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EXACT AND HEURISTIC DATA WORKFLOW PLACEMENT ALGORITHMS FOR BIG
DATA COMPUTING IN CLOUD DATACENTERS

SONIA IKKEN∗, ERIC RENAULT†, ABDELKAMEL TARI‡, AND M. TAHAR KECHADI§

Abstract. Several big data-driven applications are currently carried out in collaboration using distributed infrastructure.
These data-driven applications usually deal with experiments at massive scale. Data generated by such experiments are huge
and stored at multiple geographic locations for reuse. Workflow systems, composed of jobs using collaborative task-based models,
present new dependency and data exchange needs. This gives rise to new issues when selecting distributed data and storage
resources so that the execution of applications is on time, and resource usage-cost-efficient. In this paper, we present an efficient
data placement approach to improve the performance of workflow processing in distributed datacenters. The proposed approach
involves two types of data: splittable and unsplittable intermediate data. Moreover, we place intermediate data by considering not
only their source location but also their dependencies. The main objective is to minimise the total storage cost, including the effort
for transferring, storing, and moving that data according to the applications needs. We first propose an exact algorithm which
takes into account the intra-job dependencies, and we show that the optimal fractional intermediate data placement problem is
NP-hard. To solve the problem of unsplittable intermediate data placement, we propose a greedy heuristic algorithm based on a
network flow optimization framework. The experimental results show that the performance of our approach is very promising.

Key words: Big data placement, Data workflow management, Dataflow model, Distributed datacenters, Storage cost mini-
mization, Scalable storage and computing
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1. Introduction. This study addresses the problem of intermediate data placement in big data-driven ap-
plications. These data are usually stored in multiple cloud datacentres. The main goal is to be able to efficiently
process and share them between a set of tasks (jobs or services) according to their needs, dependencies, and their
resource requirements. In other words, the problem is how to efficiently store and access the intermediate data
taking into account the inter- and intra-job (process) dependencies. These jobs can be any traditional process
at the level of the operating system or services at the application level. Because of the popularity of the service
delivery model, the cloud consists of a set of services that should be provided to the clients. At a very large
scale (cloud scale), a huge number of activities coexist generating or consuming huge amount of intermediate
data, which are stored in the form of files, called temporary files, in datacentres. From the point of view of
data usage, this follows a workflow depending on the dynamic nature the execution of these services. These
dependencies are of very high importance for the correct execution of the services that were provided to the
clients. Each workflow has different requirements not only in the dependencies of its intermediate data files but
also their sizes and types. Moreover, these services (jobs or set of tasks) can be initiated remotely from different
geographic locations, which adds a level of complexity of how these data can be accessed without putting a
significant stress on the cloud resources (bottlenecks, long waiting queues, etc.). Therefore, the way that these
intermediate data files should be manipulated and managed must take into account their near future usage
(frequency of use, life cycle, etc.). Accordingly, their management (storage, movement, processing, etc.) should
be derived from the workflow of the jobs and services that are using them, which is called ”Data Workflow”.

This paper proposes a new approach that takes into account the types of dependencies and accesses to the
intermediate data, as these are the key factors for improving big data-driven applications while leveraging cloud
resources among the clients in an efficient and scalable manner. We start by formulating the intermediate data
placement dependencies derived from multiple workflows running on distributed cloud datacenters. Then we
model the whole system as a constrained optimization problem, where constraints represent the dependencies
derived from the running workflows. The derived constrained optimization problem that includes storage cost
is very complex. Two types of data are considered; the intermediate data that are used by the same job with

∗Faculty of Exact Sciences, University of Bejaia, 06000 Bejaia, Algeria, and Telecom SudParis, Samovar-UMR 5157 CNRS,
University of Paris-Saclay, France (sonia.ikken@telecom-sudparis.eu, sonia.ikken@gmail.com).

†Telecom SudParis, Samovar-UMR 5157 CNRS, University of Paris-Saclay, France (eric.renault@telecom-sudparis.eu).
‡Faculty of Exact Sciences, University of Bejaia, 06000 Bejaia, Algeria (tarikamel59@gmail.com).
§UCD School of Computer Science and Informatics, Dublin, Ireland (tahar.kechadi@ucd.ie).

223



224 S. Ikken, E. Renault, A. Tari, M. T. Kechadi

their intra-dependencies from multiple tasks and intermediate data that are used by different jobs with their
inter-job dependencies. Since intra-job dependencies can be split partially and placed on different locations (as
in MapReduce), the problem is called minimum cost multiple-sources multicommodity flow problem (MCMF).
Intermediate data dependencies that are used by different tasks (of a single job) can be split and kept in
the same datacenter and preferably at the location of the task. We formulate the problem with these data
as splittable demands which can be solved with an exact algorithm to obtain an optimal fractional solution.
However, as most of these problems are NP-hard, it is difficult to obtain an optimal solution using exact methods
for the variant that deals with unsplittable intermediate data from inter-job dependencies. Greedy approaches
implement simple algorithms but effective for unsplittable flow problem [1, 2, 3, 4, 5], and they scale linearly
with the number of instances. Their resolution techniques are adaptable to our intermediate data placement
problem that the present paper deals with. Experimental results show that the proposed techniques are very
promising for storage cost minimisation.

The rest of the paper is organized as follows: Section 2 summaries the related work. Section 3 introduces
the system model and problem definition according to the cloud computing environment and data models.
The proposed techniques for the optimal intermediate data dependencies placement are presented in Section 4.
Section 5 discusses the performance evaluation and the simulation results. We conclude and give some future
directions in Section 6.

2. Related works. We have thoroughly investigated recent research works on cloud ressource scheduling in
the literature [31, 32, 33]. These works focus primarily on resource sharing and provisioning problems in order
to either save energy consumption or reduce its costs by providing efficient application processing. Authors
in [31], addressed the power consumption problem and network performance degradation by relying on an
optimization model that is based on sliding-scheduled tenant request. The latter allows to manage application
execution time as well as their resources for efficient placement and routing. Authors in [32], proposed a
genetic algorithmic based heuristic methods to schedule tasks across limited resources, but restricted to use
one global cost and time for multiple tasks execution. More recently, authors in [33], addressed the problem
of resource scheduling of scientific workflow applications in cloud. They focus on reducing the cost of the
communications and the information exchange time across a management framework of multiple-site awareness
data administration. Nevertheless, these works did not address the problem of data workflow placement and
the dependencies between resources.

Workflow scheduling problems [35, 36] in cloud environments are considered to be very challenging. Many
strategies based-heuristic were proposed to solve the tasks scheduling problem without considering the data
that are generated by these tasks. Authors in [35], proposed a meta-heuristic approach, called Hybrid GA-
PSO (Genetic Algorithm-Particle Swarm Optimization), to solve the workflow tasks scheduling problem. The
Hybrid GA-PSO algorithm returns a balanced solution for tasks distribution among different virtual machines
in a cloud environment by considering both the total monetary cost and the execution makespan. While the
PSO-based algorithm converges quickly to a local optimal solution, this can be far from the global optimal
solution. In the same context, authors in [36] proposed a metaheuristic-based algorithm, called Hybrid Bio-
inspired Metaheuristic for Multi-objective Optimization (HBMMO), to solve the multiple conflicting objectives
optimization problem. The authors considered in their optimization some important requirements of the users
or the providers, such as makespan, cost, and load balancing among virtual machines. The proposed HBMMO
method optimizes the scheduling of tasks workflow in the cloud environment by considering a non-dominant
sorting strategy which is a hybridization of the list-based heuristic algorithm PEFT (Predict Earliest Finish
Time) [37] and the discrete version of the metaheuristic algorithm SOS (Symbiotic Organisms Search) [38].

Many researchers [34, 6, 7, 8, 9] have focused on the big data placement optimization problem in distributed
system environments. However, most of these studies did not include the dependencies between data workflows.
In addition, these solutions did not take into consideration the dependency type constraint for making interme-
diate data placement decision. Authors in [34], defined an optimization problem based on a greedy heuristic for
simultaneous placement of virtual machines and data blocks. A greedy heuristic allows to place on-demand ap-
plication components by localising network traffic in interconnected datacenters, and therefore, reducing packet
transmission delays, increasing network performance, and minimizing the energy consumption of datacenter
network infrastructure. Nevertheless, the efficiency of multi-tier application processing through the data com-
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munication and correlation is not considered. Authors in [6], proposed a strategy placement for large-volume
user’s data while minimizing their operational costs of accommodating various social networks. The relation
between the user community and dynamic maintenance of the placed user data in an evolving social network
are considered, but the use of the data dependency aspects is not explored. In [7], the big data placement
problem from a collaborative-aware environment that continuously generates data from different geographical
locations has been studied. The authors developed a solution to save the high cost incurring when managing the
distributed big data, and they proposed an approximation algorithm by reducing the data placement problem
to the minimum cost multicommodity flow problem. Their solution addressed a data placement respecting a
fair usage of the cloud services like the quality of service (QoS) requirement of cloud provider while savings
computation and bandwidth costs. The solution is closely similar to our context but differs mainly on the con-
ditions and characteristics of data workflow aspects and by no means disclosing intermediate data dependencies.
They focused more on maximizing the system throughput in terms of data volume to be placed while saving the
computing/storage and communication costs in the distributed datacenters. Sharing intermediate data from
computation produced between different workflow MapReduce jobs is studied in [8]. The authors presented a
scheduling technique for data-driven jobs sharing opportunities that involves the scan of the input file with the
goal of maximizing the likelihood of sharing scans. A similar optimization approach is presented in [9]. A cost
model is presented saving processing time and money for MapReduce jobs in order to define an optimization
problem that finds an optimal grouping of set of queries and solves it using a dynamic programming approach.
These works present a data-driven job scheduling issue which is not exactly the same as the data placement
problem. These do not focus on the intermediate data scheduling optimization as well as the incurred storage
cost.

Workflow scheduling problems [35, 36] in cloud environments are considered to be very challenging. Many
strategies based-heuristic were proposed to solve the tasks scheduling problem without considering the data
that are generated by these tasks. Authors in [35], proposed a meta-heuristic approach, called Hybrid GA-
PSO (Genetic Algorithm-Particle Swarm Optimization), to solve the workflow tasks scheduling problem. The
Hybrid GA-PSO algorithm returns a balanced solution for tasks distribution among different virtual machines
in a cloud environment by considering both the total monetary cost and the execution makespan. While the
PSO-based algorithm converges quickly to a local optimal solution, this can be far from the global optimal
solution. In the same context, authors in [36] proposed a metaheuristic-based algorithm, called Hybrid Bio-
inspired Metaheuristic for Multi-objective Optimization (HBMMO), to solve the multiple conflicting objectives
optimization problem. The authors considered in their optimization some important requirements of the users
or the providers, such as makespan, cost, and load balancing among virtual machines. The proposed HBMMO
method optimizes the scheduling of tasks workflow in the cloud environment by considering a non-dominant
sorting strategy which is a hybridization of the list-based heuristic algorithm PEFT (Predict Earliest Finish
Time) [37] and the discrete version of the metaheuristic algorithm SOS (Symbiotic Organisms Search) [38].

The research works that considered data workflow features are presented in [10, 11, 12, 13, 14]. Nevertheless,
the dynamic variation of inter and intra-jobs dependencies from the generated intermediate data was not
addressed with the same focus. In [10], an adaptive data-task placement approach is proposed that reflects
asynchronous coupling among tasks in order to reduce execution time and data movement overhead. The authors
in [11] have dealt with improving the data workflow’s execution by clustering the interdependent datasets and
distribute them intelligently onto the same datacenters to reduce data transfers. In [14], the authors established
a data placement algorithm based on data dependency clustering and recursive partitioning. The aims of
the algorithm are to reduce the amount of transmitted data and the time consumption during data-intensive
application execution. The pursued strategy is extended with a heuristic to make frequent data movements
occuring on high-bandwidth channels of the entire cloud system.

3. System model.

3.1. Cloud storage infrastructure and assumptions. For the intra- and inter-job data workflow place-
ment problem depicted in Fig. 3.1, the objective is to route and store a set of intermediate data considering
their dependencies generated by a collaborative tasks1 from multiple physical sites while saving their opera-

1Tasks are launched and executed from an environment where scientific users collaborate and conduct their research together.
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Fig. 3.1. The system architecture.

tional costs. Without loss of generality, we assume that the collaborative tasks, which process and generate new
intermediate data files, are previously assigned to the cloud infrastructure (model task assignment offered by a
cloud infrastructure). Since the intermediate data dependency placements are our most significant concern, we
assume that the tasks were assigned to computing nodes following some simple model. The problem of placing
the intermediate data files is close to the well-known MCMF problem; an optimization problem described in
[15] that involves simultaneously shipping multiple commodities through a single graph, so the total flow obeys
the arc capacity constraints by optimizing the cost.

The modeling starts by considering a set of geographically distributed datacenters2 as a directed graph-
based model G = (DC ∪ A,E). It forms a cloud infrastructure and constructs a shared computation and
storage limited to a set of resources for processing and storing the data workflow. Users, such as enterprises,
institutions or researchers, that own and share a cloud infrastructure issued from providers, have an access to
the distributed datacenters (DC) to process multiple collaborative tasks into multiple processing phases. The
distributed datacenters known as storage containers cohabit with collaborative task A through one or multiple
jobs r running in parallel [16]. A set of tasks are collocated on multiple source datacenters, and each task
ari ∈ A from job r is assigned to source datacenter dci. Let {ei,j , ej,j′} ∈ E be the intermediate data transfer
and movement (initial and dynamic intermediate data routing respectively) links between source datacenter dci
and destination datacenter dcj and between destination datacenters dcj and another destination datacenter dcj′ ,
which are geographically interconnected via the Internet. The placement of the intermediate data dependencies
to the set of datacenter destinations dcj ∈ DC is considered at the beginning of each phase.

3.2. Intermediate data dependency model. Placing intermediate data with the same correlation to a
single destination datacenter can significantly decrease the amount of data dependency movements [17]. This
leads to consider a vector of all intermediate data files denoted by ΦM and |ΦM | its size, representing the

2The security and communication management aspects in a collaborative processing are supposed to be covered by the cloud
SLA policy in a cloud environment.
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correlations among them that are generated during the workflow phases divided into equal period of time t.
These correlations, which reflect the intra- and inter-job dependencies from a set of intermediate data files, are
recovered into dependency component m ∈M . M contains all the different components of dependency that are
modeled by a Directed Acyclic Graph (DAG) which takes the advantage of a topology ordering, thus defining
relations among nodes [18, 19]. The DAG represents a set of intermediate data files ϕm

ar
i
(t). Let |ϕm

ar
i
(t)| be

their respective sizes. These data files have unavoidable complex dependencies that are generated by single
task ari ∈ A from job r at source datacenter dci. In DAG, set of files ϕm

ar
i
(t), from the inter-job dependencies,

are atomic and must be synchronized for their processing. By contrast, for the intra-job dependencies, these
files are deduced from a partial correlation with an asynchronous processing [10]. Let ϕm(t) and ϕm

i (t) be the
intermediate data of a single dependency component m generated at multiple datacenters and the single home
datacenter dci respectively and, |ϕm(t)| and |ϕm

i (t)| be their respective sizes. At the end of each workflow phase,
generated intermediate data file ϕm

i (t) ∈ Φm must be outsourced and placed through data transfer link ei,j ∈ E

from datacenter dci to dcj for persistent storing or future reuse [20, 21]. It is important to note that the set of
dependency components M and the related type are a predetermined value given by scientific user that can be
obtained through the data analysis clustering method [22]. We assume that the intermediate data dependencies
clustering is given a priori and is beyond the scope of the present work.

3.3. Capacity and cost model. To come up with an intermediate data dependency placement from
the collaborative task workflow execution in cloud datacenters, we take into consideration the fact that all
datacenters and network resources are limited [23, 24]. Thus, let Sj be the storage capacity of datacenter
destination dcj ∈ DC, and Wi,j , Wj,j′ be the bandwidth capacities of the data file transfer and movement
links ei,j , ej,j′ ∈ E respectively. In order to manage and transfer these files, a data bandwidth denoted wϕ

is assigned for one unit of intermediate data file. During a run-time phase, the available amount of storage
capacity in datacenter dcj , when transferring an amount of intermediate data files ϕm

i (t), is denoted by savaili,j (t).

Let wavail
i,j (t), wavail

j,j′ (t) be the available capacities of a data transfer and movement of links ei,j , ej,j′ ∈ E. In
addition, transferring and storing the intermediate data dependencies from source datacenter dci into destination
datacenter dcj are facing in both storage resource cost and scale. However, they usually consume high costs in
a cloud infrastructure due to an inefficient utilization of the resources [25]. In practice, these resource demands
are leading to operational cost specifically for data transfers and storage costs (measured per one unit in GB)
that embrace the usage-based pricing policy [9]. Moreover, reused intermediate data dependencies that are not
locally stored but remotely served on data demands are led to an additional cost, as movement cost, which
is deducted from their migration among datacenter destinations [14]. In fact, these operational storage costs
are related to the size of the intermediate data files that are transferred, stored and moved among distributed
datacenters according to their correlation during each run-time phase. Moreover, each datacenter destination
dcj ∈ DC is preserved to the geographical area where it is located [26], thus holding a storage cost noted csj . The
proportion of intermediate data dependencies ϕm of a single dependency component generated from multiple
source datacenters and placed separately into different locations dcj and dcj′ are led to a potential dependency
movement cost. For clear differentiation from the transfer cost, we assume that the cost of intermediate data
movement is proportional to the number of intermediate data dependency files transmitted between datacenter
destinations. Therefore, the movement cost is defined as the amount of data moved among two or multiple
destination datacenters. Hence, each link ei,j , ej,j′ ∈ E entry faces data bandwidth cost cwφ

.

For the sake of easier reading, Table 3.1 summarizes the notations used in the present work.

4. Placement algorithms. From the intermediate data dependency placement issue that reduced to an
MCMF problem inG, two variants are materialized. In fact, in the case of intra-job dependency type, the routing
of intermediate data dependencies can be performed using multiple links. When this assumption is omitted,
i.e. when splittable flow routing can be used, variable of the optimization problem becomes continuous and as
a consequence the considered problem becomes easier to solve. In contrast, in the case of inter-job dependency
type, the routing of intermediate data dependencies in G cannot be fractionated. Thus, the MCMF problem
seems to be hard to solve. For this aim, we formulate the intra-job splittable dependency placement based on
a Linear Program (LP) approach, and a heuristic approach is proposed in this section as an approximation
algorithm for the intra-job unsplittable dependency placement.
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Table 3.1

Symbols for the model

Notation Description
G The cloud infrastructure (provider)
DC A set of distributed datacenters in cloud infrastructure G

t The run-time window which represents the homogeneous discrete time
slot from generated collaborative data-tasks workflow processing

A The set of collaborative tasks in distributed datacenter DC

E The set of links among distributed datacenter DC

i, j, j′ Indices used to designate distributed datacenters. i belongs to source
datacenter dci, while j and j′ belong to different destination datacenters
(dcj and dcj′)

ei,j Data transfer link between source datacenter dci and destination data-
center dcj

r Workflow job in the system
ari The collocated task in source datacenter dci
dci A source datacenter temporarily storing generated intermediate data

from collocated task ari of job r ∈ R

dcj A datacenter destination where the intermediate data files are to be
placed

M The set of dependency components in the system including correlation
among generated intermediate data

ϕm(t) The intermediate data files of a single dependency component m gener-
ated in multiple datacenters at time slot t, and |ϕm(t)| its size

ϕm
i (t) The intermediate data files generated in datacenter dci from dependency

component m ∈M at time slot t, and |ϕm
i (t)| its size

ϕm
ar
i
(t) The intermediate data files generated by task air of dependency compo-

nent m at time slot t, and |ϕm
ar
i
(t)| its size

ΦM All generated intermediate data files in the system, and |ΦM | its size
Lϕ The vector list of intermediate data of all dependency components m ∈

M,m = 1, ..., k
wϕ The data bandwidth assigned to one unit of intermediate data file ϕm

ar
i
(t)

Wi,j The data bandwidth capacity of movement link ei,j ∈ E

wavail
i,j (t) The available amount of data transfer link ei,j ∈ E at time slot t

Wj,j′ A data bandwidth capacity of movement link ej,j′ ∈ E

wavail
j,j′ (t) The available amount of data transfer link ej,j′ ∈ E at time slot t

savaili,j (t) The available amount of storage space when transferring an amount of
intermediate data files from source datacenter dci to destination data-
center dcj at time slot t.

Sj The data storage capacity of destination datacenter dcj ∈ DC

xm
i,j(t) A decision variable reflecting the amount of intermediate data flow mov-

ing from source datacenter dci of dependency component m to destina-
tion datacenter dcj ∈ DC at time slot t.

xm
j,j′(t) A decision variable reflecting the amount of intermediate data depen-

dency component m moving between destination datacenters dcj , dcj′ ∈
DC at time slot t

csj The storage cost of one unit of intermediate data in datacenter destina-
tion dcj ∈ DC

cwφ
The data bandwidth cost of one unit of intermediate data

f(ϕm
ar
i
) A dependency component flows in graph Gp

f(ϕm) All flows from a single dependency component in graph Gp

ShPϕ The shortest path from ssource to ssink in Gp
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4.1. Exact algorithm. This section presents an exact analytical algorithm for splittable variant of the
intermediate data dependency placement problem from multiple datacenters in cloud infrastructure G. The
exact algorithm is an LP model with the inclusion of valid conditions expressed in the form of constraints or
inequalities. Through the constraints of the problem, the intermediate data placement in a directed graph
G = (DC ∪ A,E) at time slot t is to route and place intermediate data dependencies ϕm(t) ∈ ΦM that are
considered as continuous commodity flows of dependency component m from multiple source datacenters to
one or multiple destination datacenters while saving their transfer, storage and movement costs. A number of
decision variables and valid inequalities (as listed for convenience in Table 3.1) are thus defined as follows:

1) Decision variables: Let xm
i,j(t) ∈ R be the intermediate data of one dependency component m standing

for the amount of intermediate data dependency flows transferring from source datacenter dci at time slot t

to destination datacenter dcj at time slot t + 1 on link ei,j ∈ G. In order to take into account the amount
of intermediate data dependencies that are moved among different destination datacenters dcj , dcj′ , we add
variable xm

j,j′(t) ∈ R.

2) Flow conservation constraint: One typical constraint or requirement is to ensure that at all time,
every flow through directed graph G is physically possible. First, we enforce flow continuity by making sure
that the sum of intermediate data dependency flows leaving from source datacenter dci at time slot t − 1 is
equal to ϕm

i (t) which is the sum of flows arriving from the same datacenter dci that are considering the same
dependency component m at time slot t. Formally:

∑

j∈DC

xm
i,j(t)−

∑

j∈DC

xm
j,i(t− 1) = ϕm

i (t) ∀m, t, i. (4.1)

3) Capacity constraint of intermediate data flows: Each intermediate data dependency flow xm
i,j(t)

may have its own individual capacity constraint which represents a lower bound on dependency component
commodity m through link ei,j . This ensures the atomicity of lower bound ϕm

ar
i
(t) on xm

i,j(t) of which all these

flows take a same link ei,j , hence:

0 ≤ ϕm
ar
i
(t) ≤ xm

i,j(t) ∀i, j, ari ,m, t. (4.2)

4) Capacity constraint of data transfer links: In G, each link ei,j may have a capacity constraint like
the data bandwidth routing constraint. Equation (4.3) ensures that the routing of aggregate intermediate data
dependencies is limited by the available amount of data bandwidth allocated on link ei,j at time slot t:

∑

m∈M

wϕ · |ϕ
m
i (t)| · xm

i,j(t) ≤ wavail
i,j (t) ∀i, j, t. (4.3)

Additionally, link ei,j is bounded by the data bandwidth capacity at all system execution time, hence:

∑

m∈M

∑

t∈T

wϕ · |ϕ
m
i (t)| · xm

i,j(t) ≤Wi,j ∀i, j. (4.4)

5) Capacity constraint of data movement links: In G, each link ej,j′ may have a capacity constraint
like the data bandwidth routing constraint. Equation (4.5) ensures that moving intermediate data dependencies
is limited by the available amount of data bandwidth allocated on link ej,j′ at time slot t:

∑

m∈M

∑

ar
i
∈A

wϕ · |ϕ
m(t)− ϕm

ar
i
(t)| · xm

j,j′(t) ≤ wavail
j,j′ (t) ∀j, j′, t. (4.5)

Additionally, the link ej,j′ is bounded by the data bandwidth capacity at all system execution time, hence:

∑

m∈M

∑

ar
i
∈A

∑

t∈T

wϕ · |ϕ
m(t)− ϕm

ar
i
(t)| · xm

j,j′(t) ≤Wj,j′ ∀j, j′. (4.6)
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6) Capacity constraint of dependency component: A uniqueness constraint is used to ensure that the
routed intermediate data dependency flows do not exceed the dependency corresponding component capacity.
Formally:

∑

i∈DC

xm
i,j(t) ≤ ϕm

i (t) ∀j,m, t. (4.7)

7) Storage capacity constraint: Each destination datacenter has a limited amount of storage space
available to share across all the intermediate data placement demands. This allows to host only a limited
amount of intermediate data dependencies from source datacenter dci to destination datacenter dcj . Formally:

∑

m∈M

|ϕm
i (t)| · xm

i,j(t) ≤ savaili,j (t) ∀i, j, t. (4.8)

For any intermediate data placement demands, the data routing must not exceed the total storage capacity at
all system execution time. Formally:

∑

m∈M

∑

t∈T

|ϕm
i (t)| · xm

i,j(t) ≤ Sj ∀i, j. (4.9)

8) Balancing constraint: Since the collaborative tasks in the workflow processing generate the inter-
mediate data dependencies in multiple phases, these latter may vary over time in the distributed datacenter
environment. In other words, the flow sequence of generated intermediate data dependencies changes as com-
modity changes. Thus, the flows among the distributed datacenters must be balanced. Hence, source and sink
nodes ssource and ssink are respectively introduced in graph G. Source node ssource is connected to every source
datacenter dci, and sink node ssink is connected to every destination datacenter dcj . Source and sink nodes
are also subject to a constraint that enforces all the intermediate data dependency flows starting on ssource to
ending at ssink. Formally:

∑

i∈DC

xm
ssource,i

=
∑

j∈DC

xm
j,ssink

∀m ∈M (4.10)

9) Data transfer cost: Equation (4.11) denotes the data transfer cost on link ei,j which intermediate
data dependency flows are routed.

C(wi,j) =
∑

i∈DC

∑

j∈DC

∑

m∈M

∑

t∈T

|ϕm
i (t)| · xm

i,j(t) · wϕ · cwφ
(4.11)

10) Storage cost: Equation (4.12) denotes the storage cost of destination datacenter dcj which interme-
diate data dependency flows are routed. Formally:

C(sj) =
∑

i∈DC

∑

j∈DC

∑

m∈M

∑

t∈T

|ϕm
i (t)| · xm

i,j(t) · csj (4.12)

11) Data movement cost: The proportions of intermediate data ϕm from one dependency component
that are stored separately into different locations dcj and dcj′ are led to potential intermediate data dependency
movement cost. With no loss of generality, it is assumed here that the amount of intermediate data that moves
from dcj to dcj′ is defined as the set of intermediate data of a single dependency componentm that is fractionated
from the set of atomic ϕm

ar
i
(t). Formally:

C(wj,j′) =
∑

i∈DC

j ̸=j′∑

j,j′∈DC

∑

m∈M

∑

t∈T

|ϕm(t)− ϕm
ar
i
(t)| · xm

j,j′(t) · wϕ · cwφ
(4.13)
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12) Objective function: The objective of the intermediate data placement problem is to find, for a
given set of dependency flows xm

i,j(t), a set of destination datacenters that can place them to minimize the
aggregate cost of transferring, storing and moving intermediate data dependencies. This can be expressed using
the following expression:

Minimize (C(wi,j) + C(sj) + C(wj,j′)) (4.14)

Under the formulation listed above, the LP model is polynomial. However, the optimization is carried out
with respect to flows xm

i,j(t) that are bounded and constrained as a result of the amount of intermediate data
dependencies ϕm

ar
i
(t) generated by a single task ari . This converges the exact algorithm into a non-polynomial

time regarding to size |ϕm
ar
i
(t)| on very large instances when the splitting of flows xm

i,j(t) becomes marginal.

Since a dependency component cannot start before the intermediate data dependencies of their predecessors are
materialized, the unsplittable version of the intermediate data placement problem considering all flows for each
dependency component from inter-job must be sent along a single link, making the problem NP-hard [15]. Due
to the intractability of the problem, a heuristic is presented to address larger scale instances in a reasonable
time.

4.2. Heuristic approach. The intra-job dependency placement solution is compared to the solution
of the exact approach and requires the placement of the amount of intermediate data dependencies into a
single destination datacenter. Thus, a naive greedy solution considers an integer commodity of dependency
component m from different sources as a single source flow unlike the exact approach that tolerates multiple
source of dependency component m independently when solving the problem. Under the unsplittable solution, a
commodity is never split along multiple paths during the placement decision. Furthermore, the greedy approach
applies a routine procedure in specific graph Gp, and assume that the minimum demands are less than or equal
to the maximum capacity of the nodes in graph Gp [15]. The latter involving less connection, the local search
of the optimum on a specific optimized graph that reduces the search space accelerates the execution time of
greedy solutions.

4.2.1. The greedy optimization framework. The basic idea behind the proposed framework is to
reduce the problem to a minimum cost unsplittable multicommodity flow problem with multiple dependency
component sources in specific directed flow network graph Gp = (DCp ∪ Ap;Ep;u; c), and deals with a cost
function c: E → R and capacity function u: E → R

The first part of the construction of the network flow graph Gp concerns the assignment of the input flows
from multiple sources. For each collocated task ari ∈ A that generates intermediate data ϕm

ar
i
(t) in the same

source datacenter dci, there is a virtual source datacenter node dci(ϕ
m
ar
i
)p in DCp. For all generated intermediate

data ϕm(t) from multiple collocated tasks belonging to the same dependency component m ∈ M , there is a
virtual dependency source datacenter node dci(ϕ

m)p representing those intermediate data dependencies for
different tasks. For all generated intermediate data dependency components ϕm(t) hosted in a multiple source
datacenter in G, there is a virtual dependency component node dc(ϕm)p which corresponds to a virtual location
of distributed source datacenter dci(ϕ

m)p hosting intermediate data of dependency component ϕm(t). The
dci(ϕ

m
ar
i
)p, dci(ϕ

m)p and dc(ϕm)p are added in graph Gp.

In network flow graph Gp, a virtual source node ssource is added and represents the source of all intermediate
data dependencies

∑
m∈M

∑
ar
i
∈A

ϕm
ar
i
(t) hosted in the different virtual source datacenter nodes dci(ϕ

m
ar
i
)p. Source

node ssource is connected with a link (ssource, dci(ϕ
m
ar
i
)p) in Ep to each dci(ϕ

m
ar
i
)p. Also, from this latter to

dci(ϕ
m)p represented by link (dci(ϕ

m
ar
i
))p, dci(ϕ

m)p), involving cost c(ssource, dci(ϕ
m
ar
i
)p) = 0, as well as a link

capacity demand that is assigned as the set of intermediate data dependencies ϕm
ar
i
(t) generated from each

collocated task in the source datacenter at time slot t, i.e:

u(ssource, dci(ϕ
m
ar
i
)p) = u(dci(ϕ

m
ar
i
)p, dci(ϕ

m)p) = |ϕ
m
ar
i
(t)|. (4.15)

A link (dci(ϕ
m)p, dc(ϕ

m)p) is added to Gp from each virtual dependency source datacenter node dci(ϕ
m)p

to the corresponding virtual dependency component node dc(ϕm)p within the same dependency component
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m ∈ M . The corresponding cost is c(dci(ϕ
m)p, dc(ϕ

m)p) = 0, and the capacity is an amount of dependency
component from all source datacenters that temporarily store them, i.e:

u(dci(ϕ
m)p, dc(ϕ

m)p) =
∑

ar
i
∈A

|ϕm
ar
i
(t)| = |ϕm

i (t)|. (4.16)

The second part of the optimization framework deals with the identification of potential links for rout-
ing intermediate data dependencies to the destination datacenter. For each destination datacenter dcj in G,
there is a virtual destination datacenter node dcjp which hosts all intermediate data dependencies for one or
multiple dependency components ϕm. Each virtual destination datacenter node dcjp is added to Gp. The ob-
vious no-bottleneck assumption which was made throughout an unsplittable version of the greedy optimization
framework is that a virtual destination datacenter node dcjp in a network flow graph Gp has enough capacity
to satisfy all dependency components ϕm individually, but not necessarily all commodities. Thus, in graph
G, destination datacenters that do not have available storage capacity to accommodate each dependency com-
ponent are excluded from Gp. Hence, from each virtual dependency component node dc(ϕm)p there is a link
(dc(ϕm)p, dcjp) to each destination datacenter dcjp that is added to graph Gp. All these links are connected to
each virtual destination datacenter node dcjp that satisfies the placement of an integer dependency component
ϕm. A positive cost c(dc(ϕm)p, dcjp) is assigned along a link (dc(ϕm)p, dcjp) from the virtual dependency com-
ponent to the destination datacenter node. The corresponding total storage cost represents the sum of the data
transfer cost cwφ

(dc(ϕm)p, dcjp) and the storage cost csj (dc(ϕ
m)p, dcjp) to host one unit of intermediate data

dependency ϕm
ar
i
, i.e:

c(dc(ϕm)p, dcjp) = cwφ
(dc(ϕm)p, dcjp) + csj (dc(ϕ

m)p, dcjp). (4.17)

In addition to the cost of a virtual link (dc(ϕm)p, dcjp), a capacity u(dc(ϕm)p, dcjp) is assigned, which is
the amount of intermediate data ϕm

ar
i
(t) that can be routed along a virtual link with an available bandwidth

capacity upon routing integer dependency component ϕm. The capacity of the bandwidth is shared between
each routing unit of a dependency component at time slot t. Since, the storage capacity constraint is raised
when a link (dc(ϕm)p, dcjp) is created in graph Gp, the routing of the intermediate data dependency component
ϕm(t) considers only the available amount of a data bandwidth ct(dc(ϕ

m)p, dcjp) on each corresponding link
(dc(ϕm)p, dcjp) to different virtual destination datacenters dcjp at time slot t , i.e:

u(dc(ϕm)p, dcjp) =
wavail

dc(ϕm)p,j
(t)

wϕ · |ϕm
ar
i
(t)|

. (4.18)

A virtual destination node ssink is finally added to a flow graph Gp from each virtual destination datacenter
node dcjp . A virtual link (dcjp , ssink) is added between them. A zero cost is assigned to each virtual movement
link (dcjp , ssink). A capacity u(dcjp , ssink) for each link (dcjp , ssink) is the available amount of storage space in
each one upon storing an integer dependency component ϕm at time slot t, i.e:

u(dcjp , ssink) = savaildcjp
(t)− |ϕm(t)| (4.19)

Figure 4.1 shows the representation of the generated directed flow graph Gp = (DCp ∪Ap;Ep;u; c)

4.2.2. Greedy heuristic algorithm. A greedy heuristic algorithm has been developed for the minimum
cost inter-job intermediate data dependency placement problem through the reduction to the minimum cost of
unsplittable multicommodity flow with multiple dependency component sources in flow graph Gp.

Let Sdcj ,min be the minimum storage capacity of a destination datacenter dcjp on a network flow graph
Gp, and ϕm

max the largest dependency component generated from virtual source datacenter node dc(ϕm)p. As
storage resources are scalable in a flow graph Gp acting as a cloud environment, it is realistic to assume that
|ϕm

max| ≤ Sdcj ,min from the construction of the flow graph Gp. Since the splittable exact algorithm is a relaxation
of the unsplittable heuristic algorithm, a feasible solution is assumed for the splittable exact algorithm which
is fractional feasible flow f0 that satisfies all demands of dependency component ϕm. Since all dependency
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Fig. 4.1. The generated directed flow graph Gp = (DCp ∪Ap;Ep;u; c).

components are known a priori, so is their generation order. Hence, the greedy heuristic algorithm adopts an
orderly greedy method and starts with the initial placement and works in steps. At the end of each step, it
outputs a set of destination datacenters and transfers intermediate data dependencies to that destination data-
centers, considering a minimum transfer and storage cost. As the greedy algorithm gives sequential placement
solutions, there is no congestion problem on the different dependency components sharing links. Therefore, the
greedy algorithm just takes care of the integer dependency component placement (bandwidth capacity is shared
between the flows of a single dependency component at time slot t) to their destination. The greedy heuristic
algorithm execution on a network flow graph Gp is provided in the following steps:

Step 1. Let f(ϕm) be the dependency component flow for all dependency intermediate data-task flows∑
ar
i
∈A

f(ϕm
ar
i
) with the minimum total storage cost from ssource to ssink. Flows f(ϕ

m) route dependency compo-

nent commodities ϕm
ar
i
from different virtual source datacenter nodes connected from source node ssource to their

destination datacenter nodes dcj(ϕ
m)p, the latter being connected with destination node ssink. A set of depen-

dency component commodities
∑

m∈M ϕm are routed to ssink in graph Gp according to the ascending order of

their respective size as dependency component demands: |ϕ1|, |ϕ2|, ..., |ϕk|, with ϕ1 ≥ ϕ2 ≥ ϕ3 ≥ ... ≥ ϕk. Let
Lϕ = (ϕ1, ϕ2, ..., ϕk) be the dependency component list.

Step 2. Start with the first dependency component by selecting it from list Lϕ. The algorithm scans
each dependency component value ϕm

ar
i
(t) in Gp to find the possible path which routes the selected dependency

component flow f(ϕm) along each link (dc(ϕm)p, dcjp) inGp that satisfies the flow conservation inGp i.e from any
nodes dcp, dc(0)p ∈ DCp \ {ssource, ssink}, there is

∑
dc(0)p∈DCp

f(dcp, dc(0)p) =
∑

dc(0)p∈DCp
f(dc(0)p, dcp).

Step 3. For each solution of dependency component flow f(ϕm), find the shortest path noted ShPϕ from
ssource to ssink in Gp according to the total minimum storage cost, i.e., c(ShPϕ) =min(dc(ϕm)p,dcjp )∈Ep

c(dc(ϕm)p,

dcjp). Once the shortest path ShPϕ is found, set f(ShPϕ) = ϕm and delete iteratively its flow value f(ϕm
ar
i
).

Define residual capacity ures(ssource, ssink) from ssource to ssink in order to decrease the routed flows in graph
Gp, i.e., ures(ssource, ssink) = u(ssource, ssink) - f(ShPϕ). Delete the routed dependency component ϕm from
list Lϕ and repeat the sub-procedure of step 2 until all flow values f(ϕm

ar
i
) are scanned.

Step 4. Repeat the sub-procedure of step 3 until Lϕ ←− ∅ and carry the largest flow values iteratively.
Then, restore these shortest paths including the optimal cost and denote for each ShPϕ the pair < ϕm, dcj >
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corresponding to graph G.

4.2.3. Time complexity. To build a network flow graph Gp for the greedy framework optimization, two
steps are needed. The first one consists in assigning each source datacenter dcj ∈ DC hosting intermediate data
to its dependency component node m ∈M , and the second one to each destination datacenter dcj ∈ DC which
is capable of accommodating. The construction of Gp takes O(M + |DC|) for the first step and O(M2+ |DC|2)
for the second one. Finally, we analyze the time complexity of the greedy solution which considers mostly the
shortest path computing step and the sorting of the list of dependency components. The worst complexity
of the sorting computation has a fundamental requirement of O(M2). The shortest path computation step
is more complex and requires computing the distance between all intermediate data dependency components
and datacenter destinations. This leads to O(M2 × |DC|2) time complexity to consider all combinations or
couples. In summary, the average computational complexity of the proposed greedy heuristic algorithm is
O(2M2 + |DC|2 × (M2 + 1) +M + |DC|) in the worst case.

5. Performance evaluation. This section gives an overview of the simulation, evaluation conditions
and settings of the proposed algorithms. A dedicated simulation program has been developed to conduct
the performance assessments of the heuristic and compare it with the exact algorithm, random and uniform
strategies, named random heuristic and uniform heuristic respectively. The random heuristic strategy randomly
selects a datacenter to host the intermediate data until its capacity is exhausted and then selects another one
as in default Hadoop scheduler [30] (random capacities and random costs). The uniform heuristic strategy
is based on the uniform storage capacity of the distributed datacenter upon intermediate data dependency
placement decision (balanced capacities and variable costs). This data placement strategy excludes the storage
requirements as in [27, 28, 29, 11]. Subsequently, the performance evaluation overall intends to present relevant
comparisons between the solutions found by the greedy heuristic algorithm with the optimal ones found by the
exact algorithm in terms of performance metrics like optimality, scalability and convergence time.

5.1. Simulation environment. The heuristic is evaluated through a C++ language implementation.
The exact algorithm is implemented with IBM ILOG AMPL and solved optimally using CPLEX. The objective
of a numerical evaluation is to quantify the amount of total storage cost saving (objective function) that
can be expected when routing intermediate data dependencies through cloud storage infrastructures using the
greedy heuristic and exact algorithms. The evaluation also reflects particularly the influence of the number of
datacenters, the amount of the routed intermediate data and the dependency parameters on the performance
metrics.

The assessment scenarios correspond to a cloud infrastructure consisting of 50 distributed datacenters
including source and destination datacenters which are connected to each other randomly. We run the simulation
program for 20 random tasks, each one including an amount of a random intermediate data generated per one
hour time slot in random adjacency matrix-based DAG, each one having a size ranging from 10 GB to 100 GB
[12], including their dependencies that are generated randomly as correlation links in DAG from input to output
intermediate data. The latter are assigned randomly to the set of source datacenters in charge of temporarily
storing them.

The intra-job dependency is described by a dependency parameter value α generated randomly from range
[0, 1] and belonging to each intermediate data-task in the DAG. Value 1 corresponds to a splitting rate of an
intermediate data file (a fraction of 1 GB splitting for each file from partial correlation), and the opposite case
is represented by value 0. A dependency parameter value β is given also that is generated randomly from range
[1, 20] which represents the number of clusters randomly grouping intermediate data-tasks. For the inter-job
dependency, we set the value of α to 0 from full correlation coupled with dependency parameter value β (the
case of inter-job dependency is intrinsically related to the intra-job dependency case when the α value of the
latter converges to 0 and has the same dependency value β). On all the carried out experiments, the case when
α = 1 and β = 20 are excluded which means that the intermediate data are completely independent. The
same dependency parameter value β is assigned to both intra- and inter-job dependencies according to each
experiment.

The storage space capacity is considered for the datacenters as randomly set from range [10 GB, 1000 GB]
[12]. The transfer link capacity of one unit of intermediate data transmission between distributed datacenters
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Fig. 5.1. The total storage cost of algorithms exact, greedy, random and uniform heuristics while varying the intermediate
data size when the number of datacenters is set to 50.

are randomly drawn from range [1, 10] Gbps [7] with a random transfer cost (in $) ranging from 0 to 0.09. Both
storage and transaction costs (in $) of one unit of intermediate data dependency are set within [0.02, 0.04] and
[0, 0.09] respectively, in relation to the typical charges in Amazon S3 3.

5.2. Simulation results. To present the performance of the proposed algorithms regarding their effec-
tiveness against comparison strategies solutions, we study the optimality of the exact and greedy heuristic
algorithms in terms of the total storage cost ratio, and the results of the scalability and the convergence are
reported below.

5.2.1. Impact of the amount of routed intermediate data on algorithms performance. For the
specific needs of the simulation, a variation of the amount of intermediate data must be placed from 100 to
1000 GB with an increment of 100 while the number of datacenters DC is set to 50.

To continue to appropriately analyze the simulation, we reflect the concerns of dependency parameter values
on the algorithms performance. In this case, each solution found from the execution algorithms is a mean of
the results obtained by varying dependency parameters α and β from range [0, 1] and [1, 20] respectively.

Figure 5.1 depicts the curves of total storage cost delivered by the proposed algorithms and the two other
strategies. The figure shows that both greedy heuristic and exact algorithms outperform random heuristic and
uniform heuristic strategies in terms of cost. The optimal result obtained by the exact solution reaches a cost
of $125 when the amount of placed intermediate data achieves 1000 GB, and the greedy heuristic algorithm
achieves a nearly optimal storage cost of $160, which is lower than the costs of the random heuristic and uniform
heuristic algorithms (43% and 12% respectively). Clearly, the gap between greedy heuristic and uniform heuristic
algorithms is very small since the uniform heuristic is independent of the capacity of the cloud infrastructure,
so the cost within the datacenters contrast on the placement decision.

Figure 5.2 depicts the curves of the total storage costs of the algorithms by increasing the simulation time.
In this instance, the obtained result of the total storage cost is the aggregation of the previously calculated
costs during the same simulation (continuous placement). In addition, the simulation test is conducted for 48h
in order to validate the need of the greedy heuristic algorithm and to estimate the probability to have good
solutions. The lengthening of simulation at time slot 48 while the number of datacenters DC is set to 50 makes
the total storage cost of algorithms greedy heuristic, exact, random heuristic and uniform heuristic to $4900,
$3300, $7000 and $5400 respectively. Typically, this means that the cost of greedy heuristic is 10% and 42%
less than those of uniform heuristic and random heuristic algorithms, while the result of the exact algorithm

3https://aws.amazon.com/fr/s3/pricing/
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Fig. 5.2. Total storage cost of algorithm exact, greedy, random and uniform heuristics when the simulation time is extended
to 48h, while the number of datacenters is set to 50.

Fig. 5.3. The amount of intermediate data accumulated per time slot for the proposed algorithms while the number of
datacenter ranges from 5 to 50.

as expected remains the best total storage cost. These results show that the uniform capacity constraint
on the intermediate data growth directly affects their placement cost as in the case of the uniform heuristic
algorithm. In the case of random heuristic algorithm, some datacenters offering the lowest cost are not involved
unintentionally (random selection) or of the causes of inability to host data.

The aim of the performed simulation as depicted in Fig. 5.3 is to quantify the amount of intermediate
data placed continuously by varying the number of datacenters from 5 to 50 according to capacities. The
accumulated intermediate data placement increases with the increase of the number of datacenters for both
algorithms, and begins to be stable when cloud infrastructure handles 25 datacenters. Moreover, the amount of
intermediate data accumulated by greedy heuristic algorithm is very important over all variations of datacenter
instances, more importantly, from 25 to 50, due to the abundance of the cloud infrastructure capacity, i.e. more
intermediate data can be placed in the cloud infrastructure. The decline of intermediate data placement from 25
to 50 is due to the fact that the intermediate data routing is limited by data bandwidth wavail

i,j (t) and wavail
j,j′ (t)
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since the bandwidth capacity is shared by all dependency components in the exact algorithm. In contrast,
in the greedy heuristic algorithm, the data bandwidth capacity is shared by a single dependency component.
However, in the exact algorithm, the amount of placed intermediate data is less in comparison with the greedy
solution, because it expands the search space for the exact solution since it is based on the simplex method.
Thus, the greedy heuristic algorithm responds well to large datacenter instances for which the exact algorithm
has more difficulty to find solutions.

5.2.2. Impact of dependency parameters on the algorithms performance. This section studies
the impact of the dependency parameters α and β on the algorithms performance in terms of optimal cost. Since
the behavior of the proposed execution algorithms regarding dependency type that are processed are different,
a need of a variation of quantitative values is experienced for achieving a useful analysis and allowing optimal
cost to the unsplittable placement solutions to be more efficiently identified. On the one hand, interval values
are considered to align the types of dependency. On the other hand, values are considered when dependency
types diverge. In the following, the assessment scenarios correspond to varying dependency parameters (α, β)
pair values. Then, simulation results correspond to pair ranges from (α, β)= (0.1, 18), (0.3, 14), (0.5, 10),
(0.7, 6), (0.9, 2). These results are reported on figures below keeping the value of α to 0 and with the same
dependency values β for the greedy heuristic algorithm while the number of datacenters is set to 50.

Fig. 5.4. Greedy heuristic versus exact solutions for the total storage cost when α = 0.1 and β = 18.

Figure 5.4 depicts the best optimal cost achieved by the objective function for exact and heuristic solutions.
The greedy heuristic algorithm performs very well close to the optimal one and achieves a cost of $3000 at
time slot 48 that is near to the optimal result of $2400 for the exact algorithm. This is due to the fact that
the behavior of the two algorithms have to deal with the aligned correlation α = 0.1 (practically, no amount
of intermediate data is splitted with exact, and 0 defaults to the heuristic) with β = 18. Therefore, this has a
direct impact on the reduction of the transfer, storage and movement costs for both algorithms.

Figures 5.5 and 5.6 depict the second best-case results for the total storage cost which does not exceed
$2800, $3000 for the exact algorithm, and $4000, $4500 for the greedy heuristic algorithm at time slot 48.
Since, the amount of the dependency movements are marginal to half (α = (0.3, 0.5)) in the exact algorithm,
the movement cost is reduced, which reflects the total storage cost. In addition, the heuristic algorithm processes
less intermediate data dependencies (10 to 14 clusters). Therefore, it has more chance to find datacenters that
have the capacity to allocate those clusters and at the same time offer a better cost.

Fig. 5.7 shows the case when the amount of dependency movements increase more than half (α = 0.7) with
the growth of the intermediate data dependency volume (β = 6). This gives a total storage cost of $3800 and
$5800 respectively for exact and greedy heuristic algorithms. It can be seen that the total storage cost of the
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Fig. 5.5. Greedy heuristic versus exact solutions for the total storage cost when α = 0.3 and β = 14.

Fig. 5.6. Greedy heuristic versus exact solutions for the total storage cost when α = 0.5 and β = 10.

two algorithms dependents on the amount of intermediate data dependencies. This validates our analysis for
the results discussed above (Fig. 5.4, 5.5 and 5.6).

Fig. 5.8 shows the worst case when the highest total storage cost is found for both algorithms. The total
storage cost reaches $4200 and $7200 for exact and greedy heuristic algorithms respectively at time slot 48 since
the amount of intermediate data dependencies that transit between destination datacenters are significant (α =
0.9) for the exact algorithm (defined by variable xm

j,j′(t)). In contrast, the heuristic processes more dependencies
grouped onto two clusters. In addition, the same capacity values were considered for each solution reached with
the different values of α and β. Therefore, it has less opportunity to find datacenters than the capacity to
allocate those large clusters, and at the same time it offers a better cost. This influences considerably the search
for the optimal result which is a real compromise for both algorithms.

The performance of the greedy heuristic algorithm as compared to the exact fractional optimal solutions in
terms of total storage cost are represented as a cost ratio between the cost delivered by the heuristic algorithm
HEUR which is a greedy approximation approach for the unsplittable intermediate data dependency placement
problem, and the fractional optimal solution FRAC OPT provided by the simplex method to the problem of
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Fig. 5.7. Greedy heuristic versus exact solutions for the total storage cost when α = 0.7 and β = 6.

Fig. 5.8. Greedy heuristic versus exact solutions for the total storage cost when α = 0.9 and β = 2.

splittable variant of the placement. The cost ratio of the heuristic HEUR is ϵ = HEUR
FRAC OPT

. The cost ratio of
the different curves above (Fig. 5.4 to 5.8 ) is reported in Table 5.2 when the number of datacenters varies from
5 to 50.

One can be see that the cost ratio of the greedy heuristic algorithm is no more than 1.85. Indeed, for
simulated instances in the range from 5 to 50 datacenters when dependency parameter pairs (α, β) = {(0.1, 18);
(0.3, 14), (0.5, 10)}, the cost ratio of the greedy heuristic algorithm performs closer to the optimal solution and
does not exceed 1.25, 1.42 and 1.52 respectively for each pair in fairly adverse conditions.

However, in the range from 5 to 50 datacenters when dependency parameter pairs (α, β) = (0.7, 6), the
greedy heuristic encounters some difficulties in finding an optimal solution. Thus, the cost ratio of greedy
algorithm reaches 1.81. Note that, in the greedy algorithm, the feasibility of the solution is assumed by scaling
datacenter capacities. Thus, there is a solution to the problem when β = 2. The cost ratio of the greedy
algorithm in this case reaches 1.85, which diverges considerably from the optimal solution, as a condition for
finding any solutions that matches the optimal ones when α ≤ 0.5 and β ≥ 10. Even as well, if dependency
types are well identified, it is more difficult in these cases to find the best cost ratio meeting the dependency
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Table 5.1

Gaps between the greedy heuristic and the exact algorithms in terms of cost ratio.

DC

(α; β)
(0-0.1, 18) (0-0.3, 14) (0-0.5, 10) (0-0.7, 6) (0-0.9, 2)

5 1.255 1.410 1.510 1.819 1.858
10 1.253 1.422 1.509 1.820 1.859
15 1.249 1.413 1.511 1.809 1.857
20 1.248 1.401 1.512 1.809 1.856
25 1.245 1.402 1.509 1.808 1.856
30 1.239 1.402 1.513 1.810 1.851
35 1.241 1.411 1.520 1.810 1.851
40 1.241 1.411 1.520 1.819 1.850
45 1.250 1.420 1.519 1.819 1.849
50 1.249 1.419 1.519 1.819 1.850

restrictions. Indeed, each proposed algorithm responds differently to the dependency requirements as well.

A special cases are also considered which are not reported on Table 5.2, when dependency parameter pairs
are set from a range of (α, β) = (0.1, 1), (0.1, 2), (0.9, 19), (0.9, 18). These parameter values are the most
extreme and contradictory cases, in the sense that for dependency pairs (0.1, 1) and (0.1, 2), the exact algorithm
finds a solution with an adjustment of time (beyond the days) but could not find an optimal solution, and for
the latter cases (0.9, 19) and (0.9, 18), this does not reflect the correlation-type of intra-job dependency.

We conclude that the cost ratio of the greedy algorithm depends on the value of the dependency parameters
and the amount of intermediate data that increase at each time slot. In the two cases, where the dependency
parameters nearly correlate (α, β) = {(0.1, 18); (0.3, 14), (0.5, 10)}, the cost ratio is more profitable. This
means that the two proposed algorithms reacted well to these dependency value requirements. However, the
cost ratio of the greedy algorithm that is reported in Table 5.2 increases as dependency parameters deviate
(α, β) = {(0.7, 6); (0.9, 2)}.

5.2.3. Convergence time of the proposed algorithms. To pursue the extensive experiments, we
evaluate the effectiveness of the proposed algorithms and compare them in terms of scalability and convergence
time from input parameters. For the comparison, we extend the simulation by varying the number of datacenters
from 10 to 100 and by setting the amount of routed intermediate data from 100 GB to 1000 GB. Obviously, the
values of the dependency parameters must also vary in order to better understand the behavior of the execution
time of the proposed algorithms as regard to the dependencies. Thus, the value of dependency parameters is
set as specified in Sec. 5.2.2. Algorithm running times are recorded as follows.

First, the execution time of the greedy algorithm solves the placement problem one to four orders of mag-
nitude faster than the exact solution. However, the exact algorithm solves the NP-hard problem in exponential
time for large instances since a part to solve the simplex-based LP method takes much time, particularly for
α values between 0.1 and 0.5 because the intermediate data splitting parameters are less tolerated throughout
their placement. Furthermore, the values of dependency parameters correlate with the continuous amount of
intermediate data bounded by a discrete quantity. Not surprisingly, greedy heuristic is much easier to solve
than the exact algorithm.

Indeed, Fig. 5.9 shows the best convergence time for each of the proposed algorithms.

The time needed to find an optimal solution when the amount of intermediate data to be hosted is 100
GB remains very satisfactory for datacenter sizes below 10, with less than 0.075 and 0.7 seconds for greedy
heuristic and exact algorithms respectively. For datacenter sizes below 50, the convergence time remains fairly
reasonable too, with less than 0.15 and 1.05 seconds for greedy heuristic and exact algorithms respectively. For
the latter, it slightly increases when the number of datacenters is beyond 100 (about 5 seconds). In fact, the
exact algorithm performance gradually degrades with input network topology and exponentially grows for wide
range (not shown in Fig. 5.4). The following figures (Fig. 5.10 and 5.11) show these behaviors.
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Fig. 5.9. Time execution comparison between greedy heuristic and exact algorithms for different datacenter size when varying
the amount of generated intermediate data (|ΦM |= 100 GB).

Fig. 5.10. Time execution comparison between greedy heuristic and exact algorithms for different datacenter size when varying
the amount of generated intermediate data (|ΦM |= 500 GB).

Figures 5.10 and 5.11 show the worst cases for the exact algorithm. Then, the time needed for convergence
grows mainly for an amount of placed intermediate data. These amount varies between 500 GB and 1000 GB
for the simulated scenarios from 50 to 100 datacenters while the time running the greedy heuristic remains very
fast to find solutions with a convergence time improvement ratio in range [101,103] as compared to the exact
algorithm. Although dependency parameter values vary, the number of routing β from 2 to 18 commodities, the
heuristic algorithm scales better already for these large instances and it is more robust in ensuing scenarios and
simulations. By contrast, the exact algorithm performance reacts poorly to dependency parameter variations.
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Fig. 5.11. Time execution comparison between greedy heuristic and exact algorithms for different datacenter size when varying
the amount of generated intermediate data (|ΦM |= 1000 GB).

Particularly, this corresponds to values of α that vary from 0.1 to 0.5, where the exact algorithm exceeds a
running time of one minute as shown in Fig. 5.10.

The convergence time increases with the number of datacenters as well as slightly less with the amount of
intermediate data (see Fig. 5.11). As a matter of fact, the capacity of bandwidth is limited to 10 GB for data
transfer, but with more transfer links through the growth of the number of datacenters.

The gap between the algorithms is in range [102,104] with an improvement factor in favor of the greedy
heuristic.

As expected for the exact algorithm that was built upon the simplex method (which is based on the number
of intermediate data to be fractionated and this is done for each iteration as the scale of the datacenter and
links between them, meaning that the separation procedure is generally not polynomial) and even with the use
of a set of dependency constraint values to limit the convex hull problem to find the optimal solution faster that
goes beyond 500 GB for100 datacenters, the convergence time remains widely slow at about 7 minutes.

In conclusion, the execution time of the proposed algorithms depends mostly on the cloud infrastructure
topology, and slightly less on the amount of intermediate data dependencies for the exact algorithm. Besides,
the change in dependency parameter values influences largely the exact algorithm performance and much less
the greedy heuristic. This validates the motivation for the use of a heuristic approach to find solutions faster
even if there are bound to be approximated (as reported in Table 5.2).

6. Conclusion. In this work, we have studied the problem of intermediate data dependency placement.
We presented and evaluated an exact model, as well as a greedy heuristic. Our proposed solutions try to save
the total storage cost for an economical and efficient task workflow processing across distributed datacenters.
The presented solutions take into consideration both intra- and inter-job dependencies including fractional and
atomic demands respectively. The exact algorithm based on the LP model introduces new locality constraints
on the optimal placement of intermediate data dependencies. The latter can be fractionated and routed in the
same physical datacenter or assigned to different destinations. In addition, the exact model is generic enough to
optimize the data placement for task workflow processing in cloud environment thanks to the use of a generic
objective function that combines multiple criteria such as data bandwidth and storage capability, as well as data
movement optimization with an approved scalability for medium instances. Despite our formulation for the LP
model, the number of datacenters and the variation of intermediate data dependency parameters makes it only
solvable for medium instances. In order to ensure the placement of inter-job dependency-based intermediate
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data for larger instances, we developed a heuristic based on a greedy optimization framework, this, solves the
problem in very fast time, making an assumption of an optimal fractional solution. The evaluation tests show
that the greedy heuristic algorithm performs closer to the exact formulation solution (in the case of converged
correlations), and boots higher performance as compare to other state of the art strategies. We evaluated also
the convergence time of the proposed algorithms. It is improved by several orders of magnitude for the greedy
heuristic algorithm compared to the exact algorithm, while making possible to solve large cloud infrastructures
in a reasonable time.
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