation of efficient parallel programs by construction of list homomorphisms,

ACM Trans. Program. Lang. Syst., 19 (1997), pp. 444–461.
[23] K. Kakehi, K. Matsuzaki, and K. Emoto, Efficient parallel tree reductions on distributed memory environments, in Com-

putational Science - ICCS 2007, 7th International Conference, Beijing, China, May 27 - 30, 2007, Proceedings, Part
II, Y. Shi, G. D. van Albada, J. Dongarra, and P. M. A. Sloot, eds., vol. 4488 of Lecture Notes in Computer Science,
Springer, 2007, pp. 601–608.

[24] G. Keller and M. M. T. Chakravarty, Flattening trees, in Euro-Par ’98 Parallel Processing, 4th International Euro-Par
Conference, Southampton, UK, September 1-4, 1998, Proceedings, D. J. Pritchard and J. Reeve, eds., vol. 1470 of Lecture
Notes in Computer Science, Springer, 1998, pp. 709–719.

[25] D. Kravets and C. G. Plaxton, All nearest smaller values on the hypercube, IEEE Trans. Parallel Distrib. Syst., 7 (1996),
pp. 456–462.

[26] K. Matsuzaki, Efficient implementation of tree accumulations on distributed-memory parallel computers, in Computational
Science - ICCS 2007, 7th International Conference, Beijing, China, May 27 - 30, 2007, Proceedings, Part II, Y. Shi, G. D.
van Albada, J. Dongarra, and P. M. A. Sloot, eds., vol. 4488 of Lecture Notes in Computer Science, Springer, 2007,
pp. 609–616.

[27] K. Matsuzaki, Z. Hu, K. Kakehi, and M. Takeichi, Systematic derivation of tree contraction algorithms, Parallel Processing
Letters, 15 (2005), pp. 321–336.

[28] K. Matsuzaki, Z. Hu, and M. Takeichi, Parallel skeletons for manipulating general trees, Parallel Computing, 32 (2006),
pp. 590–603.

[29] K. Matsuzaki, H. Iwasaki, K. Emoto, and Z. Hu, A library of constructive skeletons for sequential style of parallel
programming, in Proceedings of the 1st International Conference on Scalable Information Systems, Infoscale 2006, Hong
Kong, May 30-June 1, 2006, X. Jia, ed., vol. 152 of ACM International Conference Proceeding Series, ACM, 2006, p. 13.

[30] K. Matsuzaki and R. Miyazaki, Parallel tree accumulations on MapReduce, International Journal of Parallel Programming,
44 (2016), pp. 466–485.

[31] E. W. Mayr and R. Werchner, Optimal routing of parentheses on the hypercube, J. Parallel Distrib. Comput., 26 (1995),
pp. 181–192.

Efficient Parallel Tree Reductions on Distributed Memory Environments 15

[32] , Optimal tree contraction and term matching on the hypercube and related networks, Algorithmica, 18 (1997), pp. 445–
460.

[33] W. F. McColl, Scalable computing, in Computer Science Today: Recent Trends and Developments, J. van Leeuwen, ed.,
vol. 1000 of Lecture Notes in Computer Science, Springer, 1995, pp. 46–61.

[34] G. L. Miller and J. H. Reif, Parallel tree contraction and its application, in 26th Annual Symposium on Foundations of
Computer Science, Portland, Oregon, USA, 21-23 October 1985, IEEE Computer Society, 1985, pp. 478–489.

[35] D. W. Palmer, J. F. Prins, and S. Westfold, Work-efficient nested data-parallelism, in Proceedings of the Fifth Symposium
on the Frontiers of Massively Parallel Computation (Frontiers’95), FRONTIERS ’95, Washington, DC, USA, 1995, IEEE
Computer Society, pp. 186–.

[36] S. K. Prasad, S. K. Das, and C. C. Chen, Efficient EREW PRAM algorithms for parentheses-matching, IEEE Trans.
Parallel Distrib. Syst., 5 (1994), pp. 995–1008.

[37] J. Prins and D. W. Palmer, Transforming high-level data-parallel programs into vector operations, in Proceedings of the
Fourth ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming (PPOPP), San Diego, California,
USA, May 19-22, 1993, M. C. Chen and R. Halstead, eds., ACM, 1993, pp. 119–128.

[38] M. Reid-Miller, G. L. Miller, and F. Modugno, List ranking and parallel tree contraction, in Synthesis of Parallel
Algorithms, J. Reif, ed., Morgan Kaufmann, 1993, ch. 3, pp. 115–194.

[39] J. Riely and J. Prins, Flattening is an improvement, in Static Analysis, 7th International Symposium, SAS 2000, Santa
Barbara, CA, USA, June 29 - July 1, 2000, Proceedings, J. Palsberg, ed., vol. 1824 of Lecture Notes in Computer Science,
Springer, 2000, pp. 360–376.

[40] J. F. Sibeyn, One-by-one cleaning for practical parallel list ranking, Algorithmica, 32 (2002), pp. 345–363.
[41] Sketo project home page. http://sketo.ipl-lab.org/.
[42] D. B. Skillicorn, Parallel implementation of tree skeletons, J. Parallel Distrib. Comput., 39 (1996), pp. 115–125.
[43] L. G. Valiant, A bridging model for parallel computation, Commun. ACM, 33 (1990), pp. 103–111.
[44] T. White, Hadoop: The Definitive Guide, O’Reilly Media / Yahoo Press, 2012.

Edited by: Frédéric Loulergue
Received: September 16, 2016
Accepted: January 17, 2017

