
Scalable Computing: Practice and Experience

Volume 19, Number 3, pp. 245–257. http://www.scpe.org

DOI 10.12694/scpe.v19i3.1375
ISSN 1895-1767
c⃝ 2018 SCPE

SIGNIFICANCE OF HIERARCHICAL AND MARKOV CLUSTERING IN
GROUPING-AWARE DATA PLACEMENT FOR DATA INTENSIVE APPLICATIONS

WITH INTEREST LOCALITY ∗

SHANMUGASUNDARAM VENGADESWARAN†AND SADHU RAMAKRISHNAN BALASUNDARAM‡

Abstract. During the execution of complex queries, the execution time increases exponentially, resulting in more waiting time
for the user, which may sometimes extend to hours or even days in the worst cases. By virtue of their parallel and distributed
computing capability, Hadoop and Spark are considered as an ideal solution for such complex query processing. Even though
they are considered as an efficient solution for complex query processing, they have their own limitations when the data to be
processed exhibits interest locality (i.e.) the data required for any query execution follows grouping behaviour wherein only a part
of the BigData is accessed frequently. Since the data placement provided by these frameworks does not consider interest locality,
it is possible that the dependent blocks required for execution will be concentrated within fewer computing nodes, resulting in
several lacunas such as underutilisation of resources, and increased query execution time. Hence this paper proposes an Optimal
Data Placement (ODP) Strategy based on grouping semantics. The significance of different clustering techniques viz. k-means,
Hierarchical Agglomerative Clustering (HAC) and Markov Clustering (MCL), in grouping-aware data placement for data intensive
applications with interest locality has been examined in this paper. Initially, the user access pattern is identified by dynamically
analysing the history log. Then, clustering techniques (k-means, HAC and MCL) are separately applied over the access pattern to
obtain independent clusters. These clusters are interpreted and validated to extract the Optimal Data Groupings (ODG). Finally,
the proposed strategy reorganises the default data layouts in Hadoop Distributed File System (HDFS) based on ODG to achieve
maximum parallel execution per group subjective to Load Balancer and Rack Awareness. Our proposed strategy is tested in 10
node cluster placed in a multi-rack with Hadoop installed in every node deployed in the cloud platform. The proposed strategy
reduces the query execution time, significantly improves the data locality and CPU utilisation, and is proved to be more efficient for
massive dataset processing in a heterogeneous distributed environment. In addition, MCL shows a marginal improved performance
over HAC and k-means for queries exhibiting interest localities.

Key words: BigData, Storage and Compute Infrastructure, Interest Locality, Data Placement, Hierarchical Agglomerative
Clustering, Markov Clustering, Heterogeneous Hadoop Cluster, Cloud

AMS subject classifications. 68-M14, 68-M20, 68-W10, 68-W15

1. Introduction. In the current data era, massive volumes of data are being generated every second in
a variety of domains such as geosciences, the social web, finance, e-commerce, healthcare, climate modelling,
physics, astronomy, government sectors etc. BigData is the term applied to such large volumes of datasets
whose size is beyond the ability of the commonly used software tools to capture, manage, and process within
a tolerable elapsed time [1, 2]. By virtue of their parallel and distributed computing capability, Hadoop and
Spark [3, 4, 5] are considered ideal solutions to analyse and gain insights from BigData and are well-recognised
as de facto BigData processing platforms in the cloud; they have been adopted extensively and are currently
used widely in many application domains. Apache Hadoop [1, 6] facilitates the distributed processing of large
datasets across clusters of commodity hardware using simple programming models. Here, local storage and
computation are achieved through the two major components namely Hadoop Distributed File System (HDFS)
and MapReduce (MR). The fundamental concept of HDFS [7] and MR [8] is to distribute data among nodes
and process them in parallel. HDFS is a distributed file system capable of storing large files across multiple
nodes. It follows a master-slave architecture, consisting of one NameNode and multiple DataNodes. When a
file is dumped into HDFS, it is broken into fixed-size blocks and stored on multiple DataNodes. The DataNodes
periodically report the blocks stored in them to the NameNode, thereby updating the metadata. When a query
is executed from a client, it will reach out to the NameNode to retrieve the metadata, and then reach out to
the DataNodes to retrieve the data blocks.

The major challenge in processing BigData in HDFS is faced during query execution, since the time taken

∗The research work reported in this paper is supported by Department of Electronics & Information Technology (DeitY), a
division of Ministry of Communications and IT, Government of India.

† Department of Computer Applications, National Institute of Technology, Tiruchirappalli 620015, India.
(meetvengadesh@gmail.com). Thanks to Microsoft Azure for sponsoring the cloud infrastructure required to carry out the
experiments under the Microsoft Azure for Research Award.

‡ Department of Computer Applications, National Institute of Technology, Tiruchirappalli 620015, India. (blsundar@nitt.edu).

245

246 S.Vengadeswaran, S.R. Balasundaram

Fig. 1.1. Various stages of clustered graph by applying clustering algorithm

to execute a query and return the results increases exponentially as the amount of data increases, leading
to a long waiting time for the user [9]. Sometimes, the waiting times could range from minutes, to hours,
to days in the worst cases. During query execution, it is commonly observed that most of the data-intensive
applications exhibit interest locality [10]. It may be different for different domain analysts based on geographical
location, time, person etc. (i.e. domain scientists are only interested in a subset of the whole dataset, and are
likely to access one subset more frequently than others. For example, in the bioinformatics domain, X and Y
chromosomes are related to the offsprings gender. Both chromosomes are often analysed together in generic
research rather than all 24 human chromosomes). Mostly, for query execution, only a part of such BigData
sets is utilised. The detailed analysis of various query executions clearly shows a significant similarity in the
data required to execute the query during a set of time intervals. These data blocks will then have the highest
frequency of being accessed as a group during executions. Data grouping is then formally defined as grouping
semantics to represent the possibility of two or more data being accessed as a group. In Hadoops Default
Data Placement Strategy (HDDPS), the data blocks are placed randomly across the cluster of nodes without
considering the nature of queries likely to be executed in the system. Due to such non- consideration of interest
locality, it is possible for the required data blocks to be concentrated within fewer computing nodes, which,
in turn, results in an increase in query execution time, query latency etc. In this paper, an Optimal Data
Placement (ODP) Strategy based on grouping semantics is proposed. The natural behavioural groupings in the
dataset are identified by applying clustering algorithms and the data-placement decision is taken based on the
observed grouping behaviour. Clustering is the task of grouping a set of objects in such a way that objects in
the same group are more similar to each other than to those in other groups [11, 12].

In this paper, we experiment the significance of different clustering techniques viz. k-means [13], Hierarchical
Agglomerative Clustering (HAC) [14] and Markov Clustering (MCL) [15] in grouping-aware data placement for
data-intensive applications with interest locality. It has been proved in a heterogeneous distributed environment
for the e-commerce dataset [16, 17]. The results show that queries are solved by the domain analyst at the
earliest possible time to enable quick decisions, as well as deriving maximum utilisation of resources. Fig.1.1
shows the various stages in MCL for an input dataset. Fig.1.1(a) shows the various stages in HAC for an input
dataset. The clustered matrix obtained by applying the HAC is shown in Fig.1.1(b). The visualisation of matrix
clustering by k-means and HAC methods is depicted in Fig.1.1(c) and Fig.1.1(d) respectively.

2. Related Works. Several works were carried out in data placement for massive datasets in some specific
ways to support high-performance data accesses. ODP strategy, which focuses on reducing energy consumption
and resource utilisation, was proposed by Ashwin Kumar et al. (2013) [18] and Wu et al. (2017) [19]. They

Significance of Hierarchical and Markov Clustering in Grouping-Aware Data Placement for Data Intensive Applications 247

proposed ODP by locating the related data blocks together. However, the major drawback in this area of focus
is the increased query execution time. Here, the focus is on reducing the utilisation of resources, but this cannot
be considered as a viable solution, since the real objective of processing BigData is achieving timely results.

Some significant works have also been carried out on data placement to achieve a reduced query execution
time. Lee et al. (2014)(2014) [20] proposed an ODP by taking into account the computing capacity of a data
node so that faster computing nodes are allocated with more data. This reduces the overall query execution time
and provides high throughput of data. However there is no mechanism to ensure that the data blocks which are
required for execution are proportionately present in those nodes since the grouping semantics of the dataset
is not taken into account. Xiong et.al (2015) [21] proposes a heterogeneity aware data placement algorithm
which initially groups the Data-Nodes as several virtual storage tiers (VST). The data blocks are placed across
the nodes in each VST circuitously according to the hotness of data. This strategy shows an improved MR
performance with reduced disk space utilization. However the individual requirements of data blocks are only
assessed for measuring the hotness. But the relative dependency among various blocks for the different task
executionsis not considered, which may lead to concentration of popular data within a node leading to reduced
parallel execution.

ODP to reduce query execution time based on grouping semantics by applying clustering algorithms is
also discussed by few researchers. Wang et al. (2014) [10] and Wu, w et al. (2016) [22] proposed an ODP
algorithm based on grouping semantics, which reduces the query execution time and improves the data locality.
It improves the parallel execution of datasets with interest locality. This ODP strategy use the Bond energy
algorithm (BEA) to cluster the dependency matrix, which leads to a higher execution time. This is due to the
time complexity in BEA for finding the permutations of all rows. In addition, for further execution of any new
task, all iterations of BEA must be repeated.

Liao et al. (2016) [23] focus on optimising resource utilisation using a novel scheduling algorithm. Simi-
larly, Shivaswamy et al.(2017) [24] suggest scheduling the work flow of jobs during concurrent executions for
optimal resource utilisation. However, in both cases, the existence of a general behaviour pattern among the
tasks executed during a period of time is not considered. Hence, these queries with interest locality require fur-
ther consideration. Some studies elucidate that some significant clustering techniques [13, 14, 15] are available
that can be applied to find the natural groupings in a dataset with reduced computations without compro-
mising the clustering performance. We harness these clustering approaches in large-scale data management to
achieve improved performance in terms of reduced execution time, through ODP, especially when data-intensive
applications exhibit interest locality.

3. CORE-Optimal Data Placement Strategy. An ODP strategy based on grouping semantics is
proposed in this paper. The entire workflow diagram is shown in Fig. 3.1. The different steps involved in the
proposed strategy are detailed below.

Step 1: Analysing User History Log The meta-information and user history log will be the input for
this step. Analysing the characteristics of the cluster from the user history log for various workloads is the key
for making an optimal placement decisions. These log files are voluminous and varied (semi-structured). All
MapReduce applications executed in the cluster save the task execution details as a log file, which consists of
two files (i) the Job Configuration file and (ii) the Job Status file - for each job executed in the machine.

Step 2: Tracing Network Topology NameNode contains meta-data from which the network topology
is constructed to identify the different DataNodes present in the cluster and the data blocks present in each
DataNode.

Step 3: Building Task Frequency Table Using these logs as input, the task frequency table is con-
structed, which contains different tasks, the frequency of each task, and the blocks required for each task.

Step 4: Constructing Task Execution Graph The computations of parallel processing can be solved
efficiently, only if the task executions and the blocks required are depicted as a graph. The task execution graph
shown in Fig.3.2 is obtained by analysing the task frequency table using the iGraph network analysis tool [25].
The task execution graph is an unordered pair GTex = (B, T), where B represents a set of vertices as blocks
and T represents a set of edges as tasks executed. GTex is undirected and may hold parallel edges since some
sets of blocks (B′ ⊆ B) may be required for different task executions Ti.

Step 4a: Clustered Task Execution Graph (CGTex) The task execution graph (GTex) is then

248 S.Vengadeswaran, S.R. Balasundaram

Fig. 3.1. Workflow diagram for the proposed work

Fig. 3.2. Task execution graph for sample graph consisting of 10 blocks and 4 tasks

converted into a clustered task execution graph (CGTex) by applying the graph clustering algorithm [15].
The normal representation of the graph may not reveal any natural cluster characteristics. When a uniformly
distributed graph is applied with a clustering algorithm, the graph will be arbitrarily grouped into clusters
based on the similarity metric. To identify the natural groupings in the graph, MCL algorithm, fast, scalable,
and unsupervised algorithm, is applied over the GTex and the various stages of the clustered graph obtained
are shown in Fig.3.3.

Step 5a: Group Identification The clusters obtained from the clustered task execution graph (CGTex)
are separated into various groups. A subset of vertices can be said to form a good cluster if sub-graphs are
dense with more connections within the group and only a very few connections exist from the group to the rest
of graph. Accordingly, each group in the cluster will have individual characteristics showing high intra-cluster

Significance of Hierarchical and Markov Clustering in Grouping-Aware Data Placement for Data Intensive Applications 249

Fig. 3.3. Various stages of clustered graph by applying MCL algorithm

and low inter-cluster density (refer eqns 3.1 and 3.2). Based on the grouping behaviour, the associated clusters
are grouped together by applying MCL.

Intra cluster density δint(c) =
|{{v, u}|v ∈ C, u ∈ C}|

|C|(|C| − 1)
(3.1)

Inter cluster density δint(G|C1,, Ck) =
1

k

k
∑

i=1

δint(ci) (3.2)

Step 4b: Constructing Dependency Matrix (DM) From the task execution graph (GTex) and the
information available from the task frequency table, the dependency matrix (DM) is constructed. DM is a
symmetric matrix of order nxn, where n is the number of blocks present in the cluster. DM exhibits the degree
of dependency between various blocks during simultaneous execution of tasks. The diagonal elements of the
DM represent the number of tasks for which the corresponding block is required. Any other element in DMij

will show the number of tasks for which one block bi will be accessed along with the block bj for execution.
Step 5b: Determining optimal no. of clusters - Gap Statistics (GS) The gap statistic method can

be used to calculate the optimal number of clusters for the given dataset. The gap statistic compares the total
within intra-cluster variation (wk, wk) for different values of k with their expected values under null reference
distribution of the data. The gap statistic for a given k is defined as follows:

Gapn(k) = E∗

n{log(Wk)} − log(wk) (3.3)

Gapn(k) = En ∗ log(Wk)− log(Wk) (3.4)

The standard deviation (sdk sdk) of log(W ∗

k)log(Wk∗) is also computed in order to define the standard
error (Sk sk) of the simulation as follows.

sk = sdk ∗

√

1 +
1

B
(3.5)

sk = sdk ∗ 1 + 1/B (3.6)

Finally, a more robust approach is to choose the optimal number of clusters K as the smaller k, such that:

Gap(k) ≥ Gap(k + 1)− sk+1 (3.7)

The smallest value of k is chosen so that the gap statistics is within one standard deviation of the gap at k+1.
Based on this, we can calculate the optimal number of clusters for a given dataset.

250 S.Vengadeswaran, S.R. Balasundaram

Fig. 3.4. (a) Clustered correlation matrix and (b) Dendogram for hierarchical clusters

Step 6b: Clustered Dependency Matrix (CDM) The dependency matrix (DM) is then converted
into a clustered dependency matrix (CDM) by applying the matrix clustering algorithm. In this paper, HAC
is used to cluster the matrix into groups. The application of HAC technique is examined for the proposed work
and is explained below. In the HAC method, a hierarchy of clusters is formed to identify the natural groupings
in the dataset. A bottom-up approach is used in this algorithm. Initially, HAC considers each data block as
a single entity, then it combines the blocks with most similar blocks to form a bigger cluster. The iteration is
then repeated, with further merging of the clusters with the output obtained earlier. Once all the blocks are
merged into the required number of clusters derived from the gap statistics in step 5b, the algorithm ends.

The clusters obtained are merged based on similarity/dissimilarity measures. The Euclidean distance is
used to measure the distance between each pair of data blocks (di, dj) from the dataset D ((di, dj) ⊆ D).

Disteq(di, dj) =
√

(xdi
− xdj

)2 + (ydi
− ydj

)2 (3.8)

To merge two blocks in a cluster, linkage methods can be used to decide the neighbouring pair of blocks to
be merged. In this paper, a single linkage method is adopted. It computes all pairwise dissimilarities between
the elements in cluster 1 and the elements in cluster 2, and considers the smallest of these dissimilarities as a
linkage criterion.

X1, X2, ..., Xk = Observations from Cluster1,
Y1, Y2, ..., Yk = Observations from Cluster2,
d(x, y) = Distance between observation vector X with Y .

SingleLinkage : d12 = mini,j d(Xi, Yj) (3.9)

The reason for the use of HAC is due to its flexibility, versatility and, mostly, its lower computational
complexity. The HAC algorithm clusters the highly associated data together based on the grouping behaviour
and generates data groupings as shown in Fig.3.4. Initially, each data is considered as a cluster. Computing
the distances between all pairs of data blocks takes O(m2) computation. Then, the data is sorted to find the
smallest, which takes O(m2 log m) time. The closest pair are then merged and all the distance pairs are again
recomputed with the new cluster, which takes O(m log m). The iteration process continues (m−1) times until all
the data merges to form a single cluster, which takes (m−1)∗O(m log m). Hence, the computational complexity
for HAC to find the natural groupings of data blocks in the dataset takes O(m2 log m)+(m−1)∗O(m log m) =
O(m2 log m).

Step 7: Extracting ODG Then, both the HAC and MCL algorithms with the optimal number of clusters
are independently applied over the history log. The resulting output of each method will be a unique set of
data groupings. It is confirmed that each grouping obtained is conceptually distinguishable by validating and
interpreting each obtained group.

Significance of Hierarchical and Markov Clustering in Grouping-Aware Data Placement for Data Intensive Applications 251

Fig. 4.1. Schematic diagram for execution framework

Step 8: Interpreting and validating ODG Then, the extracted data groupings must be interpreted and
analysed to find how well the obtained groupings fit the data without reference to external attributes. Then, the
data groupings obtained from the two different sets of cluster analysis are compared to determine the optimal
data groupings using the silhouette method. We can separately execute and test the validated groupings for
local map tasks in distributed settings.

Step 9: Reorganising HDFS data layout The implementation of our proposed strategy will dynamically
reorganise the HDFS data layout in order to achieve an optimal data placement for improved execution; this
program for proposed work is launched as a utility to be executed manually as and when required. The execution
of this utility modifies the machine instruction, which is a triplet < Bid, SN,DN >, where Bid is the Block ID,
SN is the Source Node, and DN is the Destination Node. If SN and DN are different, then the reorganisation
has been carried out considering the rack topology and the load balancer.

Step10: Achieving optimal data layout After reorganisation of the default data layouts in HDFS, our
proposed work achieved an optimal data layout that ensures maximum parallel execution per group. It does
not guarantee 100% local map task execution every time, but it will always produce an improved result over the
naive data placement strategy, which is tested with the production cluster (explained in detail in the subsequent
section).

4. Experimental Results and Analysis. The experiments were tested in a cloud platform, since the
cloud is emerging as a preferred paradigm to deploy highly available and scalable systems for the processing of
BigData [27]. It is also a reliable, fault-tolerant, flexible, and low-cost environment. Microsoft Azure provides
a platform to collect, store, process, analyse, and visualise BigData in the cloud.

In order to carry out the experiments, 10 node heterogeneous clusters, deployed in a multi-rack environment,
with every node having Hadoop, were established in the Azure cloud. The cluster was configured with one Master
(NameNode) and nine Slaves (DataNodes). In order to have a heterogeneous environment, the DataNodes were
chosen with varied configurations. Table 4.1 and Table 4.2 depicts the detailed cluster configuration, file system
configuration respectively. The clusters were provisioned, managed, and monitored using Apache Ambari. The
schematic diagram for the execution framework is shown in Fig. 4.1.

To evaluate the performance of MR, we experimented with an Amazon product review dataset [28] consisting
of product reviews from Amazon, spanning approximately 18 years (1996-2014). This dataset covers reviews
of multiple products such as Books, Baby products, Electronics, Kindle store, Movies and TV, Health and

252 S.Vengadeswaran, S.R. Balasundaram

Table 4.1

Cluster configuration

Property
NameNode- 1 DataNode- 9

NN- 1 DN- 2 DN- 3 DN- 4
Instance Type DS5 v2 DS4 v2 DS3 v2 DS2 v2

vCPU 16 8 4 2
RAM 56 GB 28 GB 14 GB 8 GB

Processor Intel Xeon E5-2673@2.4 GHz
OS CentOS 7.3

Hadoop Version Hadoop 2.7.2 (Stable Version)

personal care etc. This dataset (size 19.5GB) is freely available to download from Stanford Network Analysis
Project (SNAP). Each of the reviews will contain the following information (ProductID, Title, UserID, Price,
Helpfulness, ProfileName, Score, Time, Summary).

Table 4.2

Data, distributed file system and cluster - configuration parameters

HDFS Status : Healthy
Total Size 19651541778 B
Total files 5
Average block size 66390343 B
Total blocks (validated) 296
Default replication factor 1
Number of DataNodes 9
Number of racks 3

Table 4.3

Data relating to interest domain

Name Size Block Size No. of Records
Reviews Baby.json 580.22 MB 64 MB 915446
Reviews Books.json 13.74 GB 64 MB 16302134
Reviews Electronics.json 1.38 GB 64 MB 1689188
Reviews Kindle Store.json 789.46 MB 64 MB 982619
Reviews Movies and TV.json 1.85 GB 64 MB 1697533

During the execution of interest-based queries, it is observed that there is a severe drag in MR performance.
In the business forecasting domain [16, 17] in particular, to predict future product demand/sales of particular
products, the reviews in respective categories alone need to be analysed rather than sweeping through the reviews
in all categories. The data relating to the interest domain in the Amazon review data is shown in Table.4.3.
When this data relating to the interest domain is uploaded in HDFS, the data splits into even-sized data blocks
and distributed randomly across the DataNodesThe data are placed without any consideration of the nature of
the queries likely to be executed. Due to this, it is possible that dependent blocks required for execution will be
concentrated within fewer computing nodes, resulting in several lacunas such as underutilisation of resources
and increased query execution time.

To prove the significance of clustering in data placement, several experiments were conducted by executing
various interest-based queries (Join and Aggregate) related to business analytics (e-commerce dataset). The
tasks were chosen in such a way that they had specific dependent blocks and were executable only within a
subset of the whole dataset. Application benchmark performance was also executed for the evaluation, e.g.
different tasks related to prediction modelling (regression) for different products was executed for evaluation.

Significance of Hierarchical and Markov Clustering in Grouping-Aware Data Placement for Data Intensive Applications 253

Fig. 4.2. Graphs showing the performance improvement in local map task execution

Other join and aggregate queries were also taken into consideration, e.g. finding an electronic product with a
higher rating during a specific period, finding a book that has been reviewed more, finding the usefulness of a
Kindle product during 2006 to 2007etc.

The join and aggregate queries on e-commerce were written using PIG scripts and executed in a TEZ
execution engine. The prediction modelling for business analytics was written using Mahout, a scalable ma-
chine learning library, and executed in the MR execution engine. The output metrics were collected using
Ambari monitoring tool, deployed in the HDP platform. These applications were executed in real time and the
performance was compared with existing data placements such as HDDPS, load balancer, and proposed data
placement with different clustering algorithms (k-means, HAC, MCL). The output presented in Table 4.4 shows
an interesting result, with improved local map task and reduced execution time. Fig. 4.2 and 4.3 depict the
graphical representations.

From Table 4.5, with a maximum of 296 maps required for execution, HDDPS has 186 data local maps (i.e.
62.8%), whereas as MCL has 251 local maps (i.e. 84.7%), showing an improvement of 34.9% ((251-186)/186) of
local map executions. Similarly, the execution time was also decreased from 18,879 secs to 13,762 secs, thereby
showing an overall improvement of 27.1% ((18879-13762)/18879). In addition, the data placement based on
MCL shows an improved performance (5.9% in data locality, 4.3% in execution time) over HAC and an improved
performance (9.1% in data locality, 12.5% in execution time) over data placement based on k-means for queries
exhibiting interest localities.

254 S.Vengadeswaran, S.R. Balasundaram

Fig. 4.3. Graphs showing the performance improvement in execution time

Data placement based on Markov clustering shows improved performance, especially when data-intensive
applications have interest locality. This is because the natural clusters obtained through MCL exhibit higher
utilisation of resources with less complexity. The reduced execution time is due to the significant improvement
achieved in CPU utilisation through Markov clustering. The CPU utilisation of each node and every node in the
cluster is improved. Also, the average CPU utilisation of the cluster increased from 55.2% to 81.3%, showing
an improvement of 26.1%, as depicted in Fig.4.4. When tested in the worst case, where any interest locality
does not exist, i.e. all data blocks are required to be accessed for execution, the proposed strategy shows the
same efficiency as default.

5. Conclusion and Future Work. Optimal Data Placement (ODP) Strategy based on grouping seman-
tics is proposed in this paper. The significance of different clustering techniques viz. k-means, Hierarchical
Agglomerative Clustering (HAC) and Markov Clustering (MCL) in grouping-aware data placement for data-
intensive applications with interest locality has been tested. The experiments were carried out in a 10-node
cluster placed in a multi-rack environment deployed in the Azure cloud. The results conclude that the MCL-
based data placement strategy improves the local map execution by 34.5% and reduces the execution time by
27.8% compared to Hadoops Default Data Placement Strategy (HDDPS). In addition, it can be inferred that
the MCL-based data placement strategy shows an improved performance (5.9% in local map execution, 4.3%
in execution time) over HAC (9.1% in local map execution, 12.5% in execution time) and over data placement
based on k-means for queries exhibiting interest localities. The results strengthen the proposed work and prove
to be more efficient for massive datasets processing in a distributed environment.

Significance of Hierarchical and Markov Clustering in Grouping-Aware Data Placement for Data Intensive Applications 255

Table 4.4

Performance improvement in local maps and execution time - for various interest domains

Amazon Review Product Dataset - SNAP (20 GB)

Data
Placement

Interest
Domain

Books
(T1)

Baby
(T2)

Electronic
(T3)

Kindle
(T4)

Movies
(T5)

Total maps
(nos)

220 9 22 13 30

Default
Local maps

(%)
64.5 66.6 54.5 53.8 63.3

Exe. time
(secs)

14168 533 1422 753 2003

Load Balancer
Local maps

(%)
66.8 77.7 63.6 69.2 63.3

Exe. time
(secs)

12224 533 1640 753 2202

K-means
Local maps

(%)
79.0 88.8 72.2 84.6 70.0

Exe. time
(secs)

11882 472 1216 557 1602

Hierarchical
Local maps

(%)
80.9 88.8 77.2 100 70

Exe. time
(secs)

10877 464 1057 557 1440

Markov
Local maps

(%)
85.4 88.8 81.8 100 83.3

Exe. time
(secs)

10520 457 963 557 1265

Table 4.5

Overall comparison of proposed strategy with existing data placement policies

Total maps
(nos)

Local maps
(nos)

Local maps
(%)

Exe. time
(secs)

Default 186 62.8 18879
Load Balancer 196 66.2 17352
k-means 296 230 77.7 15729
Hierarchical 237 80.0 14395
Markov 251 84.7 13762

Even though the results are very optimistic, there is still scope for improvement, since the layout obtained
in the proposed work considers only the horizontal relationships among the data. Hence, an Optimal Data
Placement (ODP) Algorithm considering inter-relationships (vertical) among the blocks can be proposed in
the additional data groupings obtained, which could further improve the performance during the execution of
simultaneous map tasks.

Acknowledgments. This work is supported under Visvesvaraya PhD scheme funded by Ministry of Elec-
tronics and Information Technology, Government of India. We also like to thank Microsoft Azure for having
sponsored the cloud Infrastructure required for carrying out the experiments under Microsoft Research Award.

256 S.Vengadeswaran, S.R. Balasundaram

Fig. 4.4. Graphs showing the performance improvement in CPU utilization of each DataNode

REFERENCES

[1] White, T.: Hadoop: The definitive guide. OReilly Media, Inc., 2012
[2] Hu, H., Wen, Y., Chua, T. S., & Li, X.: Toward scalable systems for big data analytics: A technology tutorial, IEEE access,

2014, Vol.2, pp.652-687
[3] Sammer, E.: Hadoop operations. O’Reilly Media, 2012
[4] Zhang, Y., Ren, J., Liu, J., Xu, C., Guo, H., & Liu, Y.: A survey on emerging computing paradigms for big data. Chinese

Journal of Electronics, 2017, Vol.26(1), pp.1-12
[5] Shirahata, K, & Matsuoka, S.: Big Data processing using Apache Spark and Hadoop. Big Data and Software Defined

Networks, IET, 2018, Chap.6, pp. 115-138
[6] Litke, W., & Budka, M.: Scaling Beyond One Rack and Sizing of Hadoop Platform. Scalable Computing: Practice and

Experience, 2015, Vol.16 (4), pp.423-436
[7] Shvachko, K., Kuang, H., Radia, S., & Chansler, R.: The hadoop distributed file system. Proceedings of the 26th

Symposium on Mass Storage Systems and Technologies (MSST), IEEE, May 2010, pp.1-10
[8] Dean, J., & Ghemawat, S.: MapReduce: simplified data processing on large clusters. Communications of the ACM, 2008,

Vol.51 (1), pp.107-113
[9] Chen, C. P., & Zhang, C. Y.: Data-intensive applications, challenges, techniques and technologies: A survey on Big Data.

Information Sciences, 2014, Vol.275, pp.314-347
[10] Wang J, Xiao Q, Yin J, & Shang P.: ’Draw: A new data-grouping-aware data placement scheme for data intensive

applications with interest locality’, IEEE Transactions on Magnetics, 2013, Vol.49 (6), pp.25142520
[11] Aggarwal, C. C., & Reddy, C. K.: Data clustering: algorithms and applications. Chapman and Hall/CRC, 2013
[12] Fahad, A., Alshatri, N., Tari, Z., Alamri, A., Khalil, I., Zomaya, A.Y., & Bouras, A.: A survey of clustering algorithms

for big data:Taxonomy and empirical analysis. IEEE transactions on emerging topics in computing, 2014, Vol.2 (3),
pp.267-279

[13] Khedr, A. M., & Bhatnagar, R. K.: New Algorithm for Clustering Distributed Data Using k-Means. Computing &
Informatics, 2014, Vol.33 (4), pp.943-964

[14] Bouguettaya, A., Yu, Q., Liu, X., Zhou, X., & Song, A.: Efficient agglomerative hierarchical clustering. Expert Systems
with Applications, 2015, Vol.42 (5), pp.2785-2797

Significance of Hierarchical and Markov Clustering in Grouping-Aware Data Placement for Data Intensive Applications 257

[15] Dongen, S.: Performance criteria for graph clustering and Markov cluster experiments, 2000
[16] Shao, F., & Yao, J.: The Establishment of Data Analysis Model about E-Commerces Behavior Based on Hadoop Platform.

Proceedings of the International Conference on Intelligent Transportation, Big Data & Smart City (ICITBS), IEEE,
January 2018, pp. 436-439

[17] Suguna, S., Vithya, M., & Eunaicy, J. C.: Big data analysis in e-commerce system using HadoopMapReduce. Proceedings
of the International Conference on Inventive Computation Technologies (ICICT), IEEE, August 2016, Vol. 2, pp. 1-6

[18] Kumar, K. A., Deshpande, A., & Khuller, S.: Data placement and replica selection for improving co-location in distributed
environments. arXiv preprint arXiv:1302.4168, 2013

[19] Wu, W., Lin, W., Hsu, C. H., & He, L.: Energy-efficient hadoop for big data analytics and computing: A systematic
research insights. Future Generation Computer Systems, 2017

[20] Lee, C. W., Hsieh, K. Y., Hsieh, S. Y., & Hsiao, H. C.: A dynamic data placement strategy for hadoop in heterogeneous
environments, Big Data Research, 2014, Vol.1, pp.14-22

[21] Xiong, R., Luo, J., & Dong, F.: Optimizing data placement in heterogeneous Hadoop clusters, Cluster Computing, 2015,
Vol.18 (4), pp.1465-1480

[22] Wu, J. X., Zhang, C. S., Zhang, B., & Wang, P.: A new data-grouping-aware dynamic data placement method that take
into account jobs execute frequency for Hadoop. Microprocessors and Microsystems, 2016, Vol.47, pp.161-169

[23] Liao, J., Zhang, L., Li, T., Wang, J., & Qi, Q.: Efficient and fair scheduler of multiple resources for MapReduce system.
IET Software, 2016, Vol.10 (6), pp.182-188

[24] Rashmi, S., & Basu, A.: Resource optimised workflow scheduling in Hadoop using stochastic hill climbing technique. IET
Software, 2017, Vol.11 (5), pp.239-244

[25] Csardi, G., & Nepusz, T.: The igraph software package for complex network research. InterJournal, Complex Systems, 2006,
Vol.1695 (5), pp.1-9

[26] Tibshirani, R., Walther, G., & Hastie, T.: Estimating the number of clusters in a data set via the gap statistic. Journal
of the Royal Statistical Society, 2001, Vol.63 (2), pp.411-423

[27] Manogaran, G., & Lopez, D.: Big Data in cloud data centers. Big Data and Software Defined Networks, IET, 2018,
pp.159-182

[28] McAuley, J., Pandey, R., & Leskovec, J.: Inferring networks of substitutable and complementary products, Proceedings
of the International conference on Knowledge Discovery and Data Mining, ACM, 2015, pp. 785-794

Edited by: Sasko Ristov
Received: Mar 1, 2018
Accepted: Sep 3, 2018

