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MOORECUBE: A SCALABLE AND FLEXIBLE ARCHITECTURE

FOR CLOUD COMPUTING DATA CENTERS ON MULTI-PORT SERVERS
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Abstract. Networks provide the infrastructure of cloud computing data centers. Servers in data centers grow to respond to
the growing user demands. Data center scalability and flexibility in the use of multi-port servers is a challenging issue. Heretofore,
no method has been considered for scalability and flexibility issues. This paper proposes a new architecture called MooreCube
that can increase network scalability and decrease network diameter as well as increase flexibility. MooreCube is a scalable and
flexible architecture that each multi-port server directly connected to other servers via bi-directional links, without using any switch.
Furthermore, MooreCube is a recursively defined architecture that uses Moore graph as Building Block (BB) structure and uses
the hierarchical structure to meet high scalability. The paper proposes a multipath routing to increase fault tolerance and decrease
links burden. MooreCube architecture compared with other switchless architectures that use reserved ports to increase scalability.
The simulation results show MooreCube increase scalability and flexibility along with decrease the diameter of the network.
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1. Introduction. Cloud computing uses data center networking (DCN) as an infrastructure to provide
services [1]. The powers of data centers should be enhanced with an increase in the service request and
computational, storage and processing requirements [2, 3]. Therefore the architecture of data centers must
be scalable and loosely as possible to add and/or subtract server/s to data centers [4, 5]. In addition, to
exposure better service, the architecture of data centers should provide communication between servers that is
possible by high-speed links, bilateral and optimized routing [6].

Adding new server/s to data center has some Issues. The first issue is the network flexibility that possible
adding any new server to the data center. The former architectures have limitations in adding new servers.
Because most of them use the reserved port and when the reserved ports completed, adding any new server is
not possible [3, 7]. Cost is the second issue. Adding new server/s has cost like the price of adding the new link,
switch, and router. Although it has some other issues like inefficient network development which limit the use
of all server capacity because of inefficient development [8, 9]. Therefore considering these issues will help in
designing new data center architecture. Design goals of the data center are; scalability, fault tolerance, latency,
network capacity, simplicity, flexibility, and network configuration that will describe in detail [2, 32].

• Scalability: Ease of adding new server/s to data center networks. Scalability shows that adding any
new server should not modify the DCN architecture (topology).

• Fault tolerance: The DCN should be accessible in presence of fault. Mostly, the lack of alternative
routes and servers lead to irreparable damage.

• Latency: Delay in sending and receiving the message has a direct relation with network diameter
(number of steps between source and destination). So latency in DCN architecture is important. The
network diameter is most important factor in architecture and should not increase with enhancing
network scalability.

• Network capacity: Total network capacities such as server’s CPU, hard and link bandwidth should be
accessible and using all network capacity should be possible.

• Simplicity: Ease of creating architecture is an important issue that must be considered. Use of former
routing would be possible if the DCN architecture not modified in adding any new server/s.

• Flexibility: Flexibility can be defined in two ways. Network Flexibility and flexibility in using multi-
port servers. Network Flexibility means the possibility of using small and very large architecture scale
in presence of all network features. Flexibility in using multi-port servers as the name implies is possible
using servers with a different number of ports.
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• Modularity: Recursive architecture has modularity concept. This kind of architectures, use a basic
structure that repeated with adding any new server and known as modularity architectures.

Data center architectures include in three general categories: switch-centeric architecture, server-centeric
architecture and switchless architecture [2, 6, 7]. First two categories have the switch in their architecture to
connect servers. The only difference between them is the location of network routing. In a switch-centeric
architecture, the switch is responsible for message routing in the network. But in server-centric architecture,
servers set up network routing. The last one not uses the switch in DC architecture and connects servers directly
using multi-port servers [2]. Using any switch in DC architecture has some advantages like; reducing the cost
and increasing the network efficiency.

This paper proposes MooreCube as a new architecture that not use any switch to connect servers. This
new architecture uses multi-port servers to connect servers directly with bi-directional links. MooreCube use
Moore graph as a basic Building Block (BB) and hierarchical structure to increase network scalability. Moore
graph is a regular graph that is known with degree and diameter [12, 13]. The paper uses multipath routing to
increase fault tolerance and reduce the burden of links [14, 15].

The reminder of paper is organized as follow; section 2, studies previous solutions. Section 3 describes
MooreCube architecture. Section 4, shows multipath routing and in continue, section 5 evaluates the MooreCube
strategy and at last, section 6 express conclusion and future works.

2. Related works. Researchers are trying to find a way to properly connect servers to each other to
reduce the network diameter and increase network scalability. Many researchers have been done activities in
this area. In general, the DCN architectures divided into three categories include; switch-centric architecture,
server-centric architecture, and switchless architecture. In switch-centric architectures, the switch is responsible
for routing and this architecture mostly uses optical interconnections to send and receive messages [7, 11].
The first switch-centric architecture was proposed in 2008 called FatTree [16]. FatTree uses some switches
and servers as Building block and increases the number of switches with adding any new server/s. FatTree
has the three-level architecture that the servers are at the lowest level and switches are in two high levels of
architecture. Depending on the number of servers that are at the lowest level, switches have the port. These
layers are connected to each other in form of tree. However, each routing between servers in lowest level needs
to use existing switches in the high level. In the worst case, all the pairs of servers are linked together. So,
using the switches in this way, make switches as a bottleneck. Portland architecture [17], is another architecture
that uses FatTree with a new send/receive protocol [18]. VL2 is another architecture that focuses on the use
of server capacity and facilitates the routing with using of flat addresses. SWDC [23], Poincare [22], Scafida
[21], S2 [20], Jellyfish [19] and RingCube [7] are also switch-centric architectures. All of the solutions use switch
beside server in DCN architecture.

Server centric architecture also has a switch but use the servers as a router. DCell [24], BCube [25],
Ficonn [26], FlatNet [27], HCN & BCN [28], Dpillar [29], SWCube [30], FleCube [31, 32], DCube [33], Fsquare
[34] and sprintNet [35] are server-centric architecture. Using the switch in this kind of architecture may lead to
bottleneck and increase cost and scalability of the network. The third category of DCN is switchless architecture
whose does not use any switch to connect servers. But servers are directly connected to one another by the
bidirectional link. Do not use the switch in DC architecture reduce the cost and increase the network efficiency
[35]. Because in the absence of switch, the cost, and power that are needed to switch cares, are stored. Also if
we do not have the switch, switches will not have downtime and network fault tolerance will be greater. Delay
in the switch is also another reason for not using the switch. Because each switch has few microsecond delay to
send and receive data. We can use the server instead of switch in DCN and increase network scalability [33].

CamCube [36], Smallworld [23], NovaCube [37] and FleCube [2] are switchless architecture. CamCube uses
three-dimensional Torus structure for connectivity between the servers. This architecture needs 6-port servers
in all circumstances. The Torus-3D indicated with k-array-3-Cube that the number of servers (S) computed
with Eq. (2.1) and Diameter (D) computed with Eq. (2.2).

S = kn = k3 (2.1)

D = 3

√

(kn) = 3

√

(k3) = k (2.2)
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In Eq. (2.1), S is the number of servers and k indicates the number of servers required in each row of
CamCube architecture and n is the dimension of Torus architecture (in CamCube n=3). In Eq. (2.2), D is
the network diameter. Smallworld is another architecture that presented to reduce the diameter of CamCube.
This architecture in order to reduce network diameter, add a random number links to CamCube architecture.
Results show that the network diameter is reduced by adding additional links [23], but the number of ports on
each server must be greater than 6 and we cannot definitely determine needed ports on each server. Also, the
randomly added links are only shortest path and may become a bottleneck. NoveCube is another architecture
that adds new links but not randomly. This architecture found pair servers that are far from each others and
then with adding new link connects them. So the diameter of the network will be decreased. But this approach
also has the problems of previous work and needs more ports. SprintNet has the new way to connect servers to
each other without use of switches [33]. This method is flexible and can be implemented with multi-port servers
independent of the number of ports. The problem with this solution is its limited scalability due to server
port number. For example, with 3-ports servers cannot connect more than 42 servers directly. Our presented
MooreCube architecture solves port and diameter issue and is scalable and flexible with any number of server
ports.

3. MooreCube architecture. In this section, physical structure and characteristics of MooreCube are
expressed. In order to measure the diameter of the network, one-way routing described below to find the shortest
path between servers.

Physical structure. MooreCube architecture uses multi-port servers in its structure. Multi-port servers
connected to one another by bidirectional links. This architecture does not use any switch to connect servers.

Moore graph. MooreCube uses recursive structure and multi-port servers. The basic Building Block (BB)
in this architecture is Moore graph. Moore graph is one of the most famous mathematical graphs, and these
graphs may be used in any number of vertices [12, 13]. In fact, Moore graph is a k-regular (k > 2) graph that
is displayed with two variable n = (v, g). v represents the degree vertices in the graph and g is waist size of
graph or a complete cycle (without duplicate vertices) of the graph. With these two variables, we can calculate
the number of vertices in the graph (n) using Eq. (3.1).

n(v, g) =

{

(1 + (v − 1)((g/2)−1) + v
∑(g−4)/2

r=0 (v − 1)r, if g is even

1 + V
∑(g−3)/2

r=0 (v − 1)r, otherwise
(3.1)

In Eq. (3.1), n is the number of vertices in the graph. v is vertices degree and g is waist of the graph. Fig.
3.1 outlines a number of Moore graphs with different vertices degree.

As mentioned in Fig. 3.1, the graph (n=4) is a Moore graph with the degree (v=3) and waist (g=3) that
can be computed with Eq. (3.1). Fig. 3.1 indicates various Moore graphs with different vertices [38]. With
compliance Moore graph on DCN, graph vertices will express the servers and edges will express link between
servers. In this case, v (the degree of Graph) will indicate the number of needed ports (in BB) and g will
indicate network girth. Calculate the network diameter with the use of g will be described in the following.

Moore graph can be different values for v and g. also the number of Moore graphs generated for each pair
(v, g) can be more than one. For example, for the pair (3,5) we can generate nine different Moore graph. Moore
graph shows the flexibility for any environment and can be used with any wire length.

Some of the specific values of v and g graphs created and has the certain name that was given to them by
the mathematical researchers. Table 3.1 shows some of these names and specific Moore graphs.

Peterson graph is a special case of Moore graph with the vertex as v=3 and waist as g=5. The pair (3,5)
can generate nine different Moore graphs as shown in Fig. 3.2 and has 10 servers in total that can be computed
in Eq. (3.1) (n(v, g) = 10).

According to what is shown in Fig. 3.2, Peterson graph in all of 9 cases has the diameter equal to 2. This
means that any two vertices that are far from each other have distance equal to 2. So we need a way to calculate
the diameter of network using girth.

Theorem. Diameter of each regular graph is DBasic = ⌊g/2⌋, if g indicates waist length of the graph.
(DBasic indicates the diameter of graph.)

Proof: Waist length in each graph is equal to the number of edges from each vertex to itself through the
unique vertices. Since the graph is regular, this length for all graph vertices will be equal. For each vertex,
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Fig. 3.1. Moore graphs with different number of vertices

Table 3.1

Specific Moore graph

(v,g) Name of Moore Graph

(3,5) graph Petersen

(3,6) graph Heawood

(3,8) graph Levi

(4,6) graph Wong

(5,6) graph order-4 generalized triangle

(7,5) graph Hoffman-Singleton

a path that shows the number of edges from the vertex to itself has passed the farthest vertex of the graph
and returns to the source vertex. So the waist graphs show a complete cycle through the farthest vertex of
the graph. Obviously, the length of the waist can be halved to calculate the farthest vertex. As mentioned in
Fig. 3.2(a), the distance from each vertex to farthest vertex in the graph is 2. So for different values of g, the
network diameter is equal to low g/2 and prove that DBasic = ⌊g/2⌋.

Opposite Theorem. For every regular graph with DBasic diameter, waist length g calculated as 2DBasic

or 2DBasic + 1.

Peterson graph has vertex degree equal 3. This means if basic BB structure degree was 3, we need to
three ports of multi-port servers. For network scalability, we can connect BB structures with links and in a
hierarchical structure. Suppose the first case of Peterson graph is used as the basic structure of architecture.
This basic structure has 10 servers that can be put k number of these structures over each other as showed in
Fig. 3.3. For example, if we want to have 30 servers, we should 3 BB over each other.

As mentioned in Fig. 3.3, to scale the network, two extra port of each server is required to connect BB
structures on top and bottom to each others. The proof shows that the number of ports per server in MooreCube
is v + 2. v ports to connect to other servers in same BB and 2 port to connect to other BB on top or bottom
of that.
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Fig. 3.2. Moore graphs generated for the pair (3,5)

Fig. 3.3. Peterson graph used as basic for a structure with 30 servers

However, when mapping the network with Moore graph, at first we need to know how many ports are
required for each server. It should be noted that the proposed architecture is capable to build with any number
of ports which is an advantage and Indicator of Scalability. With having the number of ports that are required
to each server, the basic structure can be found (v=number of ports-2). By choosing variable v, we can calculate
needed servers for any value of g and selected the best and the most accepted structure. With having g and
v, the BB structure will be determined by Eq. (3.1). Then with dividing the whole needed servers (S) to the
number of servers in each BB can compute the number of BB that is required that is indicated in Eq. (3.2).

k = S/n(v, g) (3.2)

In Eq. (3.2), k is the number of BB and S is the whole number of servers and n(v, g) indicates the number
of servers in BB. As shown in Fig. 3.3, the whole diameter of the network is different from BB diameter
(DBasic). Therefore it is necessary to calculate the overall diameter of the network. Overall diameter equal to
the diameter of the BB network, plus the number of steps required to go from one structure to the farthest
structure. Because every time there is a link that connects the two upper and lower structure, so pairs of far
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Table 3.2

Calculate best waist length with degree=3

v g n(v, g) S/n(v, g) = k S DBasic =

⌊g/2⌋

DTotal =

DBasic +

⌊k/2⌋

3 1 1 30 30 1/2 16

3 2 2 15 30 1 8

3 3 4 7.5 30 1 4

3 4 6 5 30 2 4

3 5 10 3 30 2 3

3 6 14 2.14 30 3 4

structures has a length of ⌊k/2⌋. The overall diameter of the network is calculated by Eq. (3.3).

DTotal = DBasic + ⌊k/2⌋ (3.3)

In Eq. (3.3), Dtotal is the overall diameter of the network, though DBasic is BB diameter and k is the
number of BB.

Practical example. Suppose we have 30 servers and each server has 5 ports. In order to find the number
of required BB, first, we should compute the degree of the basic graph. Because the servers have five ports,
two ports of them will be reserved to connect BBs together. Then we have three ports for BB graph and v=3.
For v=3, we can consider different waist lengths. Table 3.2 shows the number of servers used in any structure
with different g. in this table, DTotal can be calculated for each g. so the most appropriate structure will be
selected. It is obvious the row with lowest DTotal in the table is the best structure. But no need to calculate
all values for all of g. because g and DTotal has a regular trend. DTotal will be reduced with increasing g and
then enhanced when passed the best value of g. this regular trend helps us to choose the most suitable amount
of g. in Table 3.2, the lowest of DTotal belong to the fifth row. So the value of g = 5 will be chosen that has 10
servers in the structure of the BB.

According to Table 3.2, DTotal with different g, will be declined at first and then with passing the best
value of g, start to enhanced. So choose the most optimal value for the variable g easily computed with the
comparison of values in the DTotal column.

4. Routing. MooreCube structure constructed of many BB and each BB constructed of many servers.
Routing in each BB can be done by broadcast shortest path (BSP) algorithm. It is essential to note that
routing algorithms run once before DCN running. So DCN uses the results of routing algorithm. In fact, all
routes should be saved in routing tables for future use. So the complexity of routing algorithm will not have
any effect on the routing between data centers and most of the routing algorithm can be easily used for routing.
Finding the shortest path with BSP is very simple algorithm where each server in order to find the shortest
route to the destination server, first sends a message includes destination server name to all neighbors. The
neighbors who received this message sends the message to their neighbors. This process continues and if the
message received by destination server, process terminated and messages come back to the source server and
collect the intermediate servers as a route from source to destination. The source has received several messages
from different directions to pass each of which have the shortest path as the best path is selected. Routing in
each pair of BB is carried out by a link between them. Each server who wants send a message to a server in
another BB, there are two choices:

• Use the link that connects the source to destinations neighbor (in destination BB).
• Use the link that connects destination to sources neighbor (in source BB).

Routing procedure between each source and the destination indicated in the algorithm 1.
As indicated in the algorithm 1, this algorithm first check if source and destination are the neighbor. If

they were the neighbor, the link between them returned as route (rows 1-3). Otherwise, select one of the links
between two BB as the intermediate link in order to find the shortest path (row 4). Then depending on which
link is chosen, calculate the shortest path using BSP algorithm (rows 5-9).
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Algorithm 1 BSP(src,dst)

Require: src: source server;
dst: destination server;
src and dst located in BB;

1: if src and dst are adjacent then
2: return (src , dst);
3: end if

4: obtain ( link(src , s1) between BB src and dst — link(s2 , dst) between BB src and dst);
5: if link(src , s1) then
6: return (BSP(src , s1) , dst);
7: else

8: return (src , BSP(s2 , dst));
9: end if

MooreCube features.

• Scalability: MooreCube scalability enhances by increasing the number of ports (server ports) as well
as network diameter. According to Eq. (3.2), the number of required BB is equal to k = S/n(v, g).
So the number of servers depends on k and the number of ports in BBs servers. As a result, the total
number of servers in each layer of the hierarchical structure will be calculated by Eq. (4.1).

Sk = k × n(v, g) (4.1)

Eq. (4.1) indicates the number of possible servers in each layer of hierarchical structure k. S k is the
number of servers for all k layer. K is the number of required BB and n(v, g) indicates number of
servers in each BB. Increase the number of servers with increasing variable k in Section 5 and will be
shown in experiments related to scalability.

• Flexibility: Flexibility is one of the most important features in MooreCube architecture. The purpose
of the flexibility is using architectural with the different number of ports. MooreCube is capable of
using multi-port servers in architecture. Although the architecture FleCube [2] also was dealt with this
issue in 2015. But FleCube focused on only flexibility and scalability was not adhered to. For example,
when using FleCube architecture and 3-port servers we cannot have more than 42 server connection
and adding more servers is not possible in this architecture. Therefore, the proposed solution unlike
previous methods focusing on both flexibility and scalability.

• Network diameter: Network diameter indicates the number of steps from a source server to farthest
server on the network. According to section (3.1.1) and proved theorem we know that the network
diameter can be determined by variable g and the overall diameter of the network is DTotal = DBasic+
⌊m/2⌋.

• Bidirectional bandwidth: Network bandwidth indicates data transfer rate on network connections.
The criterion is the most important criteria for determining the speed of a network. Accordingly,
bi-directional bandwidth indicates data transmission rate by network connections. MooreCube archi-
tecture has the bidirectional bandwidth. Eq. (4.2) shows the bidirectional bandwidth of MooreCube
architecture.

v + 2 ≤ bidirectional − bandwidth ≤ n(v, g) (4.2)

In Eq. (4.2), v is the number of ports in each BB.
• Theorem: Bidirectional bandwidth in MooreCube structure is accordance with Eq. (4.2).
Proof: To calculate the bidirectional bandwidth, the network should be divided into two equal part.
The simplest way to divide MooreCube is to divide it into two separate BB that have equal servers. In
this case, the link between these two parts will be equal to the number of servers in each BB unit. all
servers of two connected BB have a link together. So at best case, bidirectional bandwidth is equal to
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the number of servers in BB. In the worst case, there is only a BB should be divided into two equal
parts. In dividing time, if the number of servers is even, we can divide them simply in two parts and
it is clear that only v + 2 link between these two parts can connect parts to each others. Otherwise,
if the number of servers is odd, we can omit one of them and use the earlier case to calculate network
diameter.

• Links and cost: Given that more links in any architecture, increase fault tolerance on the network.
But connecting any two servers is not possible. Because it led to wiring problems and eliminate the
flexibility and scalability of the network. So we should make a trade-off between the number of links and
scalability, flexibility and wiring problems. The number of links should be low as much as possible and
next to it the flexibility and scalability of the network should be high as much as possible. MooreCube
has the simple structure and adding any new server do not need much cost, because not need any switch
and do not change BB structure. In addition, the number of links in each BB is less than the number
of links in a complete graph and this is easily measurable by the number of used server ports.

• Number of parallel disjoint paths: According to section 4 of this article, the following is stated, it
can be concluded that the number of parallel disjoint paths is equal to v+2. The proof is given below.

• Theorem: The number of the parallel disjoint path in MooreCube is Pk = v+2 (if Pk be the number
of the path).
Proof: Each server like a and b has set of neighbors such as seta and setb. We know |seta| = |setb| =
v + 2 . These two elements can have three types of communication: (1) a and b are neighbor and
a ∈ setbandb ∈ seta. So a and b has a link that connects them. (2) a and b have a common neighbor.
So the number of common neighbors is |seta

∩

setb|. In this case, a and b has a path with the transition
from middle neighbors. (3) Each server in seta belong to a BB and setb belong to BB too. These two
BB can be equal or not, in every case a and b have a link/path and can connect to each other. So prove
that a path is between a and b with the transition from middle neighbors and Pk = v + 2.

5. Multipath routing. In order to have several paths which are parallel and disjoin, disjoint parallel
path (DPP) is provided. DPP can select multiple paths between each pair of source and destination which has
less congested links and uses all link capacity. So using DPP, increase bi-directional bandwidth efficiency and
protect network failure.

DPP algorithm uses BSP to find disjoint parallel paths. But using BSP, may led to loop or common link
paths in the network and we know this kind of paths which have common link or loop can cause network
congestion and failure. So all of the parallel paths should be disjoint with any common links. In order to
have such routes, we should change slightly BSP algorithm. This modified algorithm is shown CBSP. CBSP
has three entrance; source, destination and limitation set that includes some server and CBSP should find the
shortest path between source and destination without violating from limitation servers. The procedure is like
that section (2.1.3) but source server should send limitation set when sending a broadcast message to their
neighbors. Each intermediate server with receiving a message, check the content of the collection, if its id is
found within the limitation set, it terminated and not send the broadcasting message. Algorithm (2) indicates
DPP with use of CBSP (improved BSP).

Algorithm 2 calculate the disjoint parallel path for each pair of source and destination. This algorithm
creates set u with neighbor servers id of the source server. Then if the source and destination server are the
neighbor, return their link (rows 1-3). Otherwise, add source id to limitation set and send broadcasting the
message (row 4). Each server can have parallel path depend on a number of ports, therefore for every server
calculate paths based on their neighbors (row 5-8).

Then all intermediate servers added to limitation set (row 9) in order to next parallel path do not use this
server as middle servers.

6. Evaluation results. This section evaluates MooreCube with three kinds of tests includes network
diameter, flexibility, and scalability. In all tests, the proposed MooreCube and other compared solutions imple-
mented in MATLAB software, version 7.14.0 (R2-15a) on a computer with Intel Core i5 Duo 2.53 GHz, 4 GB
Memory and Windows 7 x86 enterprise.

MooreCube compared with CamCube [34] and FleCube [2] solutions. CamCube uses three-dimensional
Torus structure and focuses on scalability and FleCube focus on flexibility.
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Algorithm 2 DPP (src, dst)

Require: src: source server;// dst: destination server;// limitation: set of servers that should not be in
routing// u: set of adjacent server of src

1: if src and dst are adjacent then

2: return (src , dst);
3: end if

4: add src to limitation
5: while (u has unselected server) do
6: p1=randomly get one unselected server of u
7: set p1 status to select
8: return (route=(src,CBSP(p1,src,limitation))
9: add all internal servers of route to limitation

10: end while

In following this section, an experiment done for measure delay in sending and receiving message using DPP
and results are given below.

6.1. Network diameter. In this experiment, the diameter is calculated with increasing number of servers.
Server numbers are from 10 to 105. In each stage, based on a number of servers, appropriate network diameter
is selected. The results are shown in Fig. 6.1.

As shown in Fig. 6.1, when 6-port servers increase, network diameter in CamCube increase exponentially.
FleCube has better network diameter but focuses only on flexibility. Our proposed MooreCube has lowest
network diameter. Because MooreCube uses Moore graph and can use any server ports and can have scalability
using the hierarchical structure.

6.2. Flexibility. Flexibility means useing of architecture with any number of ports in the server and the
architecture must not depend on port and should be usable regardless of server ports. MooreCube is constructive
with any number of server ports. This experiment shows MooreCube flexibility in compress of FleCube and
CamCube. This experiment measures the maximum number of servers that each strategy can connect with a
specified port number. The experiment results are shown in Fig. 6.2.

As indicated in the Fig. 6.2, CamCube use only 6-port servers and can connect any number of servers with

Fig. 6.1. Network diameter (6-ports server)
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Fig. 6.2. The maximum number of servers used in the number of ports

this port number. So CamCube does not have any flexibility in using server ports. FleCube has more flexibility
than CamCube and can use any number of ports. The only problem with this approach is that by choosing the
number of required ports, we cannot add new servers more than the certain number that is clear at first and we
can calculate at first. For example, with 3-port servers in FleCube, the maximum number of servers that can
connect is 42. So it has less flexibility in using server ports. But MooreCube is more flexible than others and
can use any number of server ports.

6.3. Scalability. Scalability means the maximum number of servers used with any given network diameter.
In the experiment, network diameter increased from 3 to 33 and in each stage, a maximum number of servers
that can connect is calculated. Results are shown in Fig. 6.3.

As indicated in Fig. 6.3, CamCube do not have any scalability with increasing network diameter. FleCube
is more scalable than CamCube. But MooreCube is more scalable than CamCube and FleCube. Because uses
Moore graph and can construct with any number of server ports.

6.4. Delay in routing. This experiment calculates link delay in sending and receiving the message. Delay
is calculated in two modes; with congestion and without congestion. The results are shown in Fig. 6.4.

As indicated in Fig. 6.4, if links have no congestion, the delay is constant and delivery time of packets not
change. It means routing algorithm correctly runs and is able to use different routes which are in the routing
table. If links have congestion, the delay will be enhanced with increasing flow. The increase in delay is due
to static routing in data centers. Static routing, run before using DCN and all of the paths stored in routing
tables.

7. Conclusion and future work. In this paper, we proposed MooreCube as a DCN architecture that is
scalable and flexible. MooreCube does not use any switch and connects servers directly. So it stores the cost
of the purchase and maintenance of the switch and has better performance than switch-centric architectures.
MooreCube has more scalability and flexibility and less network diameter. MooreCube uses DPP for routing in
DCN. DPP calculate parallel paths depends on server ports. Parallel paths distribute flow between links and
prevent network failure.

As future work we intend to use of compound graph as BB to decrease network diameter. This paper focus
on scalability and flexibility, as a future work, we want to propose a dynamic parallel path routing that runs
simultaneously with the network using. Decreasing delay can be another future work. Producing parallel paths
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Fig. 6.3. Scalability on network diameter

Fig. 6.4. Average delay and number of passed flow in MooreCube

with the same number of links is another future work.
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