
Scalable Computing: Practice and Experience

Volume 18, Number 4, pp. 331–346. http://www.scpe.org

DOI 10.12694/scpe.v18i4.1332
ISSN 1895-1767
c⃝ 2017 SCPE

MIDDLEWARE CHALLENGES FOR CYBER-PHYSICAL SYSTEMS

NADER MOHAMED∗, JAMEELA AL-JAROODI†, SANJA LAZAROVA-MOLNAR‡, AND IMAD JAWHAR§

Abstract. Cyber-Physical Systems (CPS) are being developed to provide useful interactions between physical systems and
environments and cyber world for a variety of applications. CPS are designed with a set of software and interconnected distributed
hardware components that are linked with physical elements to provide advanced monitoring and control mechanisms geared towards
enhancing the targeted physical system or environment. These components function seamlessly to offer specific functionalities
that help enhance human lives, physical system operations and environments. While CPS can offer many smart enhancements
for improving physical processes, the development of such complex systems composed of many distributed and heterogeneous
components is extremely difficult. This is due to the many communication, computing, and networking challenges. Using an
appropriate middleware that provides a framework to support developing and operating diverse CPS applications is a novel method
to address these challenges. The availability of advanced middleware services and platforms can provide effective approaches for
enhancing CPS application development processes as well as provide more robust environments for operating CPS applications.
Such middleware can significantly reduce the time needed to design, build, test, and operate robust CPS applications. However,
designing a common middleware platform for diverse types of CPS applications is not trivial. This paper investigates the middleware
challenges for CPS, based on the different types of CPS applications being developed and their specific challenges. In addition, the
paper discusses the current efforts of developing middleware platforms for CPS and the open research issues in the field.

Key words: Cyber-physical systems, Middleware, Software engineering, Application development.

AMS subject classifications. 68U99

1. Introduction. There are many CPS applications that add enhancements and smart features to several
types of physical systems and environments. CPS can add smart mechanisms to fully automate manufactur-
ing processes, manage and enhance the operations and safety of environments and infrastructures, and enable
Unmanned Autonomous Vehicle (UAV) operations and applications. They can also enhance the safety of trans-
portation systems, enhance energy consumption in smart buildings, and improve healthcare for patients. CPS
combine various concepts and technologies from embedded systems, networks, distributed systems, software,
and hardware; as well as other engineering disciplines such as systems, mechanical, control, civil, and electrical
engineering to provide added features to the physical world [67].

While CPS can offer many smart enhancements for improving physical systems and processes, the devel-
opment of such complex systems composed of many components interacting in various ways and capabilities
is extremely difficult. CPS attach different hardware components like sensors, actuators, microcontrollers,
and other devices to physical systems or environments and use distributed software that implements smart
algorithms to control the corresponding physical system [48, 35]. The distribution and heterogeneity of these
devices and their links with the physical components make the design, development, and operations of CPS
very challenging.

Due to the importance of CPS applications and the complexity of their development process, huge research
efforts started investigating the different issues associated with CPS and their applications. These include
security, reliability, performance, quality, validation, and development methodologies and tools [48]. In our
previous work, we discussed the importance of software components in any CPS and highlighted the main
software engineering issues that include the complexity of analysis, design, development, and testing for CPS
software [20]. We also briefly highlighted different research directions to tackle these issues. One of these
directions is to develop and use advanced middleware platforms to support CPS applications. In this paper, we
investigate in detail the middleware challenges for CPS. This investigation is based on the different types of CPS
applications and their specific challenges. This paper can help CPS applications developers to recognize the
middleware challenges and requirements of different CPS applications. As a result, suitable approaches can be
selected and adapted to fit the specific needs of the applications being considered. Current and new approaches

∗Middleware Technologies Lab., Pittsburgh, Pennsylvania, USA (nader@middleware-tech.net).
†Department of Engineering, Robert Morris University, Moon Township, Pennsylvania, USA (aljaroodi@rmu.edu).
‡University of Southern Denmark, Odense, Denmark (slmo@mmmi.sdu.dk).
§Midcomp Research Center, Saida, Lebanon (imad@midcomp.net).

331



332 N. Mohamed, J. Al-Jaroodi, S. Lazarova-Molnar, I. Jawha

for middleware platforms need to be considered, yet most of the current approaches may not fit well with the
nature of CPS applications. For example, a middleware platform such as real-time CORBA has shown promise
for general distributed systems with some constraints; however, it lacks the flexibility in dealing with the CPS
challenges.

Middleware challenges for related systems such as Wireless Sensor Networks (WSNs) and the Internet
of Things (IoT) were thoroughly investigated [70, 60, 68, 25]. Furthermore, several papers investigated and
discussed general challenges in CPS [48, 35, 74]. However, none investigated in detail the middleware challenges
for CPS. Identifying and studying middleware challenges is important to be able to design and develop the
most suitable middleware platform to support different CPS applications. In our previous work [58], we briefly
highlighted how middleware can provide different types of support for CPS. In this paper, we extend our previous
work including detailed middleware challenges, current research efforts in this regard, and discuss several open
research issues that need to be investigated and resolved to offer the best possible middleware platforms for
CPS.

In the rest of the paper, we offer some background about CPS and middleware in Section 2. In Section 3,
we discuss different CPS applications to understand the role middleware can play to support them. We then
discuss and identify the general and common challenges of CPS applications in Section 4. Section 5 discusses
the role of middleware to support CPS applications while middleware challenges for CPS are identified and
discussed in Section 6. The current research efforts for CPS middleware are discussed in Section 7 and Section
8 lists some open research issues in the field. Finally, we offer some concluding remarks and future directions
in Section 9.

2. Background. Here we provide preliminary information about CPS and middleware. This establishes
a base line for the upcoming discussion of middleware platforms for CPS.

2.1. Cyber-Physical Systems. CPS are distributed embedded systems developed to support smart and
context-aware mission-critical applications in different domains such as energy, manufacturing, healthcare, civil
infrastructures, automotive, transportation, aerospace, entertainment, and consumer appliances. CPS provide
monitoring and control functions to help achieve specified goals to benefit the application domain. Unlike
traditional embedded systems, CPS are complex embedded systems with distributed components and processing
capabilities. Embedded computing devices of CPS can be in sensors, actuators, microcontrollers, and other
devices usually connected with a wired or wireless network and tightly coupled with their physical environment.

As CPS are embedded in physical environments, they provide useful interactions between the computational
and physical elements through intelligent mechanisms. These intelligent mechanisms can be organized in four
main steps:

• Observing the status of the physical system or environment using different type of sensors that are
attached to the elements of the physical system or environment.

• Building a knowledgebase about the physical system environment from the collected sensed information
using software functions and storage systems.

• Making decisions to enhance or control the physical system or environment to meet specific objectives
defined for the application. This is done using the knowledgebase and some status information of
the physical system or environment with the help of smart algorithms that run on some integrated
computing components.

• Applying the enhancement or control actions using actuators that are attached to the elements of the
physical system or environment.

These four steps are linked in a closed loop as shown in Figure 2.1 to allow the CPS to provide full monitoring
and control functions to achieve the needed objectives. These objectives can be to provide the adaptability,
autonomy, efficiency, functionality, reliability, safety, and usability of the system or environment.

2.2. Middleware. Middleware for a distributed system is a logical software layer that abstracts the de-
tails of the underlying distributed components and provides a set of services to develop and operate distributed
software applications beyond those available from the individual components. The provided services can be
used to support integration, system management, runtime for distributed code, fault tolerance, security, or



Middleware Challenges for Cyber-Physical Systems 333

Fig. 2.1. Closed-loop control steps of CPS

load-balancing. In addition, it can provide more advanced services to support issues related to power consump-
tion, limited resources devices, etc.

Middleware has become a necessary part of distributed computing. It is practically impossible to develop
large-scale distributed systems or applications without involving middleware [18]. By comparison, trying to
build a distributed systems or application without middleware is like trying to write a simple application on
a personal computer without the operating system. Generally, the main functions of different middleware
platforms are [18]:

• Providing tools to simplify the development of complex distributed applications.
• Providing high-level abstractions and interfaces to facilitate distributed application integration and
reuse.

• Hiding the heterogeneity of the underlying environments.
• Hiding the distribution and communication details in the underlying environment.
• Enabling communications among the different distributed components of the infrastructure.
• Offering services for common functions needed by different applications to reduce development and
duplication efforts.

• Providing a common architecture to enable adding new services and features without having to change
the distributed applications.

• Providing added-value features and nonfunctional properties such as security, reliability, scalability, and
Quality of Services (QoS).

Due to the advantages of using middleware, several middleware platforms were developed for different
distributed applications and environments. Examples include WSNs [66], cloud computing [78], collaborative
UAVs [57], and mobile social networks [38]. The developed middleware solved many issues in these environments
and similarly can solve many issues in CPS.

3. CPS Applications. As CPS can provide useful interactions between physical and cyber worlds, a
number of domains such as health, energy, transportation, and security can greatly benefit from CPS appli-
cations [35]. However, developing and operating such applications can face with many challenges. To identify
and understand these challenges, we discuss some important CPS applications used or proposed for different
application domains. We highlight their benefits as well as their development and operations challenges. This
will help us identify the type of support needed by the middleware platforms designed for CPS applications.

In the energy domain, CPS are used to add values such as efficiency, reliability, and sustainability of the
production and distribution of electric power in smart grids [43]. A smart grid is a renovated electrical grid
system that uses information and communication technology (ICT) to collect and act on available information
on the behaviors of suppliers and consumers in an automated fashion. A smart grid is a CPS that provides
self-monitoring and advanced control mechanisms for power production and distribution, as well as addressing
consumer needs towards increased grid efficiency and reliability. This involves placing smart sensors and meters
on production, transmission, and distribution systems in addition to consumers locations to get granular near
real-time data about the current power production, consumption, and faults. Although the smart grid has
many potential benefits, it requires the collection and analysis of huge amounts of data continuously. This
collected data is processed in real-time to send back control information to adjust the operational conditions
and improve efficiency, reliability, economics, and sustainability of the system. In addition, the processes



334 N. Mohamed, J. Al-Jaroodi, S. Lazarova-Molnar, I. Jawha

used to generate renewable energy from hydropower plants [56] and wind power plants [75] are controlled
by CPS. Furthermore, the energy consumption in smart buildings is controlled and monitored by CPS [36].
The buildings equipment such as HVAC (Heating, Ventilating, and Air-Conditioning) systems, appliances, and
lighting systems are controlled with CPS. Smart buildings CPS are usually equipped with different types of
sensor nodes that monitor the current energy usage and environmental conditions. These sensors report their
observations and measurements to a centralized CPS monitoring and control system. The control system
implements intelligent algorithms to control the systems used in the buildings to optimize energy use based
on the sensed observations and current operational and environmental conditions. CPS also provide control
mechanisms for energy efficiency in data centers [79, 62].

In the health domain, many medical systems are controlled by CPS. Medical CPS should provide safe and
intelligent continuous care for patients [49]. Medical CPS are networks of medical sensor devices that provide
clinical monitoring functions such as heart-rate and oxygen levels; medical delivery devices such as infusion
pumps and ventilators; and control devices that provide the main controls for medical CPS and are responsible
for efficient and safe operations of the whole system. As medical CPS are life-critical systems, they must be
context-aware, reliable and resilient to faults. Some medical CPS can be wearable systems and continuously
used by patients. These wearable systems usually operate on battery power. In this case the medical CPS must
be energy-efficient and designed to minimize energy consumption to extend the life of the devices.

In the transportation domain, an important CPS application area that recently received high attention is
the vehicular safety applications. There are many safety applications for vehicles including lane change warning
messages, emergency breaking, collision avoidance mechanisms, and blind spot monitoring. These applications
provide fully automatic or semi-automatic actions to enhance driving safety. Some of these applications are based
on individual vehicle observations, decisions, and actions while others are based on collaborative observations,
decisions, and actions where neighboring vehicles exchange messages for that purpose [53]. The various devices
and components needed to achieve these functionalities form the vehicular CPS [30]. Embedded software is
used to implement different safety applications. The most important features of vehicular safety applications
are the real-time and reliability support in detection and response. All aspects of vehicular safety applications
including threat observations, decision making, communication, and actions must be in real-time and reliable.
This imposes a serious restriction on how the software is designed and how well it supports high levels of
integration across all the devices involved to ensure real-time and reliable responses. In addition, self-driving
cars are considered as CPS [24]. Since they practically integrate all the mentioned features in addition to vision
and monitoring components to allow the vehicle to navigate the roads based on sensed data and intelligent
software that interprets and responds to this data in real-time. Other transport CPS include intelligent traffic
light controls which include monitoring devices across multiple locations to accurately predict traffic patterns
and adjust traffic lights to optimize flow. One example of such domain is discussed in [71].

In the security domain, CPS can be used to monitor and protect important large-scale infrastructures such
as long oil and gas pipelines that extend for hundreds to thousands of miles [22]. These usually extend across
unattended and sometimes difficult areas such as underwater, deserts and forests. Pipelines are considered
important infrastructures that need to be monitored and protected as they provide the main supplies of energy
and water for many countries and areas. Sensors, actuators, and other devices are usually deployed and
connected using wired or wireless networks to monitor, control, and protect such infrastructures. In addition,
CPS can be used to protect water networks and to make them smarter, more efficient, more reliable, and more
sustainable. CPS can be embedded within water networks to involve some monitoring and control mechanisms
and to add smart features to the operations of water distribution [44]. One of these functions is to provide early
warning mechanisms to identify problems in water networks. For examples leaks and pipe bursts can be easily
detected while fast and temporary solutions can be applied to reduce water waste and to minimize further risks
or damages to the network.

Other CPS applications include greenhouses efficient control that aims to provide efficient control for suitable
climate, soil, lighting, and water level in greenhouses [32]. Similarly, they can be used to enable smart homes
[41]. In addition, CPS are used to autonomously operate unmanned vehicles CPS provide networks that
connect the payloads on these vehicles like sensors, actuators, cameras, storage, communication devices, and the
microcontrollers of the vehicle [57]. CPS are also used to automate, control, monitor, and enhance manufacturing



Middleware Challenges for Cyber-Physical Systems 335

Table 3.1

CPS Applications and their Cyber and Physical Worlds

CPS Applications Physical Parts Cyber Parts Benefits
Medical CPS Patients, illnesses, and drugs Monitoring and controlling patient

health status and data
Timely and accurate patient moni-
toring and treatment

Smart Buildings Buildings, temperature, lighting,
air quality and building residents

Monitoring environmental condi-
tions and energy usage and im-
plementing algorithms to control
equipment

Reducing energy consumption and
maintaining required quality of liv-
ing

Smart Grid Electricity, fuel, power generators,
power distribution networks, and
consumer devices

Real-time monitoring and control-
ling energy productions and con-
sumptions

Optimizing energy utilization, re-
ducing overload risks and energy
waste

Gas & Oil Pipelines
Monitoring & Con-
trol

Oil, gas, pipeline networks, pipeline
physical status including pressure,
and temperature

Monitoring the pipeline status and
controlling the pipeline operations

Maintaining health and operations
of the pipeline and reducing the im-
pact of failures and accidents

Smart Water Net-
works

Water, water distribution networks
and their status, water storage, wa-
ter pumps, and water generators

Monitoring and controlling the pro-
cess of transferring and storing wa-
ter and its quality and its usage

Reducing water loss, optimizing
water production and utilization,
and enhancing water quality

Vehicular Safety
Applications

Vehicles, vehicles mechanical and
electronic devices, roads, drivers
and passengers

Real-time algorithms to monitor ve-
hicles status and control vehicles to
avoid accidents and optimize flow

Reducing the possibility of acci-
dents, congestion and traffic viola-
tions

Intelligent Traffic
Light Controls

Traffic lights, vehicles and their po-
sitions, roads, pedestrians, and in-
tersections

Real-time algorithms to monitor
traffic status and to control traffic
lights

Reducing traffic delays, minimizing
vehicles travel times, increasing ve-
hicles average velocity, and enhanc-
ing the prioritization for emergency
vehicles movements

Self-Driving Vehi-
cles

Vehicles equipment, Vehicles en-
ergy, passengers, resources, posi-
tion, roads, roads traffic lights and
signs, and neighboring vehicles

Smart algorithms to automate vehi-
cle driving and to maintain driving
safety

Reduce transportation costs, opti-
mize traffic flow and enhance safety

Manufacturing
Control and Moni-
toring

Manufacturing requirement, raw
materials, products, workers, and
warehouses

Real-time algorithms to monitor
and control production processes,
equipment and material utilization,
and product quality

Optimize production and mainte-
nance and enhance product quality

UAV UAV equipment and energy, posi-
tion, and operational space

Algorithms to control the UAV, op-
timize movement and collaboration

Enhanced operations and safely
and achieving operational goals

Energy Efficiency
in Data Centers

Data center equipment, energy sup-
plies including renewable energy,
equipment and buildings tempera-
tures, ventilation and air condition-
ing

Algorithms to monitor the status of
the data center and control servers
operations and temperatures in the
center

Reducing energy consumption and
maintaining the good health of the
equipment

Wind Farms Wind, wind turbines, control equip-
ment, and energy distribution and
storage equipment

Algorithms to monitor and control
wind turbines and the produced
power and to optimize energy pro-
duction and storage

Maximizing power generation and
enabling integration with other sys-
tems such as smart grids

Hydropower Plants Hydraulic engines, transducers,
power meters, electric power gen-
erators, water level, water flow,
energy storage and distribution
equipment

Algorithms to monitor and control
the power generation, distribution
and storage, and the water flow

Maximizing power generation and
enabling integration with other sys-
tems such as smart grids

Greenhouse Effi-
cient Control

plants, climatic conditions, soil,
ventilation, carbon dioxide, water,
and heating, cooling, and ventila-
tion equipment

Algorithms to regulate greenhouse
climate, optimize resources utiliza-
tion and maximize production

Enhancing plants growths and pro-
duce production and quality, and
optimizing resources (e.g. water
and energy) utilization

processes [50]. Table 3.1 summarizes the CPS applications in terms of their physical and cyber parts and their
benefits.

4. CPS Applications Challenges. We realize based on the discussion of the various applications of CPS
in Section 3 that there are some common challenges facing developing these applications. The main challenges
include:

1. Real-Time operations: Most CPS applications need to function in real-time to deliver usable informa-
tion. This includes real-time sensing, communication, processing, decision making, and actions. In most
applications, the earlier we receive status information and generate the required controls, the better



336 N. Mohamed, J. Al-Jaroodi, S. Lazarova-Molnar, I. Jawha

results we can achieve. For example, a self-driving vehicle, requires immediate knowledge of the route
changes, traffic conditions and traffic light status. Any delays may lead to catastrophic results such as
not being able to respond correctly to a changing traffic light or another vehicle not behaving correctly.

2. Heterogeneous Devices: CPS applications are built with multiple heterogeneous devices like sensors,
actuators, microcontrollers, and communication and storage devices. In addition, they operate in
heterogeneous physical systems and environments. This leads to complications in implementing the
various controls and integrating the different components as each will need its own models and software
components. As a result, introducing new equipment or changing current ones, which occur frequently,
will have to involve changes in the software being used.

3. Limited Capability Devices: Some CPS need to use devices with limited capabilities and remote func-
tions. This is mainly due to the current limitations on available devices or to reduce the cost of the
CPS. These devices usually have limited wireless communication, processing, and storage capabilities
and many also may have limited power sources. Careful design is needed to include these devices as
components CPS. This will require complex algorithms to manage, operate and control these devices
within their limitations.

4. Distributed Processing: CPS applications require distributed processing and decision making to enhance
their operations. In addition, some applications need to use parallel processing for faster operations.
This introduces three major challenges: one is the different types and models of communication to
be used given the heterogeneity of the devices and connections being used; another is the delays and
reliability of the communication, which must be addressed efficiently to enable stable and reliable
operations; in addition to the security and privacy of the system and information being used as they
travel over various communication channels in the system.

5. Security and Privacy: As most CPS support distributed critical applications, there are high security
and privacy concerns. These are introduced mainly by the distributed nature of the system and its
components. In addition, many CPS are used within the context of critical and private domains, where
data must be protected for various reasons. Therefore, the security and privacy of the information and
software must be protected.

6. Reliability and Fault Tolerance: Many CPS applications are critical applications; therefore, they need
to be reliable and highly available. It is important to implement mechanisms to increase reliability,
which vary depending on the types of devices and software being used and the operational parameters
of these devices. In addition, data integrity and correctness must be preserved to achieve high reliability
of the system. These systems should be able to operate effectively even when faults occur and should be
able to detect and resolve different types of faults without negatively impacting the physical systems.

7. Communication: Special communication requirements and capabilities are needed by some CPS appli-
cations among their devices and subsystems. These requirements may include real-time support, highly
available and reliable communication, high-bandwidth and efficient information exchange. Some large-
scale and highly distributed CPS applications may also need optimized communication mechanisms
for collecting and distributing data among the systems components. In addition, different components
of a CPS may require different modes of communication and others could be designed to adapt the
communication modes to available resources.

8. Mobility: Some CPS applications involve mobile devices that need to be efficiently and securely con-
nected with the rest of the system. This may require actively managing the mobile devices as they
change location. Thus, the software used should be able to discover, monitor and control mobile devices
are they travel within, enter or exit the geographic boundaries of the system.

9. CPS Devices Locations: CPS applications that involve mobile devices, need to be aware of the mobile
devices locations to optimize their operations and correctly achieve the applications objectives. For
many CPS applications, knowledge of the instantaneous location of the mobile devices help optimize
operations using these devices. For example, when a UAV is available in a specific area, it could be
given a specific task relevant to that area to accomplish before moving out of range.

10. Power Limitation: Some CPS components are used in remote locations or in areas where no constant
power sources are available. These devices can operate for a limited time and may not be easily



Middleware Challenges for Cyber-Physical Systems 337

replaceable. Thus, the CPS design should focus on extending the life of these components using efficient
and power-aware software, hardware, and communication protocols. The software needs to optimize
their operations and limit access to their resources using other alternatives when possible.

11. Integration with Other Systems: Some CPS applications require integration with other computing
systems or other CPS. For example, integrating CPS applications in neighboring vehicles to enable
collaborative safety applications across multiple vehicles or integrating some components with power-
ful resources and platforms such as cloud-based services offering processing power, storage, and data
services. This extends some of the challenges discussed such as security and privacy, reliability and real-
time support in addition to the introduced complexity of ensuring seamless interoperations between the
systems.

12. Intelligent Decisions: Most CPS applications need to make intelligent decision to optimize their oper-
ations. This may involve including intelligent algorithms such as data mining algorithms in the CPS
design. Many of these require large amount of data and intensive computations, as a result, efficient
mechanisms to enable these operations need to be included in the application and could also lead to
the need for integration with more powerful systems such as the cloud to support these operations.

13. Context Awareness: Some CPS cannot properly or efficiently function without knowing the context
of their systems resources, physical environment and general domain. This will require the knowledge
of specific information such as power levels, communication and processing status, and other external
physical contexts utilized for the operations of CPS. Therefore, the software used must be able
to collect context data, organize it and make it available for the CPS application to be used effectively.

14. Big Data: Some CPS have a large number of sensors that continuously generate data resulting in huge
data sets [80]. At the same time, these systems cannot be optimized well to achieve the objectives
of the applications without analyzing this collected data. This may require having a good system
infrastructure capable of dealing with the challenges of storing and processing big data as well as
algorithms capable of the required analysis.

Table 4.1 summarizes the challenges for different CPS applications. These challenges make developing CPS
applications without using proper tools and middleware very difficult. Developers need to be aware of the
specific challenges for the application being developed. They need to find effective and efficient methods and
algorithms to address these challenges and implement them within the software. As a result, the application
must include complex components addressing the actual domain of the application in addition to the challenges
imposed by the CPS environment, architecture and components.

As we can see not all challenges apply to all CPS, and for this reason, we identify the challenges that apply
to CPS with respect to their application domains. Table 4.1 shows the different application domains of CPS and
what challenges are of importance to that domain. As an example, we use smart buildings as an emerging type
of CPS. Smart buildings feature Building Management Systems (BMS) that provide monitoring and control to
the various elements and subsystems, in fulfillment of preset objectives. Typical objectives of smart buildings
are minimizing energy consumption and maximizing occupants comfort. The challenges relevant for smart
buildings are the following: Real-time operations, as buildings host occupants, whose well-being depends on
the non-stop correct operations of the system; Heterogeneous Devices, as smart buildings incorporate a variety
of devices to support their daily functions [64] ; Security and Privacy Support, as the security and privacy of
occupants data regarding their interactions with the buildings systems need to be protected against any threats
or attacks and must be kept private [23] ; Reliability and Fault Tolerance, as some buildings are safety-critical
(e.g. hospitals or power stations) where the probabilities of failures should be minimized [47] ; Integration with
Other Systems, which is especially important when buildings are considered elements of smart cities and smart
grids, where they will need to function flawlessly in connection to other systems (e.g. traffic or smart grid, but
also other smart buildings BMS); Intelligent Decisions, as BMS goals are to optimize buildings performance;
and Context Awareness, as smart buildings are not isolated and their environment plays a vital role in their
performance [33].

5. Middleware for CPS. Middleware platforms can provide important support for developing and op-
erating CPS applications. The availability of a suitable middleware platform that provides solutions for the
challenges discussed earlier will not only enhance the CPS development process, but also enhance reusability



338 N. Mohamed, J. Al-Jaroodi, S. Lazarova-Molnar, I. Jawha

Table 4.1

Different Challenges of Different CPS Applications in the General Cases

- R
ea

l-
T
im

e
O
p
er
a
ti
o
n
s

H
et
er
o
g
en

eo
u
s
D
ev

ic
es

L
im

it
ed

C
a
p
a
b
il
it
ie
s

D
is
tr
ib
u
te
d
P
ro
ce
ss
in
g
N
ee
d

S
ec
u
ri
ty

a
n
d
P
ri
v
a
cy

R
eq

u
ir
em

en
ts

R
el
ia
b
il
it
y
&

F
a
u
lt

T
o
le
ra
n
ce

S
p
ec
ia
l
C
o
m
m
u
n
ic
a
ti
o
n

M
o
b
il
it
y
C
h
a
ll
en

g
e

L
o
ca

ti
o
n
-B

a
se
d
R
eq

u
ir
em

en
t

P
o
w
er

L
im

it
a
ti
o
n
C
h
a
ll
en

g
e

In
te
g
ra
ti
o
n
w
it
h
O
th

er
S
y
st
em

s

In
te
ll
ig
en

t
D
ec
is
io
n
R
eq

u
ir
em

en
t

C
o
n
te
x
t
A
w
a
re
n
es
s
C
h
a
ll
en

g
e

B
ig

D
a
ta

Medical CPS x x x x x x x x x x x x
Smart Buildings x x x x x x x x
Smart Grid x x x x x x x x x x
Gas & Oil Pipelines Monitoring & Con-
trol

x x x x x x x x x x

Smart Water Networks x x x x x x x x x x x x
Vehicular Safety Applications x x x x x x x x
Collaborative Vehicular Safety App. x x x x x x x x x x x
Self-Driving Car x x x x x x x x x x
Manufacturing x x x x x x x
UAV x x x x x x x x x x
Collaborative UAVs x x x x x x x x x x x x x
Energy Efficiency in Data Centers x x x x x x x x x x
Wind and Hydro Power Plants x x x x x x x
Greenhouse Efficient Control x x x x x x x

and maintainability, reduce risks, and reduce the overall cost of developing and maintaining CPS applications.
With a suitable middleware platform designed to support CPS applications, the developer can focus more on
developing the main functions of the CPS applications rather than expending huge time and effort in imple-
menting solutions and codes to solve the general and common issues such as reliability and security. The
specialized middleware for CPS can be designed to include a set of services that provide solutions for various
common CPS challenges that exist for any type of CPS applications. These services can be used by developers
to implement different CPS applications. The developers can use middleware APIs for these services to utilize
their functions and features and integrate them with the required specific functions of the CPS. In addition, the
middleware can enable reuse of any previously implemented module in new CPS applications. This will also
reduce the time and efforts needed to test new modules as the reusable modules have already been tested and
approved for use. The middleware will also enable maintainability by allowing easy changes for any modules in
the system. Any software module or service can be changed or replaced by better implemented one if it uses the
same interface. This will also enable easy change to some hardware components in CPS applications to better
hardware components.

The architecture of CPS implemented with middleware has five layers as shown in Figure 5.1. These layers
are physical environment layer, observation and action layer, network layer, middleware layer, and application
layer. The physical layer is the lowest layer in the CPS architecture and it consists of all the physical environment
or parts of the CPS that will be monitored or controlled by CPS applications. This layer can include parts
like vehicles, streets, buildings, the human body, machines, energy, etc. The second layer from the bottom
is the observation and action layer. This layer is responsible for observing the current status of the physical
environment and acting on the environment by changing its current state. This layer will have different types of
sensors such as temperature sensors, movement sensors, cameras, sound sensors, pressure sensors, GPS, RFID,
bar code readers as well other types of sensors and monitors to observe the current status of the monitored
environments. In addition, it also has a number of actuators such as hydraulic, pneumatic, electric, thermal,



Middleware Challenges for Cyber-Physical Systems 339

Fig. 5.1. CPS Layers

and mechanical actuators. These actuators are responsible for moving or controlling mechanisms, systems,
or environments and changing their current physical states. The third layer is the network layer which is
responsible for collecting the data observed by the observation and action layer and transporting it to the upper
layer, the middleware layer. It is also responsible for transporting information from the middleware layer to the
observation and action layer. The network layer can deal with simple peer-to-peer networks or with multi-hop
networks of any scale. The network can be wired, wireless, or both. Generally, this layer is responsible for
enabling information exchange between the middleware layer and the observation and action layer.

The Middleware layer, which is the focus of this paper, is responsible for providing a set of services to support
implementing and operating CPS applications. These services can be basic communication services that enable
the exchange of messages and information among CPS components or value-added services such as real-time
support, action validation support, reliability and fault tolerance support, mobility support, location-based
support, and security attacks detection services. In addition, these services can be very advanced smart services
that are controlled by specifying high-level policies and global objectives for the whole systems operations.
Examples of these services can be context awareness services, multiple CPS collaboration services, intelligent
decision services, self-adaptive services, self-resilient services, and self-protected services. These middleware
services can be selectively used by the top layer, the application layer to develop and operate CPS applications
specific to the needs of the CPS in use. The Middleware layer can abstract the heterogeneity and distribution
of the lower layers including the physical environments and hide their technical details. This feature can reduce
the complexities of CPS applications. The CPS applications developers can have a set of advanced application
interfaces (APIs) provided by the middleware to use the provided services. These services provide ready-made
solutions for common challenges facing different CPS applications. The developer will not need to spend a
significant time developing, implementing, and testing new code for these common challenges. As a result,
using the right middleware for CPS can reduce the risks of having bugs in the CPS applications as the available
middleware services will be developed more carefully and used by multiple applications. The middleware
approach will allow for pre-designed services modeled specifically for the devices and environments in use, thus
allowing for better utilization of these components. In addition, adding, changing or removing components will
not require major changes in the application software as the middleware makes it possible to perform these tasks
while maintaining a consistent API for the applications. From the developer perspective, a device performing
a specific type of activity is merely a service available with known APIs to access it. The actual details of its
operations and technical specifications are hidden and of no concern to the application developer. At a higher
level, since we view the features needed as services, it becomes possible to implement new services, update
current services, and provide alternative implementation of some services allowing the application developer to
pick and choose the suitable services for the application being developed. Furthermore, this allows for updates,
increments and adjustments to currently used services without having to rebuild the applications using them.

We classify middleware systems that can support CPS applications into three types. These three types
are based on their abstraction levels and their support functions. Each of these types can support different



340 N. Mohamed, J. Al-Jaroodi, S. Lazarova-Molnar, I. Jawha

programming models to develop and operate CPS applications. Here discuss the main characteristics and
functions of the three types and the relationships among them.

5.1. Communication Middleware for CPS Applications. This type of middleware mainly enables
and facilitates communication among heterogeneous and limited resources CPS components. This includes
offering services for efficient unicast communication and efficient group communication for broadcasting, multi-
casting, and data collection. It can provide basic security mechanisms to be used by developers to protect the
communications among CPS components. It also provides basic mechanisms to communicate with other systems
through message passing and/or remote procedure calls. While this type of middleware enables communication
among CPS components, the developers need to solve and write codes for many other challenges mainly due
to its limited scope and functions. The developers also need to handle the details of distributed processing in
CPS. One possible approach for a communication middleware is to use a customized massing passing model
which can meet the CPS communications challenges.

5.2. Value-Added Services Middleware for CPS. In this type, a number of services can be provided
and used part of the CPS applications adding features and value to these applications. These services can be
real-time support, monitoring, validation, reliability, fault tolerance, mobility support, location-based support,
security attacks detection services, and service-level integration with other systems. A higher level of program-
ming models for distributed and parallel processing can be used with this middleware to allow developers to
implement CPS applications using the available services. This middleware type includes a resource manager
and scheduler to enable implementing the services and also to allow developers to define available resources and
detailed policies guiding the use of the available services. One of the most suitable middleware architectures to
use here is the service-oriented middleware [19].

5.3. Advanced Services Middleware for CPS. Here we describe advanced services and smart support
components, as an addition to the services described as Value-Added Services Middleware. These include au-
tonomous resource discovery and management, context awareness support, multiple CPS collaboration support,
and intelligent decision support. In addition, smart services such self-adaptive, self-resilient, and self-protected
services can be offered. The developers in this case will resort to advanced high-level abstracted programming
models to write the CPS applications instead of conventional programming languages. The developers can
also specify high-level policies and global objectives for the whole system to operate on. Examples of these
programming models in related systems such as WSNs are Kairos [34] and Cougar [81].

These three middleware types differ in the level of abstraction and how much time and effort needed by
the developers to implement new CPS applications. The developers need more time and effort to develop new
applications with the communication middleware alone as they need to deal with individual components in
the CPS, while they need less time and effort with the value-added services middleware as they will use the
available services to implement their applications. Furthermore, they need much less time with the advanced
services middleware as they will deal with high-level policies and global objectives and the middleware will map
these into implemented services. However, this type of middleware is very difficult to implement as it needs to
self-handle most of the CPS common challenges.

6. Middleware Challenges for CPS. Although middleware platforms provide many advantages for
implementing and operating CPS applications, developing such middleware platforms is also challenging. In
this section, we discuss some of the challenges of designing and implementing such middleware platforms:

1. Enabling Smooth and Efficient Integration: CPS middleware should enable smooth and efficient integra-
tion among all CPS heterogeneous components. Components in any CPS can be developed and implemented by
several manufactures. While some CPS components are implemented such that they support standard interfaces
for interaction with other components, others are implemented without supporting any interface standards. One
of the roles of the middleware is to enable the integration among these heterogeneous components and ensuring
proper integration with the various available interfaces. In addition, these components may have different com-
munication capabilities and operational standards. They may use different communication protocols, different
communicate rates, different synchronization capabilities, and different security capabilities. The role of the
middleware here is to enable the efficient and smooth integration among all used communication models in
use and enabling seamless communication between the devices and components used by the CPS applications.



Middleware Challenges for Cyber-Physical Systems 341

Furthermore, the CPS middleware should enable the integration with other systems outside the boundaries of
the CPS environment such as cloud and fog computing and other CPS systems.

2. Supporting Advanced Communication Schemes: Some CPS applications cannot be efficiently offered
without using advanced communication schemes such as the Publish/Subscribe communication scheme [29]
which is needed for reducing communication overhead in large scale systems with a large number of sources of
information or events such as large numbers of sensors and control components or actuators using the produced
information and events. Another example of these advanced communication schemes is the store and forward
communication scheme [45] which is needed for large mobile applications with discontinuous communication links
among their mobile CPS components. These applications can be collaborative UAVs or collaborative vehicular
applications. These advanced communication schemes are usually not supported by the current traditional
communication technologies while they can be effectively offered by the middleware layer and used by the CPS
applications.

3. Resource Management: The need for providing real-time, reliable, fault tolerant, power efficient, and
automatic management by the CPS middleware require having an efficient and smart resource manager that
can provide essential features that provision such services. These features include efficient recourse discovery,
monitoring, and control for both limited and unlimited capabilities components in the CPS. In addition, the
resource manager should be supported by an efficient scheduler for utilizing these resources as well as QoS
support for both processing and communication. The middleware should be able to map the performance
requirements of different applications into system level parameters that can configure the underlying system to
achieve these specified performance requirements. However, designing the scheduler and mapping processes for
CPS middleware is challenging given the large number of resources and the variety of specifications, functions and
requirements of each of these resources. Moreover, the design of fast and optimal or near-optimal algorithms for
resource allocation and adaptation can also be very challenging. This is due to heterogeneity of the resources, the
limited capabilities of some of the CPS components, and the high CPS application requirements such as safety,
security, scalability, and sustainability. Furthermore, the scheduler needs to make tradeoff decisions among
communication, computations, monitoring, and control to achieve the CPS applications objectives. These
tradeoffs can be challenging and requires smart decisions for optimal or semi-optimal resource scheduling.

4. Secure Middleware Services: As most CPS are considered critical applications and the middleware is the
backbone for integrating the CPS components and enabling the CPS operations, then all middleware services
should be secure. Any security leakage in the offered services can be utilized to gain unauthorized access to the
CPS applications, which imposes many risks such as suspension the operations of the CPS applications or alter-
ing the operations of the CPS applications to unsafe operations thus resulting in damages in the corresponding
physical environment or systems or interfering with normal operations leading to serious problems.

5. Global Reference Time Support: Operations in many CPS applications cannot be correctly done without
having a global reference time to be used by all components of CPS to order and synchronize events and actions
in the CPS [77]. This is one of the requirements in some CPS applications for ensuring safe and accrued
operations. While a physical reference time support is offered in some new hardware and networks, it is not
provided and supported by many CPS components. In this case, the CPS middleware can provide a logical
global reference time support to be used for CPS applications. This requires designing accurate middleware-
based global reference time support that meets the CPS challenges.

6. Load Balancing: Different load balancing aspects are needed in constrained resources CPS to enhance
the utilization of CPS resources, to meet applications requirements, to enhance performance, and to increase
the sustainability of the system. The load balancing aspects can be related to balancing distributed and parallel
processing to enhance response time or to meet with time constraints, balancing the power consumption to
enhance the sustainability of the system, and balancing the communication traffic to enhance throughput and
data transfer times, in addition to balancing overall CPS operations.

7. Scalability support: some CPS applications involve a large number of components and extend over
large physical environments or systems [73]. Examples of these applications are smart grids and gas and oil
pipeline monitoring and control systems, where a large number of sensors and actuators are used covering
extensive geographic areas. Designing such large-scale systems requires good middleware support to deal with
large number of widely distributed components as well as high communication traffic generated from these CPS



342 N. Mohamed, J. Al-Jaroodi, S. Lazarova-Molnar, I. Jawha

components. In addition, some CPS applications could expand over time and include more components, services
and sub systems. This growth could affect the overall performance of the system if not designed to scale well.

8. Supporting autonomous operations for complex CPS applications: Many CPS applications are considered
complex systems incorporate many components that interact with each other for monitoring and controlling
physical environments and systems. These complex systems can be in a huge number of different states at any
point of time. It is generally extremely difficult to develop code to handle all these states effectively and in a
timely manner. Having middleware that supports autonomous operations such as self-adaptive, self-resilient,
and self-protected services [28] can relax implementing and operating these complex CPS applications. However,
providing such services can be very challenging as it is not easy to predict all possible states and situations early
in the design process. In addition, many of these self-x properties require complex algorithms and in some cases
some intelligent components to be handled correctly. Moreover, testing verifying and validating these services
when implemented is also challenging due to the large and complex set of possible combinations of events and
states that could trigger them.

7. Current Research Efforts. There is some ongoing research to customize existing middleware plat-
forms or design new middleware services to fit with the CPS challenges. One of these important challenges
is supporting real-time operations in CPS. Real-time support requires provisions from the operating systems,
resource managers and networks. The requirements and an architecture for a CPS middleware supporting these
provisions was proposed in [31]. In addition, different real-time challenges for diverse scenarios were proposed.
An example of these proposals is the approach to solve the real-time issue for aperiodic events in distributed CPS
using a reconfigurable real-time middleware [82]. Another proposal is RDDS which is a publish/subscribe- mid-
dleware architecture developed to enable timely and reliable sensor data dissemination in highly unpredictable
CPS environments [42]. There are also some research efforts dedicated to address the heterogeneity challenges in
CPS. A middleware that provides interoperability between heterogeneous mobile devices in CPS was proposed
in [76]. Furthermore, developing portable middleware services for heterogeneous CPS was proposed in [55].
Other research efforts were conducted to investigate reliability, security, safety, and fault tolerance in CPS. As
an example, the main role of middleware in facilitating robust and resilient CPS was studied in [27] while a re-
liable, safe, and secure run-time platform for CPS was proposed in [51]. Moreover, a time-triggered middleware
architecture that offers fault tolerance and dynamic reconfiguration at run-time taking into consideration the
available system resources of the underlying infrastructure was proposed in [61].

Another group of research efforts were dedicated to investigating issues in large-scale CPS. The design,
development, testing, and operations of a large-scale CPS are more complex compared to other CPS. This is
due to higher heterogeneity, unreliability, unpredictability, complexity, and security requirements of large-scale
CPS [46]. Therefore, large-scale CPS are very complicated to develop and operate without relying on support
from advanced middleware services. Advanced middleware services can provide interoperability, reliability,
QoS, and security mechanisms to satisfy the needs of large-scale CPS. In this regard, an efficient middleware for
supporting distributed query processing in large-scale CPS was proposed in [26]. The work in [69] investigated
developing a middleware on WSN for large-scale CPS. The aim of this middleware is to automatically achieve
optimal sensor node configuration, bandwidth provisions, fault handling, and re-configuration in reaction to new
missions and new added devices. In addition, a virtualized network platform for testbed of large-scale CPS was
proposed in [16]. The requirements of virtual platform and networks for very large-scale CPS that expanded
globally are investigated in [15].

A service-oriented approach to build middleware platforms for CPS was instigated into a number of re-
search projects. This approach can solve many CPS challenges. A service-oriented middleware architecture to
expose CPS devices to the Web was addressed in [37]. In addition, a service-oriented middleware for fog and
cloud integrated CPS was proposed in [59] while a service-oriented approach to address fault tolerance in CPS
was proposed in [21]. Another solution is a real-time service-oriented architecture middleware to monitor the
performance and reserve resources in advance for CPS services in process to ensure its real-time achievability
[52]. In the service-oriented middleware approach, system resources are viewed as a set of services to be used to
develop CPS applications. One of the main advantages of this approach is the flexibility feature of extending
the middleware itself to include new and more advanced services to support CPS applications as they develop.
In addition, it provides the flexibility to add more devices, components, and services as the CPS grows or more



Middleware Challenges for Cyber-Physical Systems 343

features are needed.

Some middleware platforms were also developed for specific applications or to solve specific issues in these
applications. Examples include a middleware support for continuous monitoring of water distribution systems
[40], a service-oriented middleware for smart grids [83, 54], a service-oriented middleware for collaborative UAVs,
an event-driven middleware for smart buildings [63], an adaptive middleware for context-aware smart home
applications [39], a middleware architectural framework for vehicular safety [72], an interoperable middleware
platform for medical CPS [65]. Generally, these efforts provide solutions to specific issues in CPS rather than
addressing the generic model that can support various features and apply to different CPS applications. More
work is needed to address the general issues facing most, if not all, CPS applications and offer middleware
platforms that can be adapted and used for several applications.

8. Open Issues. Based on the studied CPS applications and proposed middleware solutions, there are
still a number of CPS middleware issues that need more research and deeper investigation leading to usable and
effective solutions. The following is a discussion of some of these open issues:

1. Generic Middleware Architectures: There are several proposals for middleware architectures that are
suitable of some CPS while they are unsuitable for others. These offer specialized solutions applicable to the
application domain they target only. Developing a generic middleware architecture for all CPS applications is
needed as they share several challenges that can be addressed effectively and reused for all CPS applications.
The availability of such middleware architecture can provide a base for enhancing many solutions for many
of the challenges in CPS. This also provides a common platform where features and services can be added,
updated, enhanced or redesigned to benefit all applications. It can also enhance the development processes for
CPS applications by offering more flexible design, implementation, testing, and reusability features. Moreover,
using the same middleware platform for multiple CPS applications, will allow these applications to integrate
easily and interoperate to achieve larger objectives.

2. Resource Management: Various efforts have been conducted to develop resource management techniques
in traditional distributed systems. However due to the unique challenges of CPS, it is not easy to adapt these
traditional techniques for CPS. Any adaptation of traditional resource management techniques into the context
of CPS needs careful consideration of the efficiency, flexibility, and scalability of these techniques. Issues such
as heterogeneity, varying capabilities, mobility, time constraints, and connectivity introduce more challenges for
the resource manager. More investigation and proposals are needed for middleware-based resource management
techniques in CPS.

3. Middleware Security Support: It is impossible to build secure and reliable CPS applications without
considering the security and privacy aspects of these systems. Middleware can provide a number of security
services for CPS. However, very limited research and development efforts were conducted in this regard. Mean-
time, a number of security middleware solutions were developed for other types of distributed systems such
as ubiquitous applications [17]. These solutions provide a useful base for developing and operating ubiquitous
applications. Similarly, security middleware solutions are needed for CPS.

4. Middleware Safety Support: As faults in CPS can cause severe and in many cases irreparable physical
damages, middleware platforms should provide runtime environments for CPS applications that offer support
for the safety of the CPS and its physical environment. More investigation is needed to find effective ways
to utilize middleware for safety support. This can include, for example, developing middleware-based runtime
validations and including fault detection and correction mechanisms within the middleware functions.

5. Middleware Sustainability Support: CPS are usually designed for critical applications that should live
for a long period of time. However, some CPS devices have limited power, while others may have limited
operational life. Over time many devices will need to be replaced for various reasons and the replacements
may or may not be of the same type or capabilities. Designing any CPS solutions without considering the
energy limitations, wear out probabilities and replacement devices will reduce the operational life span of the
CPS applications. Careful designs are needed for all aspect of CPS to extend their life. This includes efficient
energy aware features to conserve energy, unified interfaces to support device swaps and updates, and seamless
integration of new devices and components. While this design can be extremely difficult, middleware platforms
for CPS should assist in this regard. However, there are no comprehensive investigations toward developing
middleware based solutions for sustainability support for CPS.



344 N. Mohamed, J. Al-Jaroodi, S. Lazarova-Molnar, I. Jawha

9. Conclusions. CPS applications are becoming an integral part of many environments and cover a diverse
set of application domains. As a result, their design, development and operations have become complex and
time consuming. The different types of applications have unique requirements and impose different challenges
for the application developer. One method to help leverage some of the challenges and support the development
process is to use middleware platforms. As discussed in this paper, middleware can provide various essential
features and services for the CPS applications. In addition, it can also provide value-added features that enhance
the operations and capabilities of the CPS applications. Unfortunately, such middleware, if designed to cover all
needed aspects and functionalities of all types of CPS applications, will itself become too complex and difficult
to design. We discussed the various challenges of middleware for CPS including the support for advanced
communication schemes, effective and efficient resource management and load balancing, scalability, global
time reference, security and autonomy. As discussed, many have addressed some of these challenges either
on a generic basis for a single feature or specifically addressing one or a group of similar CPS applications.
Unfortunately, there is a lot more to be done before a comprehensive middleware platform can be designed to
support a large verity of CPS applications. A number of open issues need to be addressed and incorporated in
a middleware approach. One of the main issues is the design of a generic middleware platform that can support
different types of CPS applications. Other issues include the security and safety of the middleware in addition
to resource management. Finally there is the issue of sustainability of the CPS application and its components.
These issues have not been adequately addressed and require more efforts to create usable and efficient solutions.
In our future work we intend to further investigate these issues and create possible approaches to address them.
For example, we are looking into models for resource management for CPS environments that include stationary,
mobile and limited resource devices.

REFERENCES

[15] S. Ahn, C. Yoo, S. Lee, H. Lee, and S. J. Kim, Implementing virtual platform for global-scale cyber physical system
networks, International Journal of Communication Systems, 28 (2015), pp. 1899–1920.

[16] S. W. Ahn and C. Yoo, Wip abstract: Virtual network platform for large scale cps testbed, in Proceedings of the 2012
IEEE/ACM Third International Conference on Cyber-Physical Systems, IEEE Computer Society, 2012, p. 214.

[17] J. Al-Jaroodi, I. Jawhar, A. Al-Dhaheri, F. Al-Abdouli, and N. Mohamed, Security middleware approaches and issues
for ubiquitous applications, in Computers and Mathematics with Applications, Special Issue on Advances in Cryptography,
Security and Applications for Future Computer Science, Vol. 60, No. 2, 2010, pp. 187–197.

[18] J. Al-Jaroodi and N. Mohamed, Middleware is still everywhere!!!, Concurrency and Computation: Practice and Experience,
24 (2012), pp. 1919–1926.

[19] , Service-oriented middleware: a survey, Journal of Network and Computer Applications, 35 (2012), pp. 211–220.
[20] J. Al-Jaroodi, N. Mohamed, I. Jawhar, and S. Lazarova-Molnar, Software engineering issues for cyber-physical systems,

in IEEE International Conference on Smart Computing (SMARTCOMP), 2016.
[21] P. Alho and J. Mattila, Service-oriented approach to fault tolerance in cpss, Journal of Systems and Software, 105 (2015),

pp. 1–17.
[22] S. Ali, S. B. Qaisar, H. Saeed, M. F. Khan, M. Naeem, and A. Anpalagan, Network challenges for cyber physical systems

with tiny wireless devices: A case study on reliable pipeline condition monitoring, Sensors, 15 (2015), pp. 7172–7205.
[23] P. Arjunan, N. Batra, H. Choi, A. Singh, P. Singh, and M. B. Srivastava, Sensoract: a privacy and security aware

federated middleware for building management, in Proceedings of the Fourth ACM Workshop on Embedded Sensing
Systems for Energy-Efficiency in Buildings, pp, (2012), pp. 80–87.

[24] C. Berger and B. Rumpe, Autonomous driving - 5 years after the urban challenge: The anticipatory vehicle as a cyber-
physical system, In Proceedings of the INFORMATIK, 2012 (2012), pp. 789–798.

[25] M. Chaqfeh and N. Mohamed, Challenges in middleware solutions for the internet of things, in proc, 2012 Int’l Conference
on Collaboration Technologies and Systems (CTS), 2012.

[26] A. Cuzzocrea, J. Cecilio, and P. Furtado, An effective and efficient middleware for supporting distributed query process-
ing in large-scale cyber-physical systems, in International Conference on Internet and Distributed Computing Systems,
Springer International Publishing, ed., 2014, pp. 124–135.

[27] G. Denker, N. Dutt, S. Mehrotra, M. O. Stehr, C. Talcott, and N. Venkatasubramanian, Resilient dependable
cyber-physical systems: a middleware perspective, Journal of Internet Services and Applications, 3 (2012), pp. 41–49.

[28] X. Dong, S. Hariri, L. Xue, H. Chen, M. Zhang, S. Pavuluri, and S. Rao, Autonomia: an autonomic computing
environment, In the, 2003 (2003), pp. 61–68.

[29] P. T. Eugster, P. A. Felber, R. Guerraoui, and A. M. Kermarrec, The many faces of publish/subscribe, ACM computing
surveys (CSUR), 35 (2003), pp. 114–131.

[30] Y. P. Fallah, C. Huang, R. Sengupta, and H. Krishnan, Design of cooperative vehicle safety systems based on tight
coupling of communication, computing and physical vehicle dynamics, in Proc. of the 1st ACM/IEEE International
Conference on Cyber-Physical Systems, ACM, 2010, pp. 159–167.



Middleware Challenges for Cyber-Physical Systems 345

[31] M. Garca-Valls and R. Baldoni, Adaptive middleware design for cps: Considerations on the os, resource managers, and
the network run-time, In Proceedings of the, 14 (2015).

[32] L. Gonda and C. E. Cugnasca, A proposal of greenhouse control using wireless sensor networks. in computers in agriculture
and natural resources, American Society of Agricultural and Biological Engineers, 229 (2006).

[33] T. Gu, H. K. Pung, and D. Q. Zhang, A service-oriented middleware for building contextaware services, Journal of Network
and Computer Applications, 28 (2005), pp. 1–18.

[34] R. Gummadi, O. Gnawali, and R. Govindan, Macro-programming wireless sensor networks using kairos, in International
Conference on Distributed Computing in Sensor Systems, Springer Berlin Heidelberg, ed., 2005, pp. 126–140.

[35] V. Gunes, S. Peter, T. Givargis, and F. Vahid, A survey on concepts, applications, and challenges in cyber-physical
systems, TIIS, 8 (2014), pp. 4242–4268.

[36] L. Gurgen, O. Gunalp, Y. Benazzouz, and M. Gallissot, Self-aware cyber-physical systems and applications in smart
buildings and cities, in Proc. of the Conference on Design, Automation and Test in Europe, 2013, pp. 1149–1154.

[37] D. D. Hoang, H. Y. Paik, and C. K. Kim, Service-oriented middleware architectures for cyber-physical systems, International
Journal of Computer Science and Network Security, 12 (2012), pp. 79–87.

[38] X. Hu, T. H. Chu, V. C. Leung, E. C. H. Ngai, P. Kruchten, and H. C. Chan, A survey on mobile social networks:
Applications, platforms, system architectures, and future research directions, IEEE Communications Surveys & Tutorials,
17 (2015), pp. 1557–1581.

[39] M. C. Huebscher and J. A. McCann, Adaptive middleware for context-aware applications in smart-homes, In Proceedings
of the, 2 (2004), pp. 111–116.

[40] M. Iqbal and H. B. Lim, A cyber-physical middleware framework for continuous monitoring of water distribution systems,
in Proceedings of the 7th ACM Conference on Embedded Networked Sensor Systems, ACM, 2008, pp. 401–402.

[41] M. S. Kamal, S. Parvin, K. Saleem, H. Al-Hamadi, and A. Gawanmeh, Efficient low cost supervisory system for internet
of things enabled smart home, in Conference on Communications Workshops (ICC Workshops),, Ieee International, ed.,
IEEE, 2017, pp. 864–869.

[42] W. Kang, K. Kapitanova, and S. H. Son, Rdds: A real-time data distribution service for cyber-physical systems, IEEE
Transactions on Industrial Informatics, 8 (2012), pp. 393–405.

[43] S. Karnouskos, Cyber-physical systems in the smartgrid, in 9th IEEE International Conference on Industrial Informatics
(INDIN, 2011, pp. 20–23.

[44] S. Kartakis, E. Abraham, and J. A. McCann, Waterbox: A testbed for monitoring and controlling smart water networks,
in Proc, of the 1st ACM International Workshop on Cyber-Physical Systems for Smart Water Networks, 2015.

[45] A. Kesting, M. Treiber, and D. Helbing, Connectivity statistics of store-and-forward intervehicle communication, IEEE
Transactions on Intelligent Transportation Systems, 11 (2010), pp. 172–181.

[46] W. T. Kim, I. G. Chun, S. H. Lee, H. Y. Lee, and J. M. Kim, Wip abstract: From design to operation of a large-scale
cps, in Proceedings of the 2012 IEEE/ACM Third International Conference on Cyber-Physical Systems, Ieee Computer
Society, ed., 2012.

[47] S. Lazarova-Molnar, H. R. Shaker, and N. Mohamed, Reliability of cyber physical systems with focus on building manage-
ment systems, in proc. 2016 IEEE 35th International Performance Computing and Communications Conference (IPCCC),
2016.

[48] E. A. Lee, Cyber physical systems: Design challenges, In Object Oriented Real-Time Distributed Computing (ISORC), pp,
(2008), pp. 363–369.

[49] I. Lee, O. Sokolsky, S. Chen, J. Hatcliff, E. Jee, B. Kim, A. King, M. Mullen-Fortino, S. Park, and A. Roederer,
and k.k, in Challenges and research directions in medical cyber–physical systems, In Proc. of the IEEE, 100(1, 2012,
Venkatasubramanian, pp. 75–90.

[50] J. Lee, B. Bagheri, and H. A. Kao, A cyber-physical systems architecture for industry 4.0-based manufacturing systems,
Manufacturing Letters, 3 (2015), pp. 18–23.

[51] S. S. Lim, E. J. Im, N. Dutt, K. W. Lee, I. Shin, C. G. Lee, and I. Lee, A reliable, safe, and secure run-time platform
for cyber physical systems, in 2013 IEEE 6th International Conference on Service-Oriented Computing and Applications
(SOCA), IEEE, 2013, pp. 268–274.

[52] K. J. Lin and M. Panahi, A real-time service-oriented framework to support sustainable cyber-physical systems, in 2010 8th
IEEE International Conference on Industrial Informatics, IEEE, 2010, pp. 15–21.

[53] S. P. Lin and N. F. Maxemchuk, The fail-safe operation of collaborative driving systems, Journal of Intelligent Transportation
Systems, 20 (2016), pp. 88–101.

[54] J. F. Martnez, J. Rodrguez-Molina, P. Castillejo, and R. De Diego, R., “middleware architectures for the smart grid:
survey and challenges in the foreseeable future, ” Energies, 6 (2013), pp. 3593–3621.

[55] K. Mechitov and G. Agha, Building portable middleware services for heterogeneous cyber-physical systems, In Proceedings
of the Third International Workshop on Software Engineering for Sensor Network Applications, pp, (2012), pp. 31–36.

[56] L. Miclea and T. Sanislav, About dependability in cyber-physical systems, In, 2011 (2011), pp. 17–21.
[57] N. Mohamed, J. Al-Jaroodi, I. Jawhar, and S. Lazarova-Molnar, A service-oriented middleware for building collabora-

tive uavs, Journal of Intelligent & Robotic Systems, 74 (2014), pp. 309–321.
[58] N. Mohamed, J. Al-Jaroodi, S. Lazarova-Molnar, and I. Jawhar, Middleware to Support Cyber-Physical Systems, in

proc. IEEE Int’l Performance Computing and Communications Conference (IPCCC 2016), Las Vegas, Nevada, USA,
2016.

[59] N. Mohamed, S. Lazarova-Molnar, I. Jawhar, and J. Al-Jaroodi, Towards service-oriented middleware for fog and cloud
integrated cyber physical systems, in IEEE 37th International Conference on Distributed Computing Systems Workshops
(ICDCSW), IEEE, 2017, pp. 67–74.



346 N. Mohamed, J. Al-Jaroodi, S. Lazarova-Molnar, I. Jawha

[60] M. M. Molla and S. I. Ahamed, A survey of middleware for sensor network and challenges, in ICPP 2006 Workshops,
IEEE, 2006.

[61] A. Noguero, I. Calvo, and L. Almeida, A time-triggered middleware architecture for ubiquitous cyber physical system
applications, in International Conference on Ubiquitous Computing and Ambient Intelligence, , Heidelberg, Berlin, 2012,
Springer, pp. 73–80.

[62] L. Parolini, B. Sinopoli, B. H. Krogh, and Z. Wang, A cyber–physical systems approach to data center modeling and
control for energy efficiency, in Proceedings of the IEEE, 100(1, 2012, pp. 254–268.

[63] E. Patti, A. Acquaviva, M. Jahn, F. Pramudianto, R. Tomasi, D. Rabourdin, J. Virgone, and E. Macii, Event-driven
user-centric middleware for energy-efficient buildings and public spaces, IEEE Systems Journal, 10 (2016), pp. 1137–1146.

[64] T. Perumal, A. R. Ramli, C. Y. Leong, K. Samsudin, and S. Mansor, Middleware for heterogeneous subsystems interop-
erability in intelligent buildings, Automation in Construction, 19 (2010), pp. 160–168.

[65] J. Plourde, D. Arney, and J. M. Goldman, Openice: An open, interoperable platform for medical cyber-physical systems,
in Conference on Cyber-Physical Systems (ICCPS),, Acm/ieee International, ed., IEEE, 2014, pp. 221–221.

[66] J. M. Portocarrero, F. C. Delicato, P. F. Pires, B. Costa, W. Li, W. Si, and A. Y. Zomaya, Ramses: a new reference
architecture for self-adaptive middleware in wireless sensor networks, Ad Hoc Networks, 55 (2017), pp. 3–27.

[67] R. R. Rajkumar, I. Lee, L. Sha, and J. Stankovic, Cyber-physical systems: the next computing revolution, in Proc. of the
47th Design Automation Conference, ACM, 2010, pp. 731–736.

[68] M. A. Razzaque, M. Milojevic-Jevric, A. Palade, and S. Clarke, Middleware for internet of things: a survey, IEEE
Internet of Things Journal, 3 (2016), pp. 70–95.

[69] N. Reijers, Y. C. Wang, C. S. Shih, J. Y. Hsu, and K. J. Lin, Building intelligent middleware for large scale cps systems,
in 2011 IEEE International Conference on Service-Oriented Computing and Applications (SOCA), IEEE, 2011, pp. 1–4.

[70] K. Rmer, O. Kasten, and F. Mattern, Middleware challenges for wireless sensor networks, ACM SIGMOBILE Mobile
Computing and Communications Review, 6 (2002), pp. 59–61.

[71] A. A. Salkham, R. Cunningham, A. Garg, and V. Cahill, A collaborative reinforcement learning approach to urban traffic
control optimization, in Proceedings of the 2008 IEEE/WIC/ACM International Conference on Web Intelligence and
Intelligent Agent Technology, IEEE Computer Society, 2008, Volume 02, pp. 560–566.

[72] K. Saravanan, A. Thangavelu, and K. Rameshbabu, A middleware architectural framework for vehicular safety over vanet
(invanet), in First International Conference on Networks and Communications (NETCOM’09), IEEE, 2009, pp. 277–282.

[73] D. C. Schmidt, J. White, and C. D. Gill, Elastic infrastructure to support computing clouds for large-scale cyber-physical
systems, in 2014 IEEE 17th International Symposium on Object/Component/Service-Oriented Real-Time Distributed
Computing (ISORC), IEEE, 2014, pp. 56–63.

[74] J. Shi, J. Wan, H. Yan, and H. Suo, A survey of cyber-physical systems, in 2011 International Conference on Wireless
Communications and Signal Processing (WCSP), IEEE, 2011.

[75] S. Sridhar, A. Hahn, and M. Govindarasu, Cyber–physical system security for the electric power grid, in Proceedings of
the IEEE, 100(1, 2012, pp. 210–224.

[76] J. Sun and Y. Zhang, A middleware for highly dynamic distribution in cps environment, in Proceedings of the 3rd Interna-
tional Conference on Context-Aware Systems and Applications, Social-Informatics and Telecommunications Engineering,
2014, ICST (Institute for Computer Sciences, pp. 169–172.

[77] Y. Tan, S. Goddard, and L. C. Perez, A prototype architecture for cyber-physical systems, ACM Sigbed Review, 5 (2008),
p. 1.

[78] M. Tang, X. Dai, J. Liu, and J. Chen, J., “towards a trust evaluation middleware for cloud service selection, ” Future
Generation Computer Systems, 74 (2017), pp. 302–312.

[79] Q. Tang, S. K. S. Gupta, and G. Varsamopoulos, Energy-efficient thermal-aware task scheduling for homogeneous high-
performance computing data centers: A cyber-physical approach, IEEE Transactions on Parallel and Distributed Systems,
19 (2008), pp. 1458–1472.

[80] S. M. Tonni, M. Z. Rahman, S. Parvin, and A. Gawanmeh, Securing big data efficiently through microaggregation technique,
in IEEE 37th International Conference on Distributed Computing Systems Workshops (ICDCSW), IEEE, 2017, pp. 125–
130.

[81] Y. Yao and J. Gehrke, The cougar approach to in-network query processing in sensor networks, ACM Sigmod record, 31
(2002), pp. 9–18.

[82] Y. Zhang, C. Gill, and C. Lu, Reconfigurable real-time middleware for distributed cyber-physical systems with aperiodic
events, in The 28th International Conference on Distributed Computing Systems (ICDCS’08), IEEE, 2008, pp. 581–588.

[83] L. Zhou and J. J. Rodrigues, Service-oriented middleware for smart grid: Principle, infrastructure, and application, IEEE
Communications Magazine, 51 (2013), pp. 84–89.

Edited by: Amjad Gawanmeh
Received: May 30, 2017
Accepted: Nov 6, 2017


