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Abstract. Hadoop YARN is an Apache Software Foundation’s open project that provides a resource management framework
for large scale parallel data processing, such as MapReduce jobs. Fair scheduler is a dispatcher which has been widely used in YARN
to assign resources fairly and equally to applications. However, there exists a problem of the Fair scheduler when the resource
requisition of applications is beyond the amount that the cluster can provide. In such a case, the YARN system will be halted
if all resources are occupied by ApplicationMasters, a special task of each job that negotiates resources for processing tasks and
coordinates job execution. To solve this problem, we propose an automatic and dynamic admission control mechanism to prevent
the ceasing situation happened when the requested amount of resources exceeds the cluster’s resource capacity, and dynamically
reserve resources for processing tasks in order to obtain good performance, e.g., reducing makespans of MapReduce jobs. After
collecting resource usage information of each work node, our mechanism dynamically predicts the amount of reserved resources for
processing tasks and automatically controls running jobs based on the prediction. We implement the new mechanism in Hadoop
YARN and evaluate it with representative MapReduce benchmarks. The experimental results show the effectiveness and robustness
of this mechanism under both homogeneous and heterogeneous workloads.
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1. Introduction. Large scale data analysis is of great importance in a variety of research and industrial
areas during the age of data explosion and cloud computing. MapReduce [11] becomes one of the most popular
programing paradigms in recent years. Its open source implementation Hadoop [5] has been widely adopted as
the primary platform for parallel data processing [1]. Recently, the Hadoop MapReduce ecosystem is evolving
into its next generation, called Hadoop YARN (Yet Another Resource Negotiator) [19], which adopts fine-grained
resource management for job scheduling.

The architecture of YARN is shown in Figure 1.1. Similar to the traditional Hadoop, a YARN system
often consists of one centralized manager node running the ResourceManager (RM) daemon and multiple work
nodes running the NodeManager (NM) daemons. However, there are two major differences between YARN and
traditional Hadoop. First, the RM in YARN no longer monitors and coordinates job execution as the JobTracker
of traditional Hadoop does. Alternatively, an ApplicationMaster(AM) is generated for each application in YARN
to coordinate all processing tasks (e.g., map/reduce tasks) from that application. Therefore, the RM in YARN
is more scalable than the JobTracker in traditional Hadoop. Secondly, YARN abandons the previous coarse
grained slot configuration used by TaskTrackers in traditional Hadoop. Instead, NMs in YARN consider fine-
grained resource management for managing various resources. e.g., CPU and memory, in the cluster.

On the other hand, YARN uses the same scheduling mechanisms as traditional Hadoop and supports the
existing scheduling policies (such as FIFO, Fair and Capacity) as the default schedulers. However, we found that
a resource (or “container”) starvation problem exists in the present YARN scheduling under Fair and Capacity.
As mentioned above, for each application in YARN, an ApplicationMaster is first generated to coordinate its
processing tasks. Such an ApplicationMaster is indeed a special task in the YARN system, which has a higher
priority to get resources (or containers) and stays alive without releasing resources till all processing tasks of that
application finish. Consequently, when the amount of concurrently running jobs becomes too high, for example,
a burst of jobs arrived, it is highly likely that system resources are fully occupied by ApplicationMasters of
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Fig. 1.1. YARN Architecture. When a client submits a job to the ResourceManager (RM), the RM communicates with a
NodeManager (NM) to launch an ApplicationMaster(AM) for running that job. The AM is responsible for submitting resource
requests to the RM and negotiating with a set of NMs to launch containers for processing the tasks of the job.

these running jobs. A resource deadlock thus happens such that each ApplicationMaster is waiting for other
ApplicationMasters to release resources for running their application tasks.

To solve this problem, one could kill one or multiple jobs and their ApplicationMasters to break the deadlock.
A preventative solution is to apply the admission control mechanism to control the number of concurrently
running jobs (or ApplicationMasters) in the system and thus reserve resources to run processing tasks. By this
way, the previous deadlock of resource waiting can be avoided. However, choosing a good admission control
mechanism (e.g., how many jobs admitted in the system?) is difficult when efficiency of the system is also an
important consideration. If we reserve too many resources for running processing tasks, then the concurrency of
jobs will be sacrificed because the resources for starting ApplicationMasters are limited. In contrast, the running
jobs may take too much time to wait for resources for running their tasks and thus be delayed dramatically
if we admit too many jobs in the system. Furthermore, MapReduce applications in real systems are often
heterogeneous, with job sizes varying from a few tasks to thousands of tasks and different submission rates [7].
A static and fixed admission control mechanism thus cannot work well.

Therefore, the objective of this work is to design a new admission control mechanism which can automatically
and dynamically decide the number of concurrently running jobs, with the goal of avoiding the resource waiting
deadlock and meanwhile preserving good system performance. The main performance metric we take into
consideration is the makespan (i.e., total completion length) of a given set of Mapreduce jobs. There are three
main components of our admission control mechanism.

• Resource Information Collector (RIC): this module periodically records the resource usage infor-
mation of the running jobs of each worker node.

• Reserved Resource Predictor (RRP): this is the major component of this mechanism. RRP resides
in the RM and uses the information provided by the RIC module to decide the amount of resources
that need to be reserved for regular tasks.

• Application Resource Controller (ARC): this module controls the admission of incoming ap-
plications based on the current amount of reserved resources determined by the RRP module. All
applications that are not allowed to enter the system for running will be queued.

We implement these components in a YARM platform (e.g., Hadoop YARN) and evaluate our new admission
control mechanism with a suite of representative MapReduce benchmarks. The experimental results demonstrate
the effectiveness of the proposed mechanism under both simple and complex workloads.

The remainder of the paper is organized as follows. In Section 2, we introduce the deadlock problem of
YARN systems and show our preliminary investigation on static admission control. Our proposed mechanism
is proposed in Section 3. Evaluation of this mechanism is presented in Section 4. We describe the related works
in Section 5 and conclude in Section 6.
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2. Motivation.

2.1. Background. In a YARN system, each application needs to specify the resource requirements of all
their tasks, such as ApplicationMasters, map tasks and reduce tasks. The resource requirement is a bundle of
physical resources with the format as <2 CPU, 1GB RAM>, for example. Then, a task from that application
will only be executed in a container whose resource capacity (e.g., 2 CPU and 1GB RAM) is equal to that
task’s resource demand. Meanwhile, the NodeManager (NM) keeps monitoring the actual resource usage of
that container and could kill that container if the actual usage exceeds the granted resource amount.

The ResourceManager (RM) acts as a central arbitrator, dispatching available containers to various com-
peting applications in light of each application’s resource demand and the scheduling policy. NMs residing in
the work machines (i.e., slave nodes) associate with the RM to manage the resource; they periodically report
the information of resource and containers usage to the RM through the heartbeat message in YARN. The
scheduler in the RM then schedules the queuing jobs based on the waiting resource requests of applications and
the current residual resource amount on each slave node.

When an application is submitted, the RM needs to first allocate resources for launching the Application-
Master container on a work node according to the resource requirement specified by the client. The launched
AM will then send resource requests for processing remaining tasks of that application to the RM. The RM
responses with resource allocations on NMs and the AM then communicate with the NMs for launching con-
tainers and executing tasks. The AM is also responsible for monitoring and coordinating the execution of other
processing tasks, e.g., re-submitting failed tasks, gradually submitting reduce tasks according to the progress of
map tasks, etc.. Therefore, the AM only terminates and releases the resources its container occupies after all
the remaining tasks of its application are finished.

Moreover, the AM is the head of a job and it must be launched firstly when processing the job. Since
AM needs to harness some resource to running the job’s tasks, it will issue requests to RM for allocating the
Task Container (TC) to process the tasks. While RM accepts the requests then it will response to AM that
which nodes have the available resource. The AM then continuously negotiates with the NMs of those nodes
to running the tasks. Finally, while all the tasks are processed the AM can be finished and the RM will release
the AMC. In conclusion, the RM and NM starts running when the YARN system is set up; however, the AM
launched upon a container is based on the condition that a job is submitted to the RM and the RM accepts to
processing it; then, the AM can start its negotiating mission, relative state [17] is as Fig. 2.1.

2.2. The Deadlock Problem of Fair Scheduler in YARN. Since an ApplicationMaster is the first
launched task of each job and will not release its resource until the associated job finishes, the number of AM
tasks running in a YARN system is always equal to the number of concurrently running jobs. It is not a problem
if a small amount of jobs are concurrently running in the system. However, it is possible that these AMs use
up most or even all of the resources during a busy period, for example, when a large amount of users submit
many ad-hoc MapReduce query jobs. In such a case, the YARN system faces a deadlock problem, i.e., none
of these AMs could get resources for running their map/reduce tasks. Consequently, overall efficiency of the
YARN system is severely degraded because the AMs are occupying most resources yet waiting for others to
release resources.

Therefore, our goal in this work is to design a new mechanism that can automatically control the resource
reservation in the YARN system such that the deadlock problem can be avoided even under busy conditions when
resource demands of AMs exceed the entire cluster capacity. Moreover, this new mechanism can dynamically
adjust the strategy for resource reservation according to the present workloads in order to improve the efficiency
of the YARN system, e.g., minimizing the makespan (i.e., the overall completion length) of a set of MapReduce
jobs.

2.3. Preliminary Investigations. The basic solution of preventing the deadlock situation is to reserve a
fixed amount of resources for non-AM processing tasks. However, as we discussed before, the system performance
could be degraded if the reservation number is not carefully chosen. We first modify the Fair scheduler to support
the static resource reservation and investigate the impact of resource reservation on the performance. Two sets
of experiments are conducted to evaluate the performance of resource reservations. For the sake of simplicity,
we only consider the cpu resource in these experiments (i.e., all jobs are cpu intensive). The YARN cluster we
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Fig. 2.1. Job Processing State Graph in YARN. When a job is submitting, the scheduler (in this case is Fair Scheduler) will
depend on the resource usage situation to decide to accept the application and allocate the AM container or not.

used has the resource pool of 64 vcores.
Case 1: We submit a batch of 66 terasort jobs to the YARN cluster. Each job will process 100 MB input

data generated through teragen. In this case, we fix the amount of resource requirement of each job’s map and
reduce tasks to be equal to 4 vcores in all the experiments. At the same time, we tune the resource requirements
of each job’s AM from 1 vcore to 4 vcores in different sets of experiments. The makespans of these jobs under
different resource requirement settings and different static resource reservations are shown in Figure 2.2. As
observed from the figure, the number of reserved resources has great impacts on the makespan of jobs and the
optimal configuration of resource reservation is changing as the resource requirement of AMs changes, see the
lower plot in Figure 2.2.

Case 2: In this case, we submit the same 66 terasort jobs to the cluster. We fix the resource requirement
of each job’s AM to be equal to 4 vcores and tune the resource-requisition of map and reduce tasks of each job
from 1 vcore to 4 vcores in different sets of experiments. The makespans of these jobs under different resource
requirement settings and different static resource reservations are shown in Fig. 2.3. Similar to case 1, we can
observe that the optimal reservation point (i.e., the number of reserved vcores) is changing as shown in the
lower plot.

Based on the above observations, we conclude that the optimal amount of reserved resources is related with
the characteristic of workloads. Generally, the best reservation number (RR) is inversely proportional to the
resource requirement of AM (AMCR), but proportional to the resource demands of other tasks (TCR), i.e.,
RR ∝

TCR

AMCR

.

3. Algorithm Design. As shown in Section 2.3, the number of reserved resources has a great impact on
system efficiency, and the optimal value could change under different workloads. Therefore, we design a new
admission control mechanism for YARN that can dynamically predict the optimal tuning point (i.e., the amount
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Fig. 2.2. Makespans of 66 terasort jobs under different resource requirement settings on AM and different static resource
reservations.

of resources reserved for non-AM tasks) and perform the admission control on incoming YARN jobs. There are
three main components in our mechanism:

• RIC (Resource Information Collector): collect the resource and container’s information from each node
through heartbeat messages.

• RRP (Reserved Resource Predictor): decide how many resources should be reserved based on the
information collected by from RIC.

• ARC (Application Resource Controller): leverage the predicted value of RRP to manipulate an appli-
cation’s running.

We will describe the design of these components in details in the following sections.

3.1. Resource Information Collector. The key function of this component is to record the number
of currently running ApplicationMasters and normal processing tasks as well as the resources that have been
occupied by these two kinds of containers on each worker node. A map data structure is maintained to record the
information and will be updated through each heartbeat message between NodeManager and ResourceManager.
The algorithm of RIC is shown in Alg. 4.

3.2. Reserved Resource Predictor. The purpose of the RRP component is to find out the amount
of reserved resources that can not only preserve high throughput of the system but also prevent the deadlock
problem. As shown in Section 2.3, the optimal value of reservation is varying under different workloads.
Therefore, the RRP component should be frequently triggered to recalculate the desired reservation level in
order to adapt to dynamic workload changes. The overhead of this component thus becomes a primary concern
when the workload changes too frequently. In this paper, we propose a simple, heuristic approach to decide
an appropriate reservation level according to the information of workload characteristics provided by the RIC
component.
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Fig. 2.3. Makespans of 66 terasort jobs under different resource requirement settings on map/reduce tasks and different static
resource reservations.

Algorithm 1: Resource Information Collector

Data:

Number of AM containers in node Ni: NAMCNi
;

Number of task containers in node Ni: NTCNi
;

Total resource of AMC in node Ni: Total AMCNi
;

Total resource of TC in node Ni: Total TCNi
;

HashMap that records each node’s AMC information: Map AMC;

HashMap that records each node’s TC information: Map TC;

1 while each node Ni doing NodeUpdate do

2 Record or update Ni: NAMCNi
and Total AMCNi

into Map AMC;

3 Record or update Ni: NTCNi
and Total TCNi

into Map TC;

4 Update AvgAMCR and AvgTCR;

In Section 2.3, we also find that the optimal amount of reserved resources (RR) seems to be proportional and
inversely proportional to the resource requisition of non-AM task’s (TCR) and AM task’s (AMCR) containers,
i.e., RR ∝

TCR

AMCR

, under static workloads. To get a more clear understanding of this relationship, we conduct
16 sets of experiments. In each set of experiments, we run a batch of jobs with the same resource requirements,
i.e., static workloads, repeatedly under different static resource reservations. The optimal resource reservation
amounts in terms of makespan are shown in Figure 3.1. We can observe a linear relationship between the
optimal reservation and the resource requirements of AM and tasks of jobs. Thus, we have the function:

RR = CR ·

TCR

AMCR + TCR

, (3.1)
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Fig. 3.1. 3D diagram of 16 sets of experiments under static workloads, where x-axis shows the resource requirements of an
AM task (from 1 vcore to 4 vcores), y-axis shows the resource requirements of a regular task (from 1 vcore to 4 vcores), and z-axis
gives the amount of reserved resources (i.e., number of vcores). Different colors in 3D surface indicate different makespans of the
given set of jobs.

Table 3.1

Optimal and predicted resource reservation, i.e., the number of reserved vcores. Predicted values are shown in the parenthesis.

AMC=1 AMC=2 AMC=3 AMC=4
EXP(PDI) EXP(PDI) EXP(PDI) EXP(PDI)

TC=1 32(32) 30(22) 27(16) 26(13)
TC=2 41(43) 34(32) 28(26) 27(22)
TC=3 46(48) 39(39) 32(32) 29(31)
TC=4 48(52) 40(43) 36(37) 32(32)

that fits such a linear relationship shown in the figure. The intuition behind this relationship is that we need
to reserve enough resources for each running application in order to run at least one processing task to avoid
severe resource contention.

The comparison between the optimal reservation results obtained through experiments and the prediction
ones is shown in Table 3.1. As we can observe, the predicted values (i.e., the number of reserved vcores, shown
in the parenthesis) are close to the optimal reservation in most cases. However, the amount of resources that
need to be reserved is underestimated when the resource requirement of AM is much larger than the resource
requirement of normal tasks. Under such a case, the benefit of accelerating each job’s execution, i.e., reserving
more resources for processing tasks, clearly surpasses the benefit of allowing higher concurrency between jobs,
i.e., allowing AMs to occupy more resources. That is because jobs release a large amount of resources that are
occupied by their AMs more quickly when they can finish their execution faster. To improve the accuracy of
prediction under the extreme cases, we simply set a lower bound for resource reservation as 40% of the total
cluster resources according to our observations. New prediction values are shown in Table 3.2.

Furthermore, we find that such a linear relationship still holds under the mixed workloads where jobs can
have different resource requirements if we use the average resource requirements of running AMs and processing
tasks to calculate the amount of reserved resources, i.e.,

RR = CR ·

AvgTCR

AvgAMCR +AvgTCR

, (3.2)
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Table 3.2

Compare the predicted and actual (Experiment result) optimal vcore reservation number.

AMC=1 AMC=2 AMC=3 AMC=4
EXP(PDI) EXP(PDI) EXP(PDI) EXP(PDI)

TC=1 32(32) 30(26) 27(26) 26(26)
TC=2 41(43) 34(32) 28(26) 27(26)
TC=3 46(48) 39(39) 32(32) 29(31)
TC=4 48(52) 40(43) 36(37) 32(32)

0 

5 

10 

15 

20 

25 

30 

35 

1  2  3  4  5  6  7  8  9  10 

R
e
so
u
rc
e
(v
co
re
) 

Time(s)

Busy Condi4on

Real Value 

Predict Value 

Fig. 3.2. Compare the predicted reservation resources and the actual available resources.

where AvgAMCR and AvgTCR indicate the average resource requirements of running AMs and processing
tasks, respectively. Under the mixed workloads, the prediction value may change over time. For example,
the reservation may increase when a new job’s AM is submitted for running. However, such an increasing of
reservation usually cannot be performed immediately since the resources that are already occupied by AMs
cannot be released quickly.

For example, as shown in Figure 3.2, the desired resource reservation for processing tasks is 30 vcores at
time period 1. However, the actual amount of remaining resources in the system, i.e., resources that are not
occupied by AMs, is 10 vcores. The predicted reservation cannot be achieved until time period 10.

To mitigate the impact of this situation, we further scale up the amount of reserved resources to speed up
the execution of processing tasks in the next time period, i.e.,

RR = RR ·

RR + TotalAMCR

CR

, (3.3)

where TotalAMCR indicates the total amount of resources occupied by AMs. The scale-up is triggered when
the summation of resources that are currently occupied by AMs and are needed to be reserved for processing
tasks exceeds the resource capacity of the cluster. The algorithm for predicting the reservation amount is shown
in Alg. 5, where the scale-up approach is performed in lines 5-6. Figure 3.3 illustrates the summation of
resources that are currently occupied by AMs and the desired resource reservation for tasks. The scale-up is
triggered when this summation exceeds the capacity of the cluster.

3.3. Application Resource Controller (ARC). The ARC component manages two job queues, i.e.,
running queue and waiting queue. Each submitted job is inserted into one of these two queues according to the
reservation policy. Figure 3.4 illustrates the mechanism of this component. As shown Figure 3.4, when RRP
decides to reserve 21 vcores for processing tasks, 6 remaining vcores can then be assigned to AM tasks. The
AMs of currently running jobs, i.e., job1 and job2, have already occupied all 6 vcores. Therefore, job3 needs
to be inserted into the waiting queue and waits for available resources to start its execution. The algorithm of
the ARC component is shown in Alg. 6. In lines 1-6, when a job is submitted to YARN, the ARC component
decides if this job can enter the running queue. If the amount of resources for running processing tasks is more
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Algorithm 2: Reserved Resource Predictor

Input: Cluster resource: CR;

Output: Predicted reserved resource: RR;

1 while free resource available on node do

2 Get the information from RIC;

3 if NAMC ̸= 0 and NTC ̸= 0 then

4 RR = CR · AvgTCR

AvgAMCR+AvgTCR

;

5 if RR > CR − TotalAMCR then

6 RR = RR · RR+TotalAMCR

CR
;

7 if RR < CR · 40% then

8 RR = CR · 40%;

9 if RR > CR −AvgAMCR then

10 RR = CR −AvgAMCR;

11 else

12 RR = CR · 40%;
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Fig. 3.3. Illustrations of the total amount of resource (i.e., the resources occupied by AMs and the desired resource reservation
for tasks). When the curve is above the overall capacity (i.e., 64 vcores), the reserved resources are then scaled up.

Cluster Resources (Vcore)

AM

(2vcore)

Task

(2vcore)

Task

(2vcore)

Task

(2vcore)

AM

(4vcore)

Task

(3vcore)

Task

(3vcore)

Task

(3vcore)

Task

(3vcore)

Job1

Job2

AM

(1vcore)

Task

(2vcore)

Task

(2vcore)

Task

(2vcore)

Job3

Running Waiting

Fig. 3.4. Application Resource Controller. The controller holds a specific amount of resources to run processing tasks. If
there is no resource for processing, then the controller puts incoming jobs into the waiting queue.



62 Z. Yang, J. Bhimani, Y. Yao, C.-H. Lin, J. Wang, N. Mi, B. Sheng

Algorithm 3: Application Resource Controller

Input:

Cluster resource: CR;

Reserved resource: RR;

Current occupied resource: TotalAppR;

1 if job J submitted then

2 if CR − TotalAppR −AMCRJ
≥ RR then

3 Push J into APPLIST RUN;

4 else

5 Push J into APPLIST WAIT;

6 while each node doing NodeUpdate do

7 Get existing available resource in Nodei : AV AR i;

8 Get the necessary resource to run next waiting job’s AM: WaitingJobAMR;

9 AV AR = CR − TotalAPPR −WaitingJobAMR;

10 if AV AR ≥ RR and AV AR i ≥ WaitingJobAMR then

11 Pop out job J from APPLIST WAIT;

12 submit ApplicationMaster of J on Nodei;

13 Push J into APPLIST RUN;

than the desired reservation, then the submitted job enters the running queue such that this job’s AM can be
launched immediately. Furthermore, once work nodes send heartbeat messages to the ResourceManager, the
ARC component re-calculates the amount of available resources (AV AR) and re-submits jobs that are currently
waiting in the queue if available resources are enough to run additional AMs, see lines 7-12.

4. Evaluation.

4.1. Experiment Settings. We implement our new admission control mechanism in the Fair scheduler
of Hadoop YARN, and build the YARN platform on a local cluster with one master node and 8 worker nodes.
Each worker node is configured with 8 vcores and 12GB memory, such that the YARN cluster has the resource
capacity of 64 vcores and 96GB memory.

In our experiments, we choose the following four classic MapReduce benchmarks for evaluation.
• terasort: a MapReduce implementation of quick sort.
• wordcount: a MapReduce program that counts the occurrence times of each word in input files.
• wordmean: a MapReduce program that records the average length of words in input files.
• pi: a MapReduce program that estimates π value using the Monte Carlo method.

The input files for terasort are generated through the teragen program, while the input files for wordcount
and wordmean are generated through randomtextwriter.

For better understanding how well our new mechanism works, we calculate the relative performance score
as follows:

Perf. Score =

(

1−
Makespan−Min Makespan

Min Makespan

)

× 100%, (4.1)

where Makespan is the measured makespan (i.e., total completion length) of a batch of MapReduce jobs under
our dynamic admission control mechanism, and Min Makespan represents the makespan under the optimal
static admission control setting.

4.2. Results Analysis. To better evaluate the robustness of the proposed mechanism, we conduct our
experimental evaluation under two sets of workloads, i.e., homogeneous workloads with the same MapReduce
jobs and heterogeneous workloads mixing with different MapReduce jobs.

4.2.1. Homogeneous Workloads. In this set of experiments, we submit a batch of 72 terasort jobs in
each round. All the jobs in the same round have the same resource requirement setting, and each job processes a
100MB randomly generated input file. We further change the resource requirements for jobs in different rounds,



AutoAdmin: Automatic and Dynamic Resource Reservation Admission Control in Hadoop YARN Clusters 63

Table 4.1

Perf. Scores under homogeneous workloads.

AMC=1 AMC=2 AMC=3 AMC=4
TC=1 90.4% 99.6% 89.3% 91.4%
TC=2 99.3% 95.6% 99.4% 91.7%
TC=3 97.6% 99.2% 96.9% 97.4%
TC=4 88.5% 90.5% 99.7% 98.5%

i.e., from 1 vcore to 4 vcores for both ApplicationMasters and processing tasks. Therefore, there are totally
16 rounds with different resource requirement combinations. The performance (e.g., makespans) under our
admission control mechanism which dynamically sets the resource reservations (see red lines) as well as different
static reservation configurations (see blue lines) is depicted in Figure 4.1. The corresponding Perf. Scores of
our new mechanism are also shown in Table 4.1.

We first observe that different resource requirements need different amounts of reserved resources (e.g.,
numbers of vcores) for running tasks in order to achieve the best performance, i.e., the minimum makespan, see
blue curves in Figure 4.1. However, it is inherently difficult to statically find such an optimal reservation level,
especially if resource requirements are not fixed. While, by dynamically tuning the resource reservation level,
our admission control mechanism always obtains the best performance compared to the results under the static
resource reservations under almost all resource requirement configurations, see red lines in the figure. Table 4.1
further demonstrates that our new mechanism achieves high Perf. Scores, e.g., under more than half of the
cases, Perf. Scores are greater than 95%.

4.2.2. Heterogeneous. Now, we turn to evaluate our new mechanism under a more challenging scenario,
where we consider heterogeneous workloads which are mixed with different MapReduce jobs. Specifically, we
choose more than two MapReduce benchmarks and submit a batch of jobs from these benchmarks which are
configured with different resource requirements for running their ApplicationMasters and tasks. We totally
conduct 6 sets of experiments with different combinations of MapReduce jobs. Table 4.2 shows the detailed
configurations for each set of experiments.

The experimental results (e.g., the makespans and the Perf. Scores) under heterogeneous workloads are
shown in Figure 4.2 and Table 4.3, respectively. Consistent with the case of homogeneous workloads, we
can see that our proposed mechanism can still work well under various heterogeneous MapReduce workloads,
which achieves the performance close to those under optimal static resource reservations. On the other hand,
the settings for optimal static resource reservations are varying across different heterogeneous workloads. An
inappropriate configuration could dramatically degrade the performance. Therefore, our mechanism which
dynamically and automatically controls the admission of applications (i.e., reserving resources for running
regular tasks) is important for achieving competitive performance of YARN.

5. Related Works. While the original Hadoop MapReduce framework has been extensively studied in
recent years, Hadoop YARN is relatively new and has not been widely studied yet. A few preliminary works
have been presented to improve the scheduling in Hadoop YARN systems. Dominant resource fairness [14] was
proposed to improve the fairness between users when multiple types of resources are required by MapReduce
jobs as in YARN framework. Some previous studies [13] [6] designed modified frameworks to handle iterative
jobs. These works attempt to achieve performance improvements on share-based scheduling in Hadoop YARN.
However, the deadlock problem caused by ApplicationMasters has not been considered yet.

Simple admission control policy that could help avoid deadlocks is supported in Fair [3] and Capacity [2]
schedulers of YARN. For example, users can specify the maximum number of jobs for each queue under the
Fair scheduler. By manually specifying a small number of jobs that are allowed in each queue concurrently, the
ApplicationMasters of these jobs will not occupy all system resources. However, it is difficult for administrators
to manually choose a good configuration. Moreover, static configurations cannot work well, especially under
dynamic workloads.

Admission control in cloud computing has also been well studied in different aspects. Wu et al. [23]
proposed admission control policies that aimed to maximize the SaaS provider’s profits based on user SLA
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Table 4.2

Experimental setup for heterogeneous workloads.

Benchmark Job AMCR TCR TCR Input
number (Map) (Reduce) size

Terasort 15 1 2 1 100M
Exp1 Wordmean 15 2 1 2 400M

Wordcount 15 3 3 2 400M
Pi 15 1 4 1 N/A

Terasort 15 3 4 2 400M
Exp2 Wordmean 15 1 3 2 200M

Wordcount 15 2 3 2 200M
Pi 15 4 2 3 N/A

Terasort 15 4 1 3 400M
Exp3 Wordmean 15 3 2 4 400M

Wordcount 15 2 4 1 200M
Pi 15 1 2 2 N/A

Exp4 Terasort 30 2 3 1 200M
Wordcount 30 1 3 4 800M
Terasort 15 3 1 1 100M

Exp5 Wordmean 15 4 1 2 100M
Wordcount 15 4 1 1 100M

Pi 15 2 1 1 N/A
Terasort 20 1 1 2 200M

Exp6 Wordmean 20 2 3 3 400M
Pi 20 3 2 4 N/A

Table 4.3

Perf. Scores under heterogeneous workloads.

Exp1 Exp2 Exp3 Exp4 Exp5 Exp6
Perf. Score 100% 85.9% 94.2% 99.1% 90.6% 95.8%

and IaaS provider SLA. Machine learning based admission control for MapReduce jobs was proposed in [12] to
meet job deadlines. Our previous work [24] also proposed a similar admission control mechanism but it does not
consider heterogeneous workload use cases. In this work, our primary goal is to avoid the resource deadlocks and
meanwhile to improve the makespan of MapReduce jobs [22]. Furthermore, our admission control mechanism
only delays jobs instead of declining jobs.

Fine-grained resource management was also well studied for Hadoop systems. ThroughputScheduler [15]
was proposed to improve the performance of heterogeneous Hadoop cluster. An explore stage was proposed
to learn the resource requirement of tasks and the capabilities of nodes, and the best node was then selected
to assign tasks in the scheduler. [18] leveraged job profiling information to dynamically adjust the number of
slots on each node, as well as workload placement across nodes, to maximize the resource utilization of the
Hadoop cluster. [21] is the first comprehensive study of intermediate data for YARN with Lustre and RDMA.
[4] mathematically investigates the scheduling problem which is assigning inputs with various sizes to a set of
reducers with capacity. POPI [8] is a lightweight algorithm targeting for efficient processing large outer joins
under Hadoop. In order to improve the performance in large distributed environments, a new framework called
CCF [9] is proposed to co-optimize application-level data movement and network-level data communications
for distributed operators. Rayon [10] is proposed to reserve resources for production jobs and best-effort jobs
such that the SLAs for production jobs can be guaranteed and meanwhile the execution time of best-effort
jobs can be reduced. We note that our scheduler mainly focuses on how to allocate the reserved resources for
best-effort jobs, which is complementary to Rayon in [10]. Zaharia et al. [25] proposed a delay scheduling policy
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Fig. 4.2. Makespans under heterogeneous workloads, where the blue curves show the results under different static reservation
configurations and the red dashed-lines present the results under our mechanism which dynamically sets the resource reservations.

to improve the performance of Fair scheduler by increasing the data locality of Hadoop, which is compatible
with both Fair scheduler and our proposed scheduling policies. Quincy [16] formulated the scheduling problem
in Hadoop as a minimum flow network problem, and decided the slots assignment that obeys the fairness and
locality constraints by solving the minimum flow network problem. However, the complexity of this scheduler is
high and it was designed for slot based scheduling in the first generation Hadoop. Verma et al. [20] introduced
a heuristic method to minimize the makespan of a set of independent MapReduce jobs by applying the classic
Johnson’s algorithm. However, their evaluation is based on simulation only without real implementation in
Hadoop.

6. Conclusions. In this paper, we presented a novel admission control mechanism that integrates with the
existing Fair scheduler of Hadoop YARN. The main objective of our work is to automatically and dynamically
reserve a specific amount of resources for processing tasks in YARN such that the deadlock problem caused
by ApplicationMasters can be avoided. In addition, we aim to achieve better performance by controlling the
concurrency level of jobs in the cluster. To meet this goal, the mechanism collects the resource usage information
from each work node and leverages this information to predict the optimal amount of reserved resources for
processing tasks. A waiting queue is further maintained to hold delayed jobs that will be resubmitted when
there are available resources. We implemented our proposed mechanism in Hadoop YARN v2.2.0 and evaluated
it with a suite of representative MapReduce benchmarks. The experimental results demonstrate that our
mechanism can achieve the near optimal performance. The effectiveness and robustness of this new mechanism
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are validated under both homogeneous and heterogeneous workloads. In the future, we will investigate the
relationship between job concurrency and system throughput in a YARN cluster and further extend our work
to other cloud computing platforms.
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adaptive scheduling for mapreduce clusters, in Middleware 2011, Springer, 2011, pp. 187–207.
[19] V. K. Vavilapalli, A. C. Murthy, C. Douglas, et al., Apache hadoop yarn: Yet another resource negotiator, in Proceedings

of the 4th annual Symposium on Cloud Computing, ACM, 2013.
[20] A. Verma, L. Cherkasova, and R. H. Campbell, Two sides of a coin: Optimizing the schedule of mapreduce jobs to min-

imize their makespan and improve cluster performance, in Modeling, Analysis & Simulation of Computer and Telecom-
munication Systems (MASCOTS), 2012 IEEE 20th International Symposium on, IEEE, 2012, pp. 11–18.

[21] M. Wasi-ur Rahman, N. S. Islam, X. Lu, and D. K. D. Panda, A comprehensive study of mapreduce over lustre for inter-
mediate data placement and shuffle strategies on hpc clusters, IEEE Transactions on Parallel and Distributed Systems,
28 (2017), pp. 633–646.

[22] M. Wojnowicz, D. Nguyen, L. Li, and X. Zhao, Lazy stochastic principal component analysis, in IEEE International
Conference on Data Mining Workshop, 2017.

[23] L. Wu, S. Kumar Garg, and R. Buyya, Sla-based admission control for a software-as-a-service provider in cloud computing
environments, Journal of Computer and System Sciences, 78 (2012), pp. 1280–1299.

[24] Y. Yao, J. Lin, J. Wang, N. Mi, and B. Sheng, Admission control in yarn clusters based on dynamic resource reservation,
in Integrated Network Management (IM), 2015 IFIP/IEEE International Symposium on, IEEE, 2015, pp. 838–841.

[25] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, and I. Stoica, Delay scheduling: a simple
technique for achieving locality and fairness in cluster scheduling, in Proceedings of the 5th European conference on
Computer systems, ACM, 2010, pp. 265–278.

Edited by: Pradeep Reddy CH
Received: Jun 7, 2017
Accepted: Feb 26, 2018


