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EFFICIENT IMPLEMENTATION OF TREE SKELETONS

ON DISTRIBUTED-MEMORY PARALLEL COMPUTERS∗

KIMINORI MATSUZAKI†

Abstract. Parallel tree skeletons are basic computational patterns that can be used to develop parallel programs for manipulat-
ing trees. In this paper, we propose an efficient implementation of parallel tree skeletons on distributed-memory parallel computers.
In our implementation, we divide a binary tree to segments based on the idea of m-bridges with high locality, and represent local
segments as serialized arrays for high sequential performance. We furthermore develop a cost model for our implementation of
parallel tree skeletons. We confirm the efficacy of our implementation with several experiments.
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1. Introduction. Parallel tree skeletons, first formalized by Skillicorn [33, 34], are basic computational
patterns of parallel programs manipulating trees. By using parallel tree skeletons, we can develop parallel
programs without considering low-level parallel implementation and details of parallel computers. There have
been several studies on the systematic methods of developing parallel programs by means of parallel tree
skeletons [6, 19, 21, 35, 36].

For efficient parallel tree manipulations, tree contraction algorithms have been intensively studied [1, 5, 24,
25, 38]. Many tree contraction algorithms were given on various parallel computational models, for instance,
EREW PRAM [1], Hypercubes [24], and BSP/CGM [5]. Several parallel tree manipulations were developed
based on the tree contraction algorithms [1, 7]. For tree skeletons, Gibbons et al. [11] developed an implemen-
tation algorithm based on tree contraction algorithms.

In this paper, we propose an efficient implementation of parallel tree skeletons for binary trees on distributed-
memory parallel computers. Compared with the implementations so far, our implementation has three new
features.

First, it has less overheads of parallelism. Locality is one of the most important properties in developing
efficient parallel programs especially for distributed-memory computers. We adopt the technique ofm-bridges [8,
30] in the basic graph theory to divide binary trees into segments with high locality.

Second, it has high sequential performance. The performance of sequential computation parts is as impor-
tant as that of the communication parts. We represent a local segment as a serialized array and implement
local computation in tree skeletons with loops rather than recursive functions.

Third, it has a cost model. We formalize a cost model of our parallel implementation. The cost model helps
us to divide binary trees with good load balance.

We have implemented tree skeletons in C++ and MPI, and they are available as part of the skeleton library
SkeTo [22]. We confirm the efficacy of our implementation of tree skeletons with several experiments.

This paper is organized as follows. In the following Sect. 2, we introduce parallel tree skeletons with two
examples. In Sect. 3, we discuss the division of binary trees and representation of divided trees. In Sect. 4,
we develop an efficient implementation and a cost model of tree skeletons on distributed-memory parallel
computers. Based on this cost model, we discuss the optimal division of binary trees in Sect. 5. We then show
several experiment results in Sect. 6. We review related work in Sect. 7, and make concluding remarks in Sect. 8.

2. Parallel Tree Skeletons.
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map :: (α→ γ, β → δ,BTree⟨α, β⟩)→ BTree⟨γ, δ⟩
map(kl, kn,BLeaf (a)) = BLeaf (kl(a))
map(kl, kn,BNode(l, b, r)) = BNode(map(kl, kn, l), kn(b),map(kl, kn, r))

reduce :: ((α, β, α)→ α,BTree⟨α, β⟩)→ α

reduce(k,BLeaf (a)) = a

reduce(k,BNode(l, b, r)) = k(reduce(k, l), b, reduce(k, r))

uAcc :: ((α, β, α)→ α,BTree⟨α, β⟩)→ BTree⟨α, α⟩
uAcc(k,BLeaf (a)) = BLeaf (a)
uAcc(k,BNode(l, b, r)) = let b′ = reduce(k,BNode(l, b, r))

in BNode(uAcc(k, l), b′, uAcc(k, r))

dAcc :: ((γ, β)→ γ, (γ, β)→ γ, γ,BTree⟨α, β⟩)→ BTree⟨γ, γ⟩
dAcc(gl, gr, c,BLeaf (a)) = BLeaf (c)
dAcc(gl, gr, c,BNode(l, b, r)) = let l′ = dAcc(gl, gr, gl(c, b), l)

r′ = dAcc(gl, gr, gr(c, b), r)
in BNode(l′, c, r′)

Fig. 2.1. Definition of parallel tree skeletons.

2.1. Binary Trees. Binary trees are trees whose internal nodes have exactly two children. In this paper,
leaves and internal nodes of a binary tree may have different types. The datatype of binary trees whose leaves
have values of type α and internal nodes have values of type β is defined as follows.

data BTree⟨α, β⟩ = BLeaf (α)
| BNode(BTree⟨α, β⟩, β,BTree⟨α, β⟩)

Functions that manipulate binary trees can be defined by pattern matching. For example, function root that
returns the value of the root node is as follows.

root :: BTree⟨α, α⟩ → α
root(BLeaf (a)) = a
root(BNode(l, b, r)) = b

2.2. Parallel Tree Skeletons. Parallel (binary-)tree skeletons are basic computational patterns ma-
nipulating binary trees in parallel. In this section, we introduce a set of basic tree skeletons proposed by
Skillicorn [33, 34] with minor modifications for later discussion of their implementation (Fig. 2.1).

The tree skeleton map takes two functions kl and kn and a binary tree, and applies kl to each leaf and kn
to each internal node. Though there are tree skeletons called zip or zipwith that take multiple trees of the same
shape, we omit discussing them since computation of them is almost the same as that of the map skeleton.

The parallel skeleton reduce takes a function k and a binary tree, and collapses the tree into a value by
applying the function k in a bottom-up manner. The parallel skeleton uAcc (upwards accumulate) is a shape-
preserving manipulation, which also takes a function k and a binary tree and computes (reduce k) for each
subtree.

The parallel skeleton dAcc (downwards accumulate) is another shape-preserving manipulation. This skeleton
takes two functions gl and gr, an accumulative parameter c and a binary tree, and computes a value for each
node by updating the accumulative parameter c in a top-down manner. The update is done by function gl for
the left child, and by function gr for the right child.

Since a straightforward divide-and-conquer computation according to the definition in Fig. 2.1 has compu-
tational cost linear to the height of the tree, it may be inefficient if the input tree is ill-balanced. To guarantee
existence of efficient parallel implementations, we impose some conditions on the parameter functions of tree
skeletons. The map skeleton requires no condition. For the reduce, uAcc and dAcc skeletons, we formalize the
conditions for parallel implementations as existence of auxiliary functions satisfying a certain closure property.
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The reduce and uAcc skeletons called with parameter function k require existence of four auxiliary functions
φ, ψn, ψl, and ψr satisfying the following equations.

a: k(l, b, r) = ψn(l, φ(b), r)

b: ψn(ψn(x, l, y), b, r) = ψn(x, ψl(l, b, r), y)(2.1)

c: ψn(l, b, ψn(x, r, y)) = ψn(x, ψr(l, b, r), y)

Equations (2.1.b) and (2.1.c) represent the closure property that functions ψn, ψl, and ψr should satisfy.
Function φ lifts the computation of function k to the domain with closure property as in Equation (2.1.a). We
denote the function k satisfying the condition as k = ⟨φ, ψn, ψl, ψr⟩u.

The dAcc skeleton called with parameter functions gl and gr requires existence of auxiliary functions φl,
φr, ψu, and ψd satisfying the following equations.

a: gl(c, b) = ψd(c, φl(b))

b: gr(c, b) = ψd c, φr(b))(2.2)

c: ψd(ψd(c, b), b
′) = ψd(c, ψu(b, b

′))

Equation (2.2.c) shows the closure property that functions ψd and ψu should satisfy. As shown in Equa-
tions (2.2.a) and (2.2.b), computations of gl and gr are lifted up to the domain with closure property by
functions φl and φr, respectively. We denote the pair of functions (gl, gr) satisfying the condition as (gl, gr) =
⟨φl, φr, ψu, ψd⟩d.

2.3. Examples. To see how we can develop parallel programs with these parallel tree skeletons, we consider
the following two problems.

Sum of Values. Consider computing the sum of node values of a binary tree. We can define function sum

for this problem simply by using the reduce skeleton.

sum t = reduce(add3 , t)
where add3 (l, b, r) = l + b+ r

In this case, since the operator used is only the associative operator +, we have add3 = ⟨id , add3 , add3 , add3 ⟩u,
where id is the identity function.

Prefix Numbering. Consider numbering the nodes of a binary tree in the prefix traversing order. We can
define function prefix for this problem by using the tree skeletons map, uAcc, and dAcc as follows. Note that
the result of the uAcc skeleton is a pair of number of nodes of left subtree and number of nodes for each node.

prefix t = let t′ = uAcc(k,map(f, id , t))
in dAcc(gl, gr, 0, t

′)
where f(a) = (0, 1)

k((ll, ls), b, (rl, rs)) = (ls, ls + 1 + rs)
gl(c, (bl, bs)) = c+ 1
gr(c, (bl, bs)) = c+ bl + 1

Similar to the case of sum, auxiliary functions for the functions gl and gr are simply given as (gl, gr) =
⟨λ(bl, bs).1, λ(bl, bs).bl + 1,+,+⟩d. For function k, auxiliary functions are given as follows by applying the
derivation technique discussed in [21].

k = ⟨φ, ψn, ψl, ψr⟩
where φ(b) = (1, 0, 0, 1)

ψn((ll, ls), (b0, b1, b2, b3), (rl, rs))
= (b0 × ls + b1 × (ls + 1 + rs) + b2, ls + 1 + rs + b3)

ψl((l0, l1, l2, l3), (b0, b1, b2, b3), (rl, rs))
= (0, b0 + b1, (b0 + b1)× l3 + b1 × (1 + rs) + b2, l3 + 1 + rs + b3)

ψr((ll, ls), (b0, b1, b2, b3, b), (r0, r1, r2, r3, r))
= (0, b1, b1 × r3 + b0 × ls + b1 × (1 + ls) + b2, r3 + 1 + ls + b3)
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Fig. 3.1. An example of m-critical nodes and m-bridges. Left: In this binary tree, there are three 4-critical nodes denoted by
the doubly-lined circles. The number in each node denotes the number of nodes in the subtree. Right: For the same tree there are
seven 4-bridges, (a)–(g), each of which is a set of connected nodes.

It is worth noting that the set of auxiliary functions is not unique. For example, we can define another set of
auxiliary functions in which an intermediate value has a flag and two values.

In general, auxiliary functions are more complicated than the original function as we have seen in this
example. This complexity of auxiliary functions would introduce overheads in the derived parallel algorithms.

3. Division of Binary Trees with High Locality. To develop efficient parallel programs on distributed-
memory parallel computers, we need to divide data into smaller parts and distribute them to the processors.
Here, the division of data should have the following two properties for efficiency of parallel programs. The first
property is locality. The data distributed to each processor should be adjacent. If two elements adjacent in the
original data are distributed to different processors, then we often need communications between the processors.
The second property is load balance. The number of elements distributed to each processor should be nearly
equal since the cost of local computation is often proportional to the number of elements.

It is easy to divide a list with these two properties, that is, for a given list of N elements we simply divide
the list into P sublists each having N/P elements. It is, however, difficult to divide a tree satisfying the two
properties due to the nonlinear and irregular structure of binary trees.

In this section, we introduce a division of binary trees based on the basic graph theory [8, 30], and show
how to represent the distributed tree structures for efficient implementation of tree skeletons.

3.1. Graph-Theoretic Results for Division of Binary Trees. We start by introducing some graph-
theoretic results [8, 30]. Let size(v) denote the number of nodes in the subtree rooted at node v.

Definition 3.1 (m-Critical Node). Let m be an integer. A node v is called an m-critical node, if
• v is an internal node, and

• for each child v′ of v inequality ⌈size(v)/m⌉ > ⌈size(v′)/m⌉ holds.

The m-critical nodes divide a tree into sets of adjacent nodes (m-bridges) as shown in Fig. 3.1.

Definition 3.2 (m-Bridge). Let m be an integer. An m-bridge is a set of adjacent nodes divided by

m-critical nodes, that is, a largest set of adjacent nodes in which m-critical nodes are only at the root or bottom.

In the following of this paper, we assume that each local segment given by dividing a tree is an m-bridge.
The global structure of m-bridges also forms a binary tree.

The m-critical nodes and the m-bridges have several important properties. The following two lemmas show
properties of the m-critical nodes and the m-bridges in terms of the global shape of them.

Lemma 3.3. If v1 and v2 are m-critical nodes then their least common ancestor is also an m-critical node.

Lemma 3.4. If B is an m-bridge of a tree then B has at most one m-critical node among the leaves of it.

The root node in each m-bridge, except the m-bridge that includes the global root node, is an m-critical
node. If we remove the root m-critical node if it exists, it follows from Lemma 3.4 and Definition 3.2 that the
m-bridge has at most one m-critical node at its bottom.
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Fig. 3.2. Array representation of divided binary trees. Each local segment of segs is assigned to one of processors and is not
shared. Labels L, N and C denote a leaf, a normal internal node, and an m-critical node, respectively. Each m-critical node is
included in the parent segment.

The following three lemmas are related to the number of nodes in an m-bridge and the number of m-bridges
in a tree. Note that the first two lemmas hold on general trees while the last lemma only holds on binary trees.

Lemma 3.5. The number of nodes in an m-bridge is at most m+ 1.

Lemma 3.6. Let N be the number of nodes in a tree then the number of m-critical nodes in the tree is at

most 2N/m− 1.

Lemma 3.7. Let N be the number of nodes in a binary tree then the number of m-critical nodes in the

binary tree is at least (N/m− 1)/2.

Let N be the number of nodes and P be the number of processors. In the previous studies [8, 18, 30], we
divided a tree into m-bridges using the parameter m given by m = 2N/P . Under this division we obtain at
most (2P − 1) m-bridges and thus each processor handles at most two m-bridges. Of course this division enjoys
high locality, but it has poor load balance since the maximum number of nodes passed to a processor may be
2N/P , which is twice of that for the best lead-balancing case.

In Sect. 5, we will adjust the value m for better division of binary trees based on the cost model of tree
skeletons. The idea is to divide a binary tree into more m-bridges using smaller m so that we obtain enough
load balance while keeping the overheads caused by loss of locality small.

3.2. Data Structure for Distributed Segments. The performance of the sequential computation parts
is as important as that of the communication parts.

Generally speaking, tree structures are often implemented using pointers or references. There are, however,
two problems in this implementation for large-scale tree applications. First, much memory is required for
pointers. Considering trees of integers or real numbers, for example, we can see that the pointers use as much
memory as the values do. Furthermore, if we allocate nodes one by one, more memory is consumed to enable
each of them to be deallocated. Second, locality is often lost. Recent computers have a cache hierarchy to bridge
the gap between the CPU speed and the memory speed, and cache misses greatly decrease the performance
especially in data-intensive applications. If we allocate nodes from here and there then the probability of cache
misses increases.

To resolve these problems, we represent a binary tree with arrays. We represent a tree divided by the
m-bridges using one array gt for the global structure and one array of arrays segs for the local segments,
each of which is given by serializing the tree in the order of prefix traversal. Note that arrays in segs are
distributed among processors, while each local segment exists in only one processor. Figure 3.2 illustrates the
array representation of a distributed tree. Since adjoining elements are aligned one next to another in this
representation, we can reduce cache misses.

We introduce some notations for the discussion of implementation algorithms in the next section. Some
values may be attached to the global structure, and we write gt [i] to access to the value attached to ith
element of global structure. If ith segment in segs is distributed on pth processor, we denote pr(i) = p. For a
given serialized array for a segment seg , we use seg [i] to denote the ith value in the serialized array, and use
isLeaf(seg [i]), isNode(seg [i]) and isCritical(seg [i]) to check whether the ith node is a leaf, an internal node, and
an m-critical node, respectively. Function isRoot(p) checks if the processor p is the root processor or not.
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Table 4.1
Parameters of the cost model.

tp(f) computational time of function f using p processors

N the number of nodes in the input tree

P the number of processors

m the parameter for m-critical nodes and m-bridges

M the number of segments given by division of trees

Li the number of nodes in the ith segment

Di the depth of the m-critical node in the ith segment

cα the time needed for communicating one data of type α

|α| the size of a value of type α

4. Implementation and Cost Model of Tree Skeletons. In this section, we show an implementation
and a cost model of the tree skeletons on distributed-memory parallel computers. We implement the local
computation in tree skeletons using loops and stacks on the serialized arrays, which play an important role in
reducing the cache misses and achieving high performance in the sequential computation parts.

We define several parameters for discussion of the cost model (Table 4.1). We assume a homogeneous
distributed-memory environments as the computation environment. The computational time of function f
executed with p processors is denoted by tp(f). In particular, t1(f) denotes the cost of sequential computation
of f . Parameter N denotes the number of nodes, and P denotes the number of processors. Parameter m is
used for m-critical nodes and m-bridges, and M denotes the number of segments after the division. For the ith
segment, in addition to the parameter of the number of nodes Li, we introduce parameter Di indicating the
depth of the critical node. Parameter cα denotes the communication time for a value of type α. The size of a
value of type α is denoted by |α|.

The cost of tree skeletons can be uniformly given as the sum of the maximum local-computation cost and
the global-computation cost as follows.

max
p

∑

pr(i)=p

(Li × tl +Di × td) +M × tm

In the expression of the cost,
∑

pr(i)=p denotes the summation of cost for local segments associated to processor
p. The parameter tl indicates the cost of computation that is applied to each node in a segment, the parameter
td indicates the cost of computation that is applied to the nodes on the path from the root to the m-critical
node, and the parameter tm denotes the communication cost required for each segment.

In fact, we can extend the implementation of tree skeletons and the cost model to the bulk-synchronous
parallel (BSP) model [37]. The cost of a BSP algorithm is given by the sum of costs of supersteps, which consists
of local computation followed by communication and barrier synchronization. The cost of a superstep is given
by an expression of the form w + hg + l where w is the maximum cost of local computation, h is the size of
messages, g is the cost of communicating a message of size one, and l is the cost of the barrier synchronization.
Note that for the parameter g we have cα = |α|g for any type α.

4.1. Map. Since there is no dependency among nodes in the computation of the map skeleton, we can
implement the map skeleton by applying function map local to each local segment, where the map local
function applies function kl to each leaf and function kn to each internal node and the m-critical node in a local
segment. The implementation of the map skeleton is given in Fig. 4.1.

In a local segment with Li nodes, the number of leaves is at most Li/2+1 and the number of internal nodes
including the m-critical node is at most Li/2 + 1. Ignoring small constants we can specify the computational
cost of the map local function as

t1(map local) =
Li

2
× t1(kl) +

Li

2
× t1(kn) .
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map(kl, kn, (gt , segs))
for i← 0 to gt .size − 1: begin

if pr(i) == p then segs ′[i]← map local(kl, kn, segs[i]); endif

end

return (gt , segs ′);

map local(kl, kn, seg)
for i← 0 to seg .size − 1: begin

if isLeaf(seg [i]) then seg ′[i]← kl(seg [i]); endif

if isNode(seg [i]) then seg ′[i]← kn(seg [i]); endif

if isCritical(seg [i]) then seg ′[i]← kn(seg [i]); endif

end

return seg ′;

Fig. 4.1. Implementation of map skeleton.

The cost of the map skeleton is as follows.

tP (map(kl, kn, t)) = max
p

∑

pr(i)=p

Li ×
t1(kl) + t1(kn)

2

On the BSP model, we can implement the map skeleton with a single superstep without communication.
Thus, the BSP cost is given as follows.

t
⟨BSP⟩
P (map(kl, kn, t)) = max

p

∑

pr(i)=p

Li ×
t1(kl) + t1(kn)

2
+ l

4.2. Reduce. We then show an implementation and its cost of the reduce skeleton called with function k
and auxiliary functions k = ⟨φ, ψn, ψl, ψr⟩u. Let the input binary tree have type BTree⟨α, β⟩ and intermediate
values for auxiliary functions have type γ. The implementation of the reduce skeleton is shown in Fig. 4.2.

Step 1. Local Reduction. The bottom-up computation of the reduce skeleton can be computed by
a traversal on the array from right to left using a stack for the intermediate results. Firstly we apply
reduce local function to each local segment to reduce it to a value. In the reduce local function,

• we apply functions φ and either ψl or ψr to the m-critical node and its ancestors, and
• we apply function k to the other internal nodes.

Here, applying the function k is cheaper than applying function φ and ψn, even though k(l, n, r) = ψn(l, φ(n), r)
holds with respect to the results of functions. To specify where the m-critical node or its ancestor is in the
stack, we use a variable d that indicates the position. Note that in the computation of the reduce local
function, at most one element in the stack has the value of the m-critical node or its ancestors.

In this step, functions φ and either ψl or ψr are applied to the m-critical node and its ancestors (Di nodes)
and function k is applied to the other internal nodes ((Mi/2−Di) nodes). Thus, the cost of reduce local is
given as follows.

t1(reduce local) = Di × (t1(φ) + max(t1(ψl), t1(ψr))) +

(

Li

2
−Di

)

× t1(k)

Step 2. Gathering Local Results to Root Processor. In the second step, we gather the local results
to the root processor. The communication cost is given by the number of leaf segments of type α and the
number of internal segments of type γ.

tP (Step 2) =
M

2
× cα +

M

2
× cγ

Let the gathered values be put in array gt on the root processor after this step.



24 K. Matsuzaki

reduce(k, (gt , segs)) where k = ⟨φ, ψn, ψl, ψr⟩u
for i← 0 to gt .size − 1: begin

if pr(i) == p then gt [i]← reduce local(k, φ, ψl, ψr, segs[i]); endif

end

gather to root(gt);
if isRoot(p) then return reduce global(ψn, gt); endif

reduce local(k, φ, ψl, ψr, seg)
stack ← ∅; d← −∞;
for i← seg .size − 1 to 0: begin

if isLeaf(seg[i]) then stack ← seg[i]; d← d+ 1; endif

if isNode(seg[i]) then
lv ← stack ; rv ← stack ;
if d == 0 then stack ← ψl(lv , φ(seg[i]), rv);
else if d == 1 then stack ← ψr(lv , φ(seg[i]), rv); d← 0;
else stack ← k(lv , seg[i], rv); d← d− 1;
endif

if isCritical(seg[i]) then stack ← φ(seg[i]); d← 0; endif

end

top ← stack ; return top;

reduce global(ψn, gt)
stack ← ∅;
for i← gt .size − 1 to 0: begin

if isLeaf(gt[i]) then stack ← gt[i]; endif

if isNode(gt[i]) then lv ← stack ; rv ← stack ; stack ← ψn(lv , gt [i], rv); endif

end

top ← stack ; return top;

Fig. 4.2. Implementation of reduce skeleton

Step 3. Global Reduction on Root Processor. Finally, we compute the result of the reduce skeleton
by applying the reduce global function to the array of local results. This computation is performed on the
root processor. We compute the result by applying ψn for each internal node in a bottom-up manner, which is
implemented by a traversal with a stack on the array of the global structure from right to left.

In this step the function ψn is applied to each internal segment and the cost of reduce global is

t1(reduce global) =
M

2
× t1(ψn) .

In summary, the cost of the reduce skeleton is given as follows.

tP (reduce k)

= max
p

∑

pr(i)=p

t1(reduce local) + tP (Step 2) + t1(reduce global)

= max
p

∑

pr(i)=p

(

Li ×
t1(k)

2
+Di × (−t1(k) + t1(φ) + max(t1(ψl), t1(ψr)))

)

+M × cα + cγ + t1(ψn)

2

On the BSP model, we can implement the reduce skeleton with two supersteps: one consists of Steps 1 and
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2; the other consists of Step 3. Thus, the BSP cost is given as follows.

t
⟨BSP⟩
P (reduce k)

= max
p

∑

pr(i)=p

(

Li ×
t1(k)

2
+Di × (−t1(k) + t1(φ) + max(t1(ψl), t1(ψr)))

)

+M × t1(ψn)/2 +M × |α|+ |γ|
2

× g + 2l

4.3. Upwards Accumulate. Next, we develop an implementation of the uAcc skeleton called with func-
tion k and auxiliary functions k = ⟨φ, ψn, ψl, ψr⟩u. Similar to the reduce skeleton, let the type of input binary
tree be BTree⟨α, β⟩ and the type of intermediate values be γ. The implementation of the uAcc skeleton is shown
in Fig. 4.3.

Step 1. Local Upwards Accumulation. In the first step, we apply function uAcc local to each
segment and compute local upwards accumulation and reduction. This function puts the intermediate results
to array seg ′ if a node has no m-critical node as descendants, since the result value is indeed the result of the
uAcc skeleton. This function puts nothing to array seg ′ if a node is either the m-critical node or an ancestor of
the m-critical node. Returned values are the result of local reduction and the array seg ′.

In the computation of the uAcc local function, φ and either of ψl or ψr are applied to each node of the
m-critical node and its ancestors (Di nodes), and k is applied to the other internal nodes ((Li/2−Di) nodes).
We obtain the cost of the uAcc local function as

t1(uAcc local) = Di × (t1(φ) + max(t1(ψl), t1(ψr))) +

(

Li

2
−Di

)

× t1(k) .

Note that this cost is the same as that of reduce local function.

Step 2. Gathering Results of Local Reductions to Root Processor. In the second step, we gather
the results of the local reductions on the global structure gt of the root processor. From each leaf segment
a value of type α is transferred, and from each internal segment a value of type γ is transferred. Since the
number of leaf segments and the number of internal segments are M/2 respectively, the communication cost of
the second step is

tP (Step 2) =
M

2
× cα +

M

2
× cγ .

Step 3. Global Upward Accumulation on Root Processor. In the third step, we compute the
upwards accumulation for the global structure gt on the root processor. Function uAcc global performs
sequential upwards accumulation using function ψn. In uAcc global, we apply function ψn to each internal
segment of gt , and the cost of the third step is given as

t1(uAcc global) =
M

2
× t1(ψn) .

Step 4. Distributing Global Result. In the fourth step, we send the result of global upwards accu-
mulation to processors, where two values are sent to each internal segment and no values are sent to each leaf
segment. Since all the values have type α after the global upwards accumulation, the communication cost of
the fourth step is given as

tP (Step 4) =M × cα .

Step 5. Local Updates for Each Internal Segment. In the last step, we apply function uAcc update
to each internal segment. At the beginning of the function, the two values pushed in the previous step are pushed
to the stack. These two values correspond to the results of children of the m-critical node. Note that in the last
step we only compute the missing values in the segment seg ′, which is given in the local upwards accumulation
(Step 1).
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uAcc(k, (gt , segs)) where k = ⟨φ, ψn, ψl, ψr⟩u
for i← 0 to gt .size − 1: begin

if pr(i) == p then (gt [i], segs ′[i])← uAcc local(k, φ, ψl, ψr, segs[i]); endif

end

gather to root(gt)
if isRoot(p) then gt ′ ← uAcc global(ψn, gt); endif

distribute from root(gt ′)
for i← 0 to gt .size − 1: begin

if pr(i) == p ∧ isNode(gt ′[i]) then
segs ′[i]← uAcc update(k, segs[i], segs ′[i], gt ′[i]) endif

end

return (gt ′, segs ′)

uAcc local(k, φ, ψl, ψr, seg)
stack ← ∅; d← −∞;
for i← seg .size − 1 to 0: begin

if isLeaf(seg [i]) then seg ′[i]← seg [i]; stack ← seg ′[i]; d← d+ 1; endif

if isNode(seg [i]) then
lv ← stack ; rv ← stack ;
if d == 0 then stack ← ψl(lv, φ(seg [i]), rv); d← 0;
else if d == 1 then stack ← ψr(lv, φ(seg [i]), rv); d← 0;
else seg ′[i]← k(lv, seg [i], rv); stack ← seg ′[i]; d← d− 1; endif

endif

if isCritical(seg [i]) then stack ← φ(seg [i]); d← 0; endif

end

top ← stack ; return(top, seg ′);

uAcc global(ψn, gt)
stack ← ∅;
for i← gt .size − 1 to 0: begin

if isLeaf(gt [i]) then gt ′[i]← gt [i]; endif

if isNode(gt [i]) then lv ← stack ; rv ← stack ; gt ′[i]← ψn(lv, gt[i], rv); endif

stack ← gt ′[i];
end

return(gt ′);

uAcc update(k, seg , seg ′, (lc, rc))
stack ← ∅; stack ← rc; stack ← lc; d← −∞;
for i← seg .size − 1 to 0: begin

if isLeaf(seg [i]) then stack ← seg ′[i]; d← d+ 1; endif

if isNode(seg [i]) then
lv ← stack ; rv ← stack ;
if d == 0 then seg ′[i]← k(lv, seg [i], rv); stack ← seg ′[i];
else if d == 1 then seg ′[i]← k(lv, seg [i], rv); stack ← seg ′[i]; d← 0;
else stack ← seg ′[i]; d← d− 1; endif

if isCritical(seg [i]) then
lv ← stack ; rv ← stack ;
seg ′[i]← k(lv, seg [i], rv); stack ← seg ′[i]; d← 0;

endif

end

return(seg ′);

Fig. 4.3. Implementation of uAcc skeleton
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In this step, function k is applied to the nodes on the path from them-critical node to the root node for each
internal segment. Noting that the depth of the m-critical nodes is Di, we can give the cost of uAcc update as

t1(uAcc update) = Di × t1(k) .

In summary, using the functions defined so far, we can implement the uAcc skeleton. The cost of the uAcc

skeleton is given as follows.

tP (uAcc(k, t))

= max
p

∑

pr(i)=p

t1(uAcc local) + tP (Step 2) + t1(uAcc global)

+ tP (Step 4) + max
p

∑

pr(i)=p

t1(uAcc update)

= max
p

∑

pr(i)=p

(

Li ×
t1(k)

2
+Di × (t1(φ) + max(t1(ψl), t1(ψr)))

)

+M × (3cα + cγ + t1(ψn))/2

On the BSP model, we can implement the uAcc skeleton with three supersteps: the first one consists of Steps
1 and 2; the second one consists of Steps 3 and 4; the last one consists of Step 5. Thus, the BSP cost is given
as follows.

t
⟨BSP⟩
P (uAcc k)

= max
p

∑

pr(i)=p

(

Li ×
t1(k)

2
+Di × (t1(φ) + max(t1(ψl), t1(ψr)))

)

+M × t1(ψn)/2 +M × (3|α|+ |γ|)/2× g + 3l

4.4. Downwards Accumulate. Finally, we develop an implementation and the cost of the dAcc skeleton
called with a pair of functions (gl, gr) and auxiliary functions (gl, gr)= ⟨φl, φr, ψu, ψd⟩d. Let the input binary
tree have type BTree⟨α, β⟩, the accumulative parameter c have type γ, and the intermediate values for auxiliary
functions have type δ. The implementation of the dAcc skeleton is shown in Fig. 4.4.

Step 1. Computing Local Intermediate Values. In the first step, we compute for each internal
segment two local intermediate values, which are used in updating the accumulative parameter from the root
node to the both children of the m-critical node. To minimize the computation cost, we first find the m-critical
node and then compute two values only on the path from the root node to the m-critical node. We implement
this computation by function dAcc path, in which the computation is done by a traversal on the array from
right to left with an integer d instead of a stack. Two variables toL and toR are the intermediate values.

In this step we apply ψu twice and either φl or φr for each of the ancestors of the m-critical nodes (Di

nodes). Omitting some small constants, the cost of the dAcc path function is given as

t1(dAcc path) = Di × (max(t1(φl), t1(φr)) + 2t1(ψu)) .

Step 2. Gathering Local Results to Root Processor. In the second step, we gather the local results
of the internal segments to the root processor. Since the two intermediate values have type δ and the number
of internal segments is M/2, the communication cost in the second step is given as

tP (Step 2) =M × cδ .

The pair of local results from each internal segment is put to the array of the global tree structure gt .

Step 3. Global Downwards Accumulation. In the third step, we compute global downwards accumu-
lation on the root processor. We implement this global downwards accumulation dAcc global with a forward
traversal using a stack. Firstly, the initial value of accumulative parameter is pushed to the stack, and then the
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accumulative parameter in the stack is updated with the pair of local results given in the previous step. The
result of global accumulation is the accumulative parameter passed to the root node for each segment.

The dAcc global function applies function ψd twice for each internal segment in the global structure.
The computational cost of the dAcc global function is

t1(dAcc global) =M × t1(ψd) .

Step 4. Distributing Global Result. In the fourth step, we distribute the result of global downwards
accumulation to the corresponding processor. Since each result of global downwards accumulation has type γ,
the communication cost of the fourth step is

tP (step 4) =M × cγ .

Step 5. Local Downwards Accumulation. Finally, we compute local downwards accumulation for
each segment. The initial value c′ of the accumulative parameter is given in the previous step. Note that the
definition of dAcc local function is just the same as the sequential version of the downwards accumulation
on the serialized array if we assume the m-critical node as a leaf.

The local downwards accumulation applies functions gl and gr for each internal node. Since the number of
the internal nodes is Li/2, the computational cost of the dAcc local function is given as

t1(dAcc local) =
Li

2
× (t1(gl) + t1(gr)) .

Summarizing the discussion so far, the cost of the dAcc skeleton is given as follows.

tP (dAcc)

= max
p

∑

pr(i)=p

t1(dAcc path) + tP (Step 2) + t1(dAcc global)

+ tP (Step 4) + max
p

∑

pr(i)=p

t1(dAcc local)

= max
p

∑

pr(i)=p

(

Li ×
t1(gl) + t1(gr)

2
+Di × (max(t1(φl), t1(φr)) + 2t1(ψu))

)

+M × (cδ + t1(ψd) + cγ)

On the BSP model, we can implement the dAcc skeleton with three supersteps: the first one consists of Steps
1 and 2; the second one consists of Steps 3 and 4; the last one consists of Step 5. Thus, the BSP cost is given
as follows.

t
⟨BSP⟩
P (dAcc)

= max
p

∑

pr(i)=p

(

Li ×
t1(gl) + t1(gr)

2
+Di × (max(t1(φl), t1(φr)) + 2t1(ψu))

)

+M × t1(ψd) +M × (|δ|+ |γ|)× g + 3l

5. Optimal Division of Binary Trees Based on Cost Model. As we stated at the beginning of
Sect. 3, locality and load balance are two important issues in developing efficient parallel programs in particular
on distributed-memory parallel computers. When we divide and distribute a binary tree using the m-bridges,
we enjoy good locality with large m while we enjoy good load balance with small m. Therefore, we need to find
an appropriate value for m to achieve both good locality and good load balance.

First, we show relations among parameters of the cost model. From Lemma 3.5 and the representation of
local segments in Fig. 3.2, we have

Li ≤ m .(5.1)
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dAcc(gl, gr, c, (gt , segs)) where (gl, gr) = ⟨φl, φr, ψu, ψd⟩d
for i← 0 to gt .size − 1: begin

if pr(i) == p ∧ isNode(gt [i]) then
gt [i]← dAcc path(φl, φr, ψu, segs[i]); endif

end

gather to root(gt)
if isRoot(p) then gt ′ ← dAcc global(ψd, c, gt); endif

distribute from root(gt ′)
for i← 0 to gt .size − 1: begin

if pr(i) == p then segs ′[i]← dAcc local(gl, gr, gt
′[i], segs[i]); endif

end

return (gt ′, segs ′)

dAcc path(φl, φr, ψu, seg)
d← −∞;
for i← seg .size − 1 to 0: begin

if isLeaf(seg [i]) then d← d+ 1; endif

if isNode(seg [i]) then
if d == 0 then

toL← ψu(φl(seg [i]), toL); toR ← ψu(φl(seg [i]), toR);
else if d == 1 then

toL← ψu(φr(seg [i]), toL); toR ← ψu(φr(seg [i]), toR); d← 0;
else

d← d− 1;
endif

endif

if isCritical(seg [i]) then toL← φl(seg [i]); toR ← φr(seg [i]); d← 0; endif

end

return (toL, toR);

dAcc global(ψd, c, gt)
stack ← ∅; stack ← c;
for i← 0 to gt .size − 1: begin

if isLeaf(gt [i]) then gt ′[i]← stack ; endif

if isNode(gt [i]) then
gt ′[i]← stack ; (toL, toR)← gt[i];
stack ← ψd(gt

′[i], toR); stack ← ψd(gt
′[i], toL);

endif

end

return gt ′;

dAcc local(gl, gr, c
′, seg)

stack ← ∅; stack ← c′;
for i← 0 to seg .size − 1: begin

if isLeaf(seg [i]) then seg ′[i]← stack ; endif

if isNode(seg [i]) then
seg ′[i]← stack ; stack ← gr(seg

′[i], seg [i]); stack ← gl(seg
′[i], seg [i]); endif

if isCritical(seg [i]) then seg ′[i]← stack ; endif

end

return seg ′;

Fig. 4.4. Implementation of dAcc skeleton



30 K. Matsuzaki

Since the height of a tree is at least a half of the number of nodes, we obtain

Di ≤ Li/2 ≤ m/2 .(5.2)

From Lemmas 3.6 and 3.7, the number of local segments M is bound with the number N of nodes and the
parameter m as follows.

1

2

(

N

m
− 1

)

≤M ≤ 2N

m
− 1(5.3)

By inequality (5.2), the general form of the cost can be transformed into the following simpler form by considering
the worst case.

max
p

∑

pr(i)=p

(Li × tl +Di × td) +M × tm ≤ (max
p

∑

pr(i)=p

Li)×
(

tl +
td
2

)

+M × tm

We then bound the maximum number of nodes on a processor, maxp
∑

pr(i)=p Li. We distribute the local
segment to processors so as to obtain good load balance, and one easy way to implement the load balancing
is greedy distribution of the local segments from the largest one. By this greedy distribution, the difference
between the maximum number of nodes maxp

∑

pr(i)=p Li and the minimum number of nodes minp
∑

pr(i)=p Li

is less than or equal to the maximum number of nodes in a segment. Since the maximum number of nodes in a
local segment is m as stated in inequality (5.1) and the total number of nodes in the original binary tree is N ,
we can bound the maximum number of nodes distributed to a processor as follows:

max
p

∑

pr(i)=p

Li ≤
N

P
+m

where P denotes the number of processors. By substituting this inequality to the cost, we can bound the cost
of the worst case.

max
p

∑

pr(i)=p

(Li × tl +Di × td) +M × tm ≤
(

N

P
+m

)

×
(

tl +
td
2

)

+M × tm(5.4)

Now we want to minimize the worst-case cost given in the right-hand side of inequality (5.4). By substituting
the parameterM (inequality (5.3)), the worst-case cost is bound with respect tom. We can bound the worst-case
cost for smaller m as

(

N

P
+m

)

×
(

tl +
td
2

)

+M × tm ≤
(

N

P
+m

)

×
(

tl +
td
2

)

+
1

2

(

N

m
− 1

)

× tm ,

and we can bound the worst-case cost for larger m as

(

N

P
+m

)

×
(

tl +
td
2

)

+M × tm ≤
(

N

P
+m

)

×
(

tl +
td
2

)

+
2N

m
− 1× tm .

From these bounds, we can minimize the worst-case cost for some value m in the following range.

√

tm
2tl + td

√
N ≤ m ≤ 2

√

tm
2tl + td

√
N(5.5)

This range of the parameter m is much smaller than that used in the previous studies [8, 18, 30]. In Sect. 6,
we will show experiment results that support the range.
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Fig. 6.1. For the sum of node values, execution times and speedups against sequential program plotted to the number of
processors. The parameter m for the division of trees is m = 53,600.

6. Experiment Results. To confirm the efficiency of the implementation algorithm for binary-tree skele-
tons, we implemented binary tree skeletons in C++ and MPI and made several experiments. We used our
PC-cluster of uniform PCs with two Pentium 4 2.4-GHz CPUs (one CPU is used for each PC) and 2-GByte
memory connected with Gigabit Ethernet. The compiler and MPI library used are gcc 4.1.1 and MPICH 1.2.7,
respectively.

We used the skeletal parallel programs of the two examples in Sect. 2. The input trees are (1) a balanced
tree, (2) a randomly generated tree and (3) a fully ill-balanced tree, each having 16,777,215 (= 224 − 1) nodes.

Figures 6.1 and 6.2 show the general performance of tree skeletons. Each execution time excludes the initial
data distribution and final gathering. The speedups are plotted against the efficient sequential implementation
of the program, which is implemented on the array representing binary trees based on the same sequential
algorithm. As seen in these plots, our implementation shows good scalability even against the efficient sequential
programs. By the m-bridges, the balanced tree is divided into leaf segments of the same size and internal
segments consisting only of one node. Therefore, the overhead caused by parallelism is very small for the
balanced binary tree, and the implementation achieves almost linear speedups against the sequential program.
For the random tree, the average depth of the m-critical nodes is so small that the implementation achieves
good performance close to that for the balance tree. The fully ill-balanced tree, however, is divided into leaf
segments consisting of one node and internal segments with their m-critical node at the depth Di = Li/2. From
the cost model and its parameters, the skeletal parallel program has overheads caused by the factor of depth of
the m-critical nodes. In fact, the experimental results show that the skeletal parallel program runs slower for
the fully ill-balanced tree than for the other two inputs.

To analyze the cost model and the range of the parameter m more in detail, we made more experiments
for the randomly generated tree by changing the value of the parameter m. We measured the parameters tl, td,
and tm of the cost model with a small tree with 999,999 nodes, and estimated the value of them as tl = 0.057
µs, td = 0.03 µs, and tm = 71 µs. By substituting the parameters, we can expect good performance of the
skeletal program under the range 90,000 < m < 180,000. Figure 6.3 (left) plots the execution times to the
number of processors for three values of the parameter m. As we can see from this figure, the implementation
achieves good performance for a wide range of m. Figure 6.3 (right) plots the execution times to the parameter
m. This figure shows that the performance gets worse if the parameter m is too small (m < 5,000) or too
large (m > 200,000). For the parameter m in the range above the skeletal program achieves near the best
performance, and we conclude that the cost model and the estimation of the parameter m is useful for efficient
implementations.

7. Related Work. Tree contraction algorithms, whose idea was first proposed by Miller and Reif [25], are
very important parallel algorithms for efficient manipulations of trees. Many researchers have devoted themselves
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Fig. 6.2. For the prefix numbering problem, execution times and speedups against sequential program plotted to the number
of processors. The parameter m for the division of trees is m = 53,600.
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input trees are from the same randomly generated tree divided with different parameter m.

to developing efficient implementations of tree contraction algorithms on various parallel models [1, 2, 3, 4, 5,
9, 13, 23, 24, 38]. Among them, Gibbons and Rytter developed a cost-optimal algorithm on CREW PRAM [9];
Abrahamson et al. developed a cost-optimal and practical algorithm on EREW PRAM [1]; Miller and Reif
showed implementations on hypercubes or related networks [23, 24]; and recently more efficient implementations
are discussed [2, 38] for symmetric multiprocessors (SMP) and chip-level multiprocessing (CMP). A lot of tree
programs have been described by the tree contraction algorithms [3, 4, 9, 12, 17, 26, 27, 28, 29].

There have been several studies on the implementations of parallel tree skeletons [10, 11, 15, 18, 32, 33,
34]. Gibbons et al. [11, 33] have developed an implementation of tree skeletons based on tree contraction
algorithms. Their algorithm can be used on many parallel computers, due to various implementation algorithms
of tree contraction algorithms on various parallel computers. Skillicorn [34] and our previous paper [18] have
discussed implementations of tree skeletons based on the division of trees. Compared with these implementation
algorithms, our implementation is unique in terms of data structure of local segments for better sequential
performance and the cost model supporting good division of trees. As far as we are aware, we are the first who
implement tree skeletons as a parallel skeleton library. Our implementation of tree skeletons will be available as
a part of SkeTo library [22]. Based on the implementation of the earlier work, Sato and Matsuzaki [31] improved
its interface to support flexible manipulation of trees.
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In terms of manipulations of general trees, which are formalized as parallel rose-tree skeletons [20], some of
them are implemented efficiently in parallel [15, 32]. Sevilgen et al. [32] has shown an implementation algorithm
for tree accumulations on general trees where rather strict conditions are requested for efficient implementation.
Kakehi et al. [14] has developed an efficient implementation of tree reduction on general trees based on the
serialized representation like XML formats.

8. Conclusion. In this paper, we have developed an efficient implementation of parallel tree skeletons.
Not only our implementation shows good performance even against sequential programs, but also the cost model
of the implementation helps us to divide a tree into segments with good load balance. The implementation
is available as part of SkeTo library (http://sketo.ipl-lab.org/). One of our future work is to develop a
profiling system to determine the parameter m more accurately.
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