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IMPACT OF PROCESS ALLOCATION STRATEGIES IN HIGH PERFORMANCE
CLOUD COMPUTING ON AZURE PLATFORM

HANAN A. HASSAN†, AYA I. MAIYZA‡, AND WALAA M. SHETA§¶

Abstract. Nowadays, there is an increasing demand in the High-Performance Computing (HPC) community to make use
of different public cloud service provider. The question of which cloud provider is superior for a certain application and usage
configuration is very important for the successful deployment of HPC application on the cloud. In this paper, we evaluate the
performance of HPC applications on Microsoft Azure cloud platform using the well-known NAS parallel benchmarks. These
benchmarks are considered as examples of general scientific HPC applications to test the communication performance. Different
process allocation strategies are performed in terms of MOPS and Speedup. Our results show that allocating one process per instance
achieves higher scalability at the expense of the cost. The results compared with the same results with the same experiments in
Amazon platform. We found that Azure platform has better shared-memory communication performance than Amazon platform.
In contrast, Amazon is superior to Azure platform in terms of Ethernet bandwidth.
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1. Introduction. Cloud computing is a revolutionary technology based on sharing resources to provide
diverse types of e-services to end users. Cloud computing provisioning is basically based on virtualization
techniques to obtain an abstract view of physical resources with the same interfaces. It offers several benefits such
as the possibility of using same physical resources for different users and runtime environments simultaneously
[1]. Additionally, dealing with Virtual Machine (VM) is much easier in management, maintenance setup, and
administration. Moreover, its cost is optimized as payment is based on pay-as-you-go (PAYG) model. In PAYG
model, the charge is only calculated for the actual usage of the physical resources.

The cloud service models are categorized as (i) Software as a Service (SaaS), which completely deals with
applications such as iCloud. (ii) Platform as a Service (PaaS), which provides an environment for application
development framework such as operating Systems. (iii) Infrastructure as a Service (IaaS), which provides
the computing hardware virtual Infrastructure and virtual storage. Recently HPC as a Service (HPCaaS) is
considered as one of the promising services on the cloud. The cloud computing offers advantages to HPC
applications users including virtualization benefits, resources scalability, abstraction of cluster setup cost and
time, and energy consumption [1, 2].

Nevertheless, there are challenges for running HPC application on cloud because of the performance diversity
and poor network performance [2]. There are several IaaS public cloud Providers such as Amazon Elastic
Cloud Compute (EC2), Microsoft Windows Azure, and Rackspace. These clouds are suitable for running HPC
application on them [3]. Microsoft’s Azure cloud provides an amiable development environment (.NET, SQL
Server, and Visual Studio) with a wide group of capabilities for developers to construct robust applications over
those [4, 5]. It provides powerful storage and resources through hardware level virtualization. In addition, it
is possible to build virtual parallel clusters easily. This motivated us to study the performance of HPC on the
Microsoft Azure Cloud.

In our previous work [6], the Ethernet and shared memory communication were measured in terms of
bandwidth and latency on Azure platform. Furthermore, the scalability impact of running HPC applications
on Azure platform was assessed using up to 128 cores [6]. As an extension, the impact of different process
allocation strategies is studied in terms of performance and cost. The scalability is evaluated and assessed using
up to 512 cores as well.

Furthermore, this paper is aimed to assess the performance of running HPC applications on different types
of cloud platform, identify challenges that affect the performance, and presenting a set of possible solutions for
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performance improvement. Scalability is evaluated by NAS Parallel Benchmarks (NPB) kernels [7] in terms
of MOPS (millions operation per second) and Speedup, which is calculated by dividing serial over parallel
execution time. The experiments were performed on one cluster of virtual machines on Microsoft’s Azure cloud
(A10 size). A10 size has specifications close to one of Amazon Elastic Compute Cloud (EC2) specifications.
Then, the results are compared with the study performed on Amazon EC2 [8].

Intuitively, involving all the VM resources (virtual cores) to run a certain HPC process should result into the
best cost/performance scenario (value verses money). This is called normal process allocation strategy (NPAS).
However, this selection is not going to be constantly the best in terms of performance. So, this paper reveals
that the strategy of allocating one process per instance (1ppi) is significantly much more expensive. However,
it is able to achieve higher performance in several applications [8].

The NAS offers a set of HPC kernels, which varies in their types of being either communication or compu-
tation intensive. They also differ in several data types such as integer and floating point performance [3].

The rest of the paper is organized as follows: Section 2 shows the related work. Section 3 represents the
evaluation methodology, which contains experiments configurations. Section 4 analyzes the experimental result,
and compares between two process allocation strategies optimized for performance and cost. In addition, the
section discusses the obtained result. Finally, section 5 recapitulates the conclusion and represents future work.

2. Related Work. This section is oriented toward two dominant issues: (1) Performance evaluation
of running HPC on the public cloud providers using well-known benchmarks (2) The possibility of running
HPC applications using a virtualized cluster on cloud platforms and evaluating its performance compared with
traditional HPC platform.

Previous research of running HPC application on cloud platform focused on the performance of VM com-
pared to physical HPC cluster. The result was not useful because of poor network performance, multi-tenancy,
and resources disproportionate [2, 9, 10, 11]. Nevertheless, the performance improvement of running HPC ap-
plications on cloud is still a research target to get accepted performance compared to traditional HPC. In spite
of its performance, it is suitable for some applications, which required scale up/down resources and can easily
drop them out when the task is done at the end [12, 13, 14].

In general, several well-known benchmarks have been used to analyze the performance of parallel computing.
But in particular, they use their own applications to compare the performance between different techniques or
running in different infrastructures. NAS parallel benchmarks (NPB) was used in [2, 3, 6, 8, 15, 16] and High-
Performance Linpack benchmark (HPL) was used in [5, 16, 17] to compare between the performance of using
traditional HPC and of using HPC hosted on public or private cloud.

Akioka and Muraoka [15] used Amazon EC2 as an alternative to HPC environment using NPB benchmarks
and HPL benchmark. The performance and cost efficiency were evaluated. Then, a performance comparison
was performed between Amazon cloud instance and a physical machine with NPB benchmarks using the serial
version (NPB-SER). They found that running HPC on cloud is not suitable for some kinds of applications, such
as performance critical applications.

Gupta et al. [2] presented the performance analysis and the tradeoffs of cost for HPC applications
with/without virtualization using NPB benchmarks. They found that running HPC on the cloud is con-
sidered more cost-effective for non-communication-intensive applications such as embarrassingly parallel and
tree-structured computations over high processor count and for communication-intensive applications over low
processor count and HPC-optimized clusters are outstanding for the rest.

Roloff et al. [3] provided an inclusive analysis of three important phases of HPC on the cloud: deployment,
performance, and cost-efficiency. This study was performed on three public clouds, namely Amazon Elastic
Compute Cloud, Rackspace and Microsoft Azure, as well as a traditional cluster using NPB benchmark. They
showed that virtualized HPC had a better performance and cost efficiency than the cluster, up to 27% and 41%,
for several benchmarks.

Strazdins et al. [16] presented performance results for two benchmarks and two large scientific applications
running in private VM cluster, an Amazon HPC EC2 cluster and traditional HPC environment. They used
the MPI micro-benchmark, the NAS Parallel macro-benchmarks, the UK Met Office’s MetUM global climate
model and the chaste multi-scale computational biology code. They succeeded to build application codes in
a pure HPC environment and replicate these into VMs which ran on private VM cluster and on public HPC
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cluster running on Amazon’s EC2.

Expósito et al. [8] analyzed the major performance bottlenecks in HPC application running on Amazon
EC2 Cluster Computing platform. They compared between two flavors of instances CC1 and CC2. First, they
evaluated the communication performance on ten gigabits Ethernet network and shared memory using Intel
MPI Benchmarks suite (IMB) on three HPC message-passing middleware, namely MPICH2, OpenMPI, and
FastMPJ. They found that CC2 instances are somewhat better point-to-point communication performance and
provide more computational power. Second, they appraised the scalability of representative message-passing
codes using up to 512 cores using NAS Parallel Benchmarks (NPB) kernels. They found that CC2 instances
have poorer scalability than CC1 instances for communication-intensive applications and CC1 instances are
more effective than CC2 instances in terms of cost. Third, they achieved higher scalability using one process
per instance only. Finally, several levels of parallelism have been used to achieve most scalable and cost-effective
using hybrid technique between message-passing with multithreading.

Hassani et al. [12] implemented the MPI version for parallel Radix sort and evaluated its performance
on Amazon cloud infrastructure. Then, they compared the result with traditional HPC platform. Parallel
HPC applications use considerably Message Passing Interface (MPI) [18, 19, 20]. Previously, they implemented
parallel Radix sort programming using MPI, Pthreads, and OpenMP and evaluated the performance using
benchmarking test. Their experimental results proved that MPI is better than others at the time of parallel
sorting, so they implemented the parallel Radix sort on Cloud. They spotted considerable improvement in
speed up and scaled up for up to 8 virtual nodes. Cloud response rate was more 20 percent parallel efficiency
than the traditional HPC cluster.

Zhang et al. [5] implemented a virtual HPC environment on Azure cloud for hydrological applications.
They presented a case study on groundwater uncertainty analysis in Heihe River Basin. They proved that the
Azure cloud can outperform traditional HPC infrastructure and can be useful for hydrological researchers to
improve computing efficiency of the model.

Belgacem and Chopard [17] had successfully connected Amazon EC2 based cloud cluster situated in USA, to
a private HPC cluster (Scylla) located at their university in Switzerland. They ran a large distributed multiscale
application on this hybrid HPC infrastructure. They ran a distributed multiscale application using the software
developed in their MAPPER project [21]. They found that the distributed computing performance is less than
the monolithic one. Their analysis showed that this low performance because of the long-distance between the
two continents thus resulting in very poor network performance.

Hassan et al. [6] evaluated the performance of the HPC applications on Azure cloud in terms of MOPS and
Speedup. The performance was tested under several configurations of cluster sizes. In addition, the performance
of point-to-point communication between processes was assessed in terms of bandwidth and latency. They
found that the best performance was achieved using only a single VM (shared memory communication model),
especially with IS and FT NPB-kernels.

Cala et al. [13] presented their experience in porting a genomics data processing pipeline (Next-Generation
Sequencing Genetic test) from an existing scripted implementation deployed on a traditional HPC, to a workflow-
based design deployed on the Microsoft Azure public cloud. Most of HPC systems used sophisticated MPI-based
algorithms, but the current NGS tools do not require it. Rather an effective data splitting techniques are used
to convert the Big Data to an embarrassingly parallel problem. They found that using public cloud provided
several benefits such as speed, scalability, flexibility and cost-effectiveness for NGS Genetic test.

Mohrehkesh et al. [14] presented a feasibility study using cloud resources for Image Guided Neurosurgery
(IGNS). They computed the deformable registration or non-rigid registration (NRR) of brain MR images using
their local private cloud (Turing cluster) at Old Dominion University, as well as Microsoft Azure (Microsoft
HPC pack) [22]. Using these clusters, they analyzed more than 6TB of images. They evaluated the accuracy of
registration by speculative execution, the overhead time of running jobs on the Azure cloud and cost comparison
of running jobs on a private versus public cloud. Their results indicated that the public cloud provides practical
and cost-effective means for a hospital that supports IGNS solutions. Moreover, the accuracy of NRR could be
improved up to 57% using cloud resources.

This diversity of research efforts to run HPC systems on cloud computing using various types of applications,
benchmarks, and technologies. Table 2.1 summarizes the previous work of running HPC cluster on public cloud
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Table 2.1
The relevant related work.

Authors Name Benchmarks and HPC Libraries Platform Evaluated Metric Recommendation for
Applications Running HPC on Cloud

S. Akioka,
Y. Muraoka [15]

- NPB-MPI 3.3
(Class C)

- HPL 2.0
Benchmark

- MPICH2 1.2
- Amazon EC2
- Physical machine
(NPB-SER)

- Mops/second
- Gflops
- Cost

Not suitable
for performance
critical application

A. Gupta,
M. Dejan [2]

- NPB-MPI (Class B)
- NAMD
- NQueens

- MPI

- Open Cirrus
(Private cloud)

- Eucalyptus
(Private cloud)

- Taub
(Private HPC)

- Speedup
- Cost

Cost-effective for non-
communication-intensive
application up to high
processor count and for
communication-intensive
application up to low
processor count

E. Roloff,
M. Diener,
A. Carissimi,
P.O.A.Navaux[3]

- NPB-MPI 3.3.1
(Class B)

- MPI
- OpenMPI

- Amazon EC2
- Rackspace
- Microsoft Azure
- Traditional HPC
cluster

- Normalized
average
execution time

- Cost efficiency

Higher performance and
cost efficiency than the
cluster up to 27% and
41% respectively for
several benchmarks

P.E. Strazdins,
J. Cai, M. Atif,
J. Antony [16]

- MPI microbenchmark
- NPB-MPI 3.3
(Class B)

- memory intensive
simulationapplications
(Chaste 2.1 & UM 7.8)

- MPI

- Private VM cluster
- Amazon EC2
- Traditional HPC
cluster

- Bandwidth
(MB/s)

- Latency (s)
- Speedup

Ability to successfully
build large scale HPC
applications on Cloud

R.R. Expósito,
G.L. Taboada,
S. Ramos,
J. Tourio,
R. Doallo [8]

- IMB
- NPB-MPI 3.3
(Class C)

- NPB-MZ 3.3.1
(Class C)

- MPICH2
1.4.1

- OpenMPI
1.4.4

- Amazon EC2

- Bandwidth (Gbps)
- Latency (µs)
- MOPS
- Speedup
- Cost efficiency
(USD/GOPS)

Achieving higher sca-
lability using 1ppi and
using hybrid technique
between message-
passing with
multithreading

R. Hassani,
M. Aiatullah,
P. Luksch [12]

- parallel Radix sort
programming

- MPI
- Amazon EC2
- Dedicated HPC
platform

- Execution times
(sec)

MPI is better than others
at the time of parallel
sorting. Cloud response
rate was more 20 percent
parallel efficiency than
the pure HPC cluster
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Table 2.1 (continued)

Authors Name Benchmarks and HPC Libraries Platform Evaluated Metric Recommendation for
Applications Running HPC on Cloud

M.B. Belgacem,
B. Chopard [17]

- large distributed
multiscale application

- OpenMPI
1.4.5

- Hyprid Amazon EC2
cluster with private
HPC cluster (Scylla)

- Execution times
(sec)

The distributed
computing performance
is less than the
monolithic one

H.A. Hassan,
S.A. Mohamed,
W.M. Sheta [6]

- IMB
NPB-MPI 3.3
(Class C)

- MPICH2
1.4.1

- OpenMPI
1.4.4

- Microsoft Azure

- Bandwidth (Gbps)
- Latency (s)
- MOPS
- Speedup
- Cost efficiency
(USD/GOPS)

Achieving higher
performance when
running entirely on
a single VM (shared
memory communication
model), especially IS
kernel and FT kernel.

J. Caa,
E. Marei,
Y. Xu,
K. Takeda,
P. Missier [13]

- Workflow-based
application (Next-
Generation
Sequencing)

- local HPC cluster
- Microsoft Azure

- Response time
(Hours)

- Throughput
(samples/day)

- Relative processing
effectiveness (%)

- Cost per sample

Public cloud could
provide benefits such as
speed, flexibility,
scalability and cost-
effectiveness for NGS.

S. Mohrehkesh,
A. Fedorov,
A. B. Vishwanatha,
F. Drakopoulos,
R. Kikinis,
N. Chrisochoides [14]

- Image Guided
Neurosurgery
(IGNS)

- MPI
- Microsoft
MPI (built-in)

- private cloud
(Turing cluster)

- Microsoft Azure
(Microsoft HPC pack)

- Registration
accuracy (%)

- Azure overhead
time (s)

- Monthly Cost
(1000 US$)

Public cloud provides
practical and cost-
effective solution more
than private cluster.
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Table 3.1
Cloud instances Specifications [8, 23].

Cloud Platform Instance Size Cores CPU Type RAM RAM Type
Azure A10 8 Intel Xeon E5-2670 @ 2.6 GHz 56 GB DDR3-1600 MHz
Amazon cc1 8 Intel Xeon X5570 Nehalem @ 2.93 GHz 23 GB DDR3

providers. These publications are classified according to the benchmarks types, evaluated metrics, used libraries,
platform, and their main result. Concludes that the best cloud provider depends on the type and behavior of
the application, in addition to the intended usage scenario. In our experiments, HPC system is assessed on
Microsoft Azure Cloud using NAS Parallel Benchmarks (NPB) under different process allocation scenarios.

3. Evaluation Methodology. This section presents the used configurations and benchmarks for evalu-
ating the performance of using HPC on Azure platform.

3.1. Experimental Configuration. Two experiments are conducted to evaluate the performance of a
cluster of 64 VMs (512 cores) on Microsoft Windows Azure [23]. Table 3.1 shows the used Azure A10 instance
specifications. MPICH and OpenMPI are used as a standard implementations of the Message Passing Interface
(MPI) with GNU compiler. These two well-known implementations are used in our experiment with releases
MPICH2 1.4.1 [24] and OpenMPI 1.4.4 [25].

The performance is evaluated using the most communication-intensive kernels of the NPB benchmarks on
Azure platform (using 16 ’A10’ instances). The performance metrics are Million Operation Per Second (MOPS)
and Speedups.

There are two process allocation strategies in our experiments. The first one is called normal process
allocation strategy (NPAS). All cores in one instance must be used before extending the cluster with another
instance. In this case, we used 8 process per instance (8ppi). The number of used A10 instances is the total
number of cores divided by 8 cores per instance. For example, for 64 cores, eight instances were used.

On the other hand, the second process allocation is called expensive process allocation strategy (EPAS),
which is used to improve the performance of the previous configuration. The performance is evaluated using the
same kernels of NPB using only one process per instances (1ppi) until 64 cores (64 instances), then posteriorly
2, 4, and 8 processes per instance to reach 128, 256, and 512 cores (64 instances). For examples, 32 instances
are used for 32 cores using 1ppi and 64 instances are used for 128 cores using 2ppi. This because, there is a
limitation on the maximum used number of cores (512 cores).

For the two configurations, the cost is calculated to compare between them. The performance evaluated
using the two implementations of message passing interface MPI and OpenMPI. It is evaluated using the result
of NPB kernels as productivity in terms of USD per Giga Operations Per Second (USD/GOPS). In this paper,
the results are the average of 6 measurements for NPB kernels on the explained experiment configuration.
Finally, a comparison between our study and the previous study on Amazon platform [8] is performed taking
in account a comparable instances specifications as shown in Table 3.1.

3.2. NAS Parallel Benchmarks (NPB). NPB benchmarks are a well-accepted and well-known HPC
benchmark suites. In these experiments, the NPB-MPI version 3.3 [26] benchmarks are used to evaluate our
two process allocation strategies on Azure platform. Most communication-intensive kernels have been chosen,
namely CG, FT, IS and MG, with class C. Table 3.2 shows an overview of each used benchmark kernel [7, 26].

4. Experimental Results and Discussion. This section presents an analysis of the performance and
scalability of HPC NPB kernels on Azure platform under two different process allocation strategies, using the
selected benchmarks and their representative kernels, which were described before in sect. 3.2. In addition,
there is a subsection for comparing the results with Amazon platform.

4.1. Normal process allocation strategy (NPAS). Fig. 4.1 (dotted line) shows the performance of
CG, FT, IS and MG using up to 512 cores on Azure platform (hence, using 64 A10 Azure VMs). The used
performance metrics are MOPS (left graphs), and Speedup (right graphs). The used number of VMs is the
total number of cores divided by 8 cores (number of cores for A10 VM).
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Table 3.2
NAS Parallel Benchmarks used Kernels [26].

NPB Kernel Properties Problem Size Message Size
(Class C) (Class C)

CG (conjugate gradient) irregular memory access and communication 150000 146.5 Kbyte

FT (Fourier Transform)* discrete 3D fast Fourier Transform, all-to-all com-
munication

5123 128 Mbyte

IS (Integer Sort) random memory access 227 128 Mbyte

MG (Multi-Grid)** Multi-Grid on a sequence of meshes, long- and
short-distance communication, memory intensive

5123 128 Mbyte

*
denote the most communication-intensive

**
denote the least communication-intensive

The execution of CG kernel on different cluster configurations show that the maximum performance is
obtained by using four VMs (32 cores). The performance degrades significantly with the higher number of cores
due to the communication overhead in the virtual network. The performance can be improved significantly by
using a faster network such as InfiniBand and hardware based virtualization technology such as single-root I/O
virtualization SR-IOV [27, 28, 29].

An optimum performance of IS kernels is achieved with 8 cores (1 VM). FT kernels show similar maximum
performance with 8 cores (1 VM) and 128 cores (16 VMs). MG kernels have a maximum performance at a
cluster of 256 cores (32 VM) using OpenMPI. NPB kernels performance shows that the evaluated applications
obtain better results when running completely on only one VM (intra-communication) using up to eight cores,
because of the higher scalability and performance of shared memory communications. However, when using
greater than single VM, the kernels poorly perform, because of the network virtualization overhead. IS kernels
obtain the poorest scalability.

CG kernel is characterized by multiple point-to-point data movements. The best speedup value is 7.3,
which is achieved by using 4 VMs (32 cores). The performance is significantly dropped from that value on as
it has to depend on ten gigabits Ethernet communications, due to the network virtualization bottleneck. FT
kernel achieves a limited scalability on A10 VM. The best speedup value is approximately 5.6, which is achieved
by using 8 and 128 cores. IS kernel is a communication-intensive code whose scalability is greatly affected by
point-to-point communication start-up latency. Thus, this kernel obtains its highest results when using only
one VM due to the high performance of shared memory transfers. It suffers a critical slowdown when using a
cluster of VMs. Finally, MG kernel is a limited scalability. The speedup values are close to each other. The
best speedup value is approximately 10, which is achieved by using 256 cores for MPICH2.

4.2. Impact of expensive process allocation strategy (EPAS). This set of experiments aims to
analyze the impact of expensive process allocation strategy (1ppi) on HPC kernel performance. In the previous
experiments, 8 processes per instance strategy are used to maximize the CPU utilization as Azure type A10
instance has 8 cores. This intuitive assumption is not necessarily valid in the case of virtualization, as there
is a significant amount of CPU resources consumed to deal with the hypervisor and manage virtualized CPUs
according to the type of the hypervisor used. Therefore, we investigate how the number of allocated processes
will affect the overall performance in a virtualized HPC environment.

In this experiment, the performance of the NPB kernels using only one process per instance strategy (1ppi)
is compared with the normal process allocation strategy (8ppi). This layout can be expensive as we use only
one core per instance for each allocated process. For example, we use just 8 instances to allocate 8 processes on
the cluster, with each process running on one instance (1ppi). Hence, 32 VMs are used to provide 32 cores with
32 processes on the cluster instead of 256 processes in the normal setting of experiments as the case of sect. 3.
Two, four, and eight processes per instance are used to reach 128, 256, and 512 cores; respectively, because of
limited resources (64 instances).

Fig. 4.1 (solid line) shows a significant improvement of both MOPS and speedup for all the four kernels. CG
kernel’s speedup has increased to 8 times its corresponding value of NPAS in MPICH2 environment. Moreover,
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Fig. 4.1. NPB kernels performance and scalability on A10 Azure instances. For 1ppi: horizontal axis presents x/(z), where
x is number of cores and z is number of instances. For 8ppi: horizontal axis presents x, where x is number of cores (number of
instances=(number of cores/8))

the optimum configuration is achieved at 128 cores, i.e. a cluster of 64 instances running a total of 128 processes,
instead of (32 cores) a cluster of 4 instances running 32 processes. FT kernel’s speedup has improved to more
than 4 times compared with NPAS in OpenMPI environment with 128 processes. IS kernel has progressed in
MPICH2 more than OpenMPI environment. Its best speedup is achieved at 64 cores. MG kernel achieves a
considerable betterment using EPAS. Its best speedup value obtained 40 by using 64 VMs (128 cores).

Fig. 4.2 compares the performance of NPB kernels using 8 cores on Azure platform using NPAS (hence, using
one A10 VM) and EPAS (hence, using 8 VMs). It’s clear to show that NPAS always gives better performance
than EPAS at 8 cores for CG, FT and IS kernels. That is because intra-VM communication (shared memory)
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Fig. 4.2. NPB kernels performance on A10 Azure instances for 8 Cores

Fig. 4.3. Point-to-point communication performance on Azure platform [6]

is better than inter-VM communication (Ethernet) on that level of the cluster as shown in Fig. 4.3. But as the
number of cores increases in the cluster using EPAS, its performance supersedes its corresponding NPAS. In
contrast, MG kernel achieves higher performance using EPAS, because MG is least communication-intensive as
mention in Table 3.2.

4.3. Cost Analysis. Using public cloud infrastructure like Azure, the cost has to be taken into account.
Fig. 4.4 and Fig. 4.5 present the productivity in terms of USD per GOPS (Giga Operations per Second) of
the already evaluated NPB kernels. This metric depends on the total number of used cores. The cost of each
instance is 1.16 $/hour for each A10 instance [23]. When the cost behavior of kernels is inversely proportional
to the cluster size, it means that it is better to use a large cluster rather than a small one from both perspectives
of performance and cost. On the other hand, if the cost behavior is directly proportional to the cluster size,
this indicates that the solution is getting expensive as the cluster is enlarged and therefore there is no need to
use a large cluster. An efficient operation cost is obtained at a minimal value of the productivity curve which
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Fig. 4.4. NPB kernels productivity on Azure instances (Normal process allocation strategy).
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Fig. 4.5. NPB kernels productivity on Azure instances (Expensive process allocation strategy).

indicates a low cost per operation versus expensive operations at the maximum value of the curve.

Regarding the first strategy (NPAS), the cost behaviors of CG, IS, and MG kernels are directly proportional
to the cluster size as shown in Fig. 4.4. The only exception is valid for IS Kernel using 512 cores (MPICH2
Environment) and MG Kernel using 256 cores (OpenMPI Environment). The reason for these exceptions is the
performances of these two configurations, in terms of MOPS and Speedup, increase as shown in Fig. 4.1.

Fig. 4.5 shows the cost behavior in USD/GOPS for EPAS. An optimum value of the productivity curve of
FT and MG kernels are achieved at 128 cores which are compatible with the results obtained from Fig. 4.1.
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Fig. 4.6. NPB kernels performance and scalability on A10 Azure instances and cc1 Amazon instances [8]. For 1ppi: horizontal
axis presents x/(z), where x is number of cores and z is number of instances. For 8ppi: horizontal axis presents x, where x is
number of cores (number of instances=(number of cores/8))

Then, they dramatically increase using 512 cores, because MOPS and Speedup decrease with the same cluster
size (64 instances). For IS kernel, the optimum solution can be achieved at 64 cores with MPICH2, because the
cost increases and the performance decreases when the number of cores increases more than 64 cores as shown
in Fig. 4.5.

4.4. Comparison between Azure and Amazon Performance. This section compares between the
performance of our evaluated experiments on Azure platform and Amazon platform [8] using two different
libraries, namely MPICH2 and OpenMPI.

Fig. 4.6 shows the performance of NPB kernels using up to 512 cores on Azure and Amazon platform
(hence, using 64 of A10 instances in Azure and using 64 of cc1 instances on Amazon). The performance metric
is MOPS only, which is available in the compared paper. The left and right graphs figure out the performance
with MPICH2 and OpenMPI libraries, respectively. Dotted and solid lines show the improvements of process
allocation strategy from NPAS (8ppi) to EPAS (1ppi), respectively.



Impact of Process Allocation Strategies in High Performance Cloud Computing on Azure Platform 173

Fig. 4.7. Point-to-point communication performance on Azure [6] and Amazon instances [8].

4.4.1. Normal process allocation performance comparison (NPAS). For 8ppi, the overall perfor-
mance is better in Amazon than Azure platform for all evaluated kernels except using 8 cores. This variance
could be due to the different hypervisors which used in the two platforms. Amazon platform uses Xen para-
virtualization guests for improving network and disk performance [8], whereas Azure platform uses Hyper-V
virtual environments [30].

Fig. 4.7 compares between the bandwidth of Amazon and Azure platform. The bandwidth results of Azure
[6] and Amazon [8] platform are performed with the same instance configurations using the same HPC messaging
middleware such as MPICH2 1.4.1 [24] and OpenMPI 1.4.4 [25]. A communication is performed through an
Ethernet network link using a ping-pong test. It is clear to see that the bandwidth of Amazon platform is better
than Azure platform whether MPICH2 or OpenMPI. This observation considers another reason explaining why
the overall performance of Amazon platform is better than Azure platform.

In contrast, the only configuration that gives better performance in Azure than Amazon platform is achieved
using 8 cores allocated in one instance for all kernels.

Fig.4.8 compares the point-to-point performance of message-passing transfers in the intra-communication
between Azure [6] and Amazon [8] platform, where data transfers are implemented on shared memory (hence,
without accessing the network hardware). These results obtained with the Intel MPI Benchmarks suite (IMB).
Table 3.2 shows the message size of the four evaluated kernels. For CG kernel, the shared memory message-
passing communication performance is better using Azure platform over Amazon platform by 1 and 7 Gbps
using MPICH2 and OpenMPI, respectively, where the message size for CG kernel is 146.5 Kbytes approximately
for C class as mentioned in Table 3. For the three other kernels, the message size is 128 Mbytes. Unfortunately,
the measured shared memory performance was performed in [8] and [6] up to 64 Mbytes message size. So,
extrapolation is calculated to expect a value for intra-communication performance for this message size. The
approximated shared memory communication performance is better using Azure platform over Amazon platform
by 14 and 21 Gbps using MPICH2 and OpenMPI, respectively. These results explain why the performance is
better using one Azure instance than Amazon instance for the four evaluated kernels with 8 core configuration.

4.4.2. Expensive process allocation performance comparison (EPAS). For EPAS, the most con-
figurations using Amazon give better performance than Azure platform, nevertheless the overall improvement
(from using NPAS to EPAS) is greater in Azure for CG and MG kernels than Amazon platform. That is because
these two kernels are the least communication-intensive kernels. Amazon has the best performance, except for
CG and MG kernels using 128 and 256 cores, FT kernels using 128 cores (OpenMPI), and IS kernels using 256
cores (MPICH2).

There is another important observation appears in Fig. 4.6, all the performance results drop as the number
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Fig. 4.8. Point-to-point shared memory communication performance on Azure [6] and Amazon instances [8].

of cores increase after using 64 or 128 cores. That is because 64 instances are used for 64, 128, 256 and 512
cores using 1, 2, 4, 8 processes per instances, respectively. These configurations are performed whether using
Azure or Amazon platform. The performance degradation using Amazon platform is more than using Azure
platform, because the shared memory bandwidth is better for Azure as previously explained in Fig. 4.6.

5. Conclusion and Future Work. The research and industry community would highly benefit from
using HPC on the cloud. There is a high potential of running HPC on the cloud due to the capability of
running large applications on powerful, scalable hardware without the need to physically have or maintain this
hardware. Actually, there are several types of public cloud providers, allowing users to select the best provider
for their needs. The best configuration for a certain application depends on its type and behavior, in addition to
the usage scenario. In this paper, the performance of using HPC on Microsoft Azure cloud service is evaluated
through NAS Parallel benchmarks. The scalability is assessed for representative message-passing kernels (NPB)
using up to 512 cores for communication-intensive HPC application. Allocating only one process per instance
helps HPC applications that are hosted on the cloud to get higher performance at the expense of cost.

This study helps HPC users to determine their own optimum configuration. HPC user could classify his
application according to the presented NPB kernels, and then select the cluster size according to his budget
and the nature of his application. In addition, it will be easy to select between Azure Cloud and Amazon EC2
platform depending on the deployed application.

For the future, it’s intended to execute real HPC applications on Azure platform. The performance of
another cloud platform could be compared with Azure and Amazon cloud too. Different process allocation
strategies (2ppi and 4ppi) could be tested. Moreover, cost analysis could be performed using expensive process
allocation strategy (EPAS) with Amazon platform. As a result, a comprehensive study could be presented in
terms of performance and cost analysis between Azure and Amazon platform.
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