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REDUCING THE INTERPROCESSORS MIGRATIONS OF THE EKG ALGORITHM

EL MOSTAFA DAOUDI ∗, ABDELMAJID DARGHAM ∗, AICHA KERFALI∗, AND MOHAMMED KHATIRI ∗†

Abstract. In this work, we consider the scheduling problem of a set of periodic implicit-deadline and synchronous tasks, on a real-time mul-

tiprocessor composed of m identical processors. It is known that the cost of migrations and preemptions has significant influence on global system

performances. The EKG algorithm can generate a great number of migrant tasks, but it has the advantage that each migrant task migrates between two

processors only. Later, the EDHS algorithm has been proposed in order to minimize the number of migrant tasks of EKG. Although EDHS minimizes

the number of migration compared to EKG, its drawback is the generation of additional preemptions caused by the migrations on several processors.

In this paper we propose a new tasks allocation algorithm that aims to combine the advantages of EKG (migrations between two processors only) and

those of EDHS (reduction of number of migrations).
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1. Introduction. There are two basic approaches for scheduling real-time tasks on multiprocessor / multi-core plat-

forms: global and partitioned scheduling. In partitioned scheduling, tasks are organized in groups, and each task group is

assigned to a specific processor. After their allocation to processors, the tasks are not allowed to migrate from one proces-

sor to another. When selected for execution, a task can only be dispatched to its assigned processor. On each processor the

tasks are scheduled using standard known uniprocessor algorithms e.g. RM (Rate-Monotonic) or EDF (Earliest-Deadline-

First) [1]. The main disadvantage of the partitioning approach is that the tasks allocation problem is analogous to the bin

packing problem which is known to be NP-Hard [2]. So a task cannot be assigned to any of the processors even if the

total available capacity of the whole system is still large. When the individual task utilization is high, this waste could be

significant, and in the worst-case only half of the system resource can be used. The alternative to partitioned scheduling is

global scheduling in which there is a single queue for tasks that are ready to run. At each time, the m highest priority tasks

are dispatched to any available processor according to a global priority scheme. The tasks can migrate from one processor

to another which makes it possible to achieve a better use of the platform. Partitioned scheduling has gaps due to the

absence of task migration from one processor to another. It is shown that a non schedulable system under partitioned

policy can be scheduled if given the opportunity to unassigned tasks to run on multiple processors in global scheduling

assuming that the cost of preemptions and migrations is neglected. This assumption is not realistic since this cost has

an influence on global system performance. Several works have been proposed in the literature to reduce the number of

preemptions and migrations [3, 4, 5].

To overcome the problem of the partitioned approach and increase the utilization rate of the system, recent works

[6, 7, 8, 9, 10] have introduced the semi-partitioning scheduling in which most of tasks are assigned to particular processors

as the partitioned scheduling, but the remaining tasks (unasigned tasks) are allowed to migrate between processors. In

other words, each remaining task is splitted into a set of sub-tasks and each one of them is affected to a processor. This

approach allows migration but reduces the number of migrant tasks compared to the global approach.

The Semi-partitioning algorithm EKG [11] cuts the set of processors into groups each one is composed of k processors

and limits migration within the same group. In addition, a task can migrate between two processors only. Note that EKG

allows to schedule optimally a set of periodic implicit tasks on m processors when k = m (EKG with one group). Since

EKG allocates migrant and non-migrant tasks simultaneously, this can generate a great number of migrant tasks.

Kato et al. [12] have proposed the EDHS algorithm which improves the EKG algorithm. It proceeds into two separate

steps to allocate the tasks: during the first one, the tasks are assigned according to a given partitioning algorithm in order

to minimize the number of migrant tasks generated by the EKG algorithm. The second one consists in allocating migrant

tasks on multiple processors according to a second algorithm.

Our contribution aims to combine the advantages of the EKG (migration between two processors only) and those of

EDHS (reduction of migrant tasks). We proceed also into two steps to allocate the tasks: the first step is similar to the

EDHS one, so we generate the same number of migrations as EDHS algorithm. In order to ensure the schedulability as
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EKG algorithm, our proposed algorithm avoid that a task migrates between more than two processors during the second

step of the algorithm. In order to achieve this goal, our key idea consists in reassigning the first allocated task of processors

involved by migrations. In this case our algorithm achieves the optimality like EKG for k = m.

The remainder of this paper is organized as follows: in Section 2 we present EKG and EDHS algorithms. Section 3

is devoted to present our proposed algorithm. In Section 4 we present experimental simulations and finally we give the

conclusion.

2. Presentation of the EKG algorithm. The system is composed of n periodic, implicit-deadline and synchronous

tasks noted τ1, τ2, ..., τn and m identical processors P1,P2,...,Pm. All the tasks cannot be executed in parallel and are

independent. Each processor can’t execute more than one task at any time. Each task τi has a period Ti (that is also the

implicit deadline) and an execution time Ci. The ratio Ci/Ti =U(τi) defines the utilization rate of the task τi.

The EKG algorithm [11] cut the set of processors into groups each one is composed of k processors and limits

migration within the same group. In addition, a task can migrate between two processors only. It allows scheduling

optimally a set of periodic tasks with implicit deadline on m processors, when setting the parameter k equal to the number

of processors (k = m).

Basic principle: Unlike partitioned algorithms, EKG allows tasks to run on two different processors (at different

times, without parallelism). The algorithm is divided into two stages:

• Tasks allocation (offline): each task is assigned to one or two processors. The algorithm treats heavy and light

tasks differently. A task τi is heavy if Ci/Ti > SEP, otherwise it is light where SEP is calculated as follows:

SEP =

{

1, i f k = m

k/(k+1), i f k < m

First, the algorithm assigns one heavy tasks to one processor where one processor is dedicated for one heavy

(one per task). Then the lighter tasks are assigned to the remaining processors where several light tasks may be

assigned to the same processor. To obtain a processor load of 1, some tasks can be split to run on two different

processors (migrant task) belonging the same group. If a task is attempted to be assigned to the last processor in

a group and it fails, then it is not split, but it is simply assigned to the first processor in a new group. This ensures

that tasks in a group do not interact with tasks in another group.

• Tasks scheduling on processors (online): For each group, cutting the time into EKG intervals. An EKG interval

is defined by two successive wake-up dates of tasks in the same group. It is similar to slots in the DP-Fair

terminology [13], but limited to the tasks of the same group. Similar to DP-Fair, the work of migrant tasks

should run for a time proportional to their utilization rate and duration of an interval [t0,t1] where t0 denotes the

time when a task arrives, and t1 denotes the time when any task in that group arrives next. On an interval [t0,t1],

if a task τi migrate between processors Pj and Pj+1, it will be splitted into subtasks τ11 and τ12 as shown on

Figure 2.1. At t0 it runs on Pj for U(τi1) ∗ (t1− t0) time units and ends its execution at timea. Towards the end

of the interval at timeb, the execution of the task restarts on Pj+1 for a time duration of U(τi2) ∗ (t1− t0) units

and ends its execution at t1. The non migrant tasks are scheduled according to EDF on ]timea, timeb[. After

assignment of tasks, at runtime, our algorithm uses the same technique as the EKG algorithm to execute them on

each processor.

Reducing the number of preemption by mirroring: The mirror technique called (Mirroring) can be easily implemented

by inverting simply τi1 and τi2. This halves the number of preemptions. Figure 2.2 shows an execution with this technique.

Note that it can be reused for other scheduling policies; it is the case for example DP-WRAP [11].

3. Presentation of EDHS Algorithm. EKG assigns migrant and non-migrant tasks simultaneously. This assign-

ment produces several migrant tasks. To minimize the number of migrant tasks Kato et al. [12] have proposed the EDHS

algorithm which proceeds into two separate steps: during the first one, the tasks are assigned according to a given parti-

tioning algorithm in order to minimize the number of migrant tasks. The second step consists in allocating, on multiple

processors, migrant tasks (tasks that have not been allocated during the first step), according to a second algorithm, as

shown on Figure 3.1 .

At runtime, the non-migrant tasks run according to EDF but migrant tasks run with high priority without overlap in

time. When migrant task has exhausted its running time on a processor, it continues its execution immediately on the next
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FIG. 2.1. Migration of the task τ11 between processors Pj and Pj+1

FIG. 2.2. The execution with mirroring technique

FIG. 3.1. Allocation of migrant tasks with EDHS algorithm

processor and preempts the current task as shown on Figure 3.2. Although EDHS minimizes the number of migration

compared to EKG, its drawback is the generation of additional preemptions caused by the high priority of migrant tasks

on several processors.

4. The proposed processor allocation heuristic. The system τ = {τ1,τ2, . . . ,τn} is composed of a periodic, implicit

deadline and synchronous tasks. We assume that ∑U(τi)≤m and U(τ1)≥U(τ2)≥ . . .≥U(τn). The following notations

are used in the remaining of the paper :

• M : denotes the set of the not allocated tasks. Initially M = τ .

• τ[ j]: denotes the set of allocated tasks to the jth processor of the list of processors denoted by Pj, for 1≤ j ≤ m.
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FIG. 3.2. Execution of migrant tasks with EDHS algorithm

Initially, τ[ j] = /0, for all j.

• U [ j]: denotes the sum of the utilization rates of all tasks allocated to processor Pj.

• A processor Pj is full if U [ j] = 1.

• cap[ j] = 1−U [ j]: denotes the remaining capacity of processor Pj

In order to reduce the number of migrant tasks generated by the EKG algorithm, we proceed into two phases for

allocating tasks to processors:

4.1. First phase. During the first phase, the allocation of tasks is done by applying one of the most known heuristics

based on bin packing problem [14] as EDHS algorithm, namely First-Fit Decreasing, Best-Fit Decreasing and Worst-Fit

Decreasing. These algorithms allocate the tasks by sorting them according to their utilization rates in the decreasing order.

After this phase, a set of tasks remain still not allocated (the set of migrant tasks). Algorithm 1 describes the First-Fit

Decreasing heuristic.

Algorithm 1 First-Fit Decreasing heuristic

for each τi in M do

j← 1

affecter← 1

while ( U[j] + U( τi ) > 1) and affecter = 1 do

j← j+1

if j > m then

affecter← 0

end if

end while

if affecter=1 then

τ[ j]← τ[ j]
∪

{τi ; }
U[j]← U[j] + U(τi);

M←M\{τi } ;

end if

end for

4.1.1. Examples.

• Example 1: In the following example, we consider the tasks system τ = (τ1,τ2,τ3,τ4,τ5,τ6) with U(τ1)=0.7,

U(τ2) =0.6, U(τ3) =0.6, U(τ4) =0.4, U(τ5) =0.4 and U(τ6) =0.3. Figure 4.1 shows that the allocation of tasks

using EKG algorithm gives rise to two migrant tasks τ2 (τ21 and τ22) and τ4(τ41 and τ42), but with the First-Fit

Decreasing heuristic, there is no migrant task.
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FIG. 4.1. Allocation with EKG and First Fit Decreasing heuristic on three processors

• Example 2: In the following example we will show that even if we apply the heuristics based on the bin packing

problem, we cannot avoid the migration of the tasks. We consider the system τ = (τ1,τ2,τ3,τ4,τ5,τ6,τ7) with

U(τ1)=0.9; U(τ2)=0.8; U(τ3)=0.5; U(τ4)=0.3; U(τ5)=0.3; U(τ6)=0.15 and U(τ7)=0.04). In Figure 4.2, it is clear

that the First-Fit Decreasing heuristic could not affect the task τ5, so it must migrate on processors P1, P2 and P3.

FIG. 4.2. Allocation with the First Fit Decreasing heuristic on three processors

4.1.2. Experimentations. In Figure 4.3 [5] we compare the number of migrations obtained with the EKG and the

proposed algorithms by using the heuristics First-Fit, Best-Fit, Worst-Fit. For simulations, we have considered 10000 task

systems and we have calculated the average of the number of migrations in a given interval, for each heuristic. The tasks

are randomly generated with the respect of the schedulability condition that is ∑U(τi) ≤ m. Experimental results show

that the heuristics First-Fit, Best-Fit, Worst-Fit reduce significantly the number of migrations. The reduction can reach

60% with the Best Fit and the First Fit heuristics.

4.2. Second phase. The second phase consists in allocating the set of remaining tasks (set of migrant tasks). Note

that, by construction, the sum of utilization rates of migrant tasks is lower or equal to the sum of remaining processor

capacities. Assume that, processors are sorted by decreasing order according to their remaining capacities, cap[1] ≥
cap[2] ≥ . . . ≥ cap[m] and task τk can migrate on processors P1,P2, . . . ,Ph which means that cap[1] + cap[2] + · · ·+
cap[h]≥U(τk) and cap[1]+ cap[2]+ · · ·+ cap[h−1]<U(τk). the width of a time interval is denoted L.

Note that according to the first phase of the heuristic, the first task of each processor Pj, for 2 ≤ j ≤ h, noted ρ j,

verifies U(ρ j)≥U(τk). The basic idea is to increase recursively the remaining processor capacities as follows:

• Subdividing the task ρ2 into two subtasks ρ21 and ρ22, such that U(ρ22) = cap[1] and U( ρ21) = U(P2[1])-cap[1]

• Assigning ρ22 to P1. In this case P1 becomes full and the capacity of P2 is increased with U( ρ22) (cap[2]=

cap[2]+ U( ρ22).) Thus, task ρ21 becomes a migrant task on processors P1 and P2. At runtime:

– Processor P2 starts its execution by task P2[1] during U( ρ21)*L.

– Processor P1 ends its execution by task P2[1] during U( ρ22)*L.

• Recursively, the same process is repeated between processors Pj−1 and Pj, for 2 < j < h, where the task ρ j is

subdivided into two subtasks ρ j1 et ρ j2, such that U( ρ j2) = cap[j-1]. In this case cap[j]= cap[j]+ U( ρ j2). At

runtime:
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FIG. 4.3. Number of migration generated by each heuristic

– Processor Pj starts its execution by task ρ j during U(ρ j1)*L.

– Processor Pj−1 ends its execution by task ρ j during U(ρ j2)*L.

• After this process, cap[h− 1] < U(τk) and cap[h] + cap[h− 1] ≥ U(τk), then task τk migrates only between

processors Ph−1 and Ph in the following manner: τk is subdivided into two subtasks τk1 and τk2, such that U(τk1)

= cap[h-1] and U(τk2) = U(τk) - U(τk1). Ph−1 starts its execution by task τk1 during U(τk1)*L and Ph ends its

execution by task τk2 during U(τk2)*L.

With this reallocation, the number of migrations is still the same and each migrant task, migrates between two processors

only. In this case our proposed algorithm generates lower migrant tasks than EKG.

Algorithm 2 allocation of migrant tasks

for each τk in M do

sort in decreasing order the list of processors according to their remaining capacities

calculate h such as cap[1]+ . . .+ cap[h]≥U(τk) and cap[1]+ . . .+ cap[h−1]<U(τk).
j← 1

while j < h−1 do

Subdivide ρ j+1 into tow subtasks ρ( j+1)1 and ρ( j+1)2 such that U(ρ( j+1)2) = cap[ j] and U(ρ( j+1)1) =U(ρ j+1)−
cap[ j]
Assign ρ( j+1)2 to Pj then cap[ j+1] = cap[ j+1]+ cap[ j] and Pj becomes full.

Processor Pj+1 starts its execution by executing task ρ j+1 during U(ρ( j+1)1)∗L

Processor Pj ends its execution by executing task ρ j+1 during U(ρ( j+1)2)∗L.

j← j+1

end while

/* τk migrates only between Ph−1 and Ph. */

Subdivide τk into two subtasks τk1 and τk2, such that U(τk1) = cap[h−1] and U(τk2) =U(τk)−U(τk1).
Assign τk1 to Ph−1 and τk2 to Ph

Processor Ph−1 starts its execution by task τk1 during U(τk1)∗L

Processor Ph ends its execution by task τk2 during U(τk2)∗L.

end for

In Figure 4.4 we show the steps of the algorithm in order to allocate a migrant task τk to two processors only instead

to allocate it to four processors.

5. Conclusion. In this work we have proposed a new semi-partitioned algorithm that reduces the number of migra-

tions like EDHS and limits migrations between two processors only like EKG. The proposed algorithm is designed into
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FIG. 4.4. Allocation of the migrant task τk with our proposed algorithm for h=4

two steps. During the first step we used the well-known bin packing heuristics [14] (the First Fit Decreasing, the Best Fit

Decreasing and the Worst fit Decreasing). This step is similar to the first step of the EDHS and it consists in reducing

the number of migrant tasks compared to EKG. During the second step of the algorithm, we proposed a new technique

that allocates the migrant tasks. Our key idea consists in increasing the number of migrant tasks, each one migrates on

two processors, while keeping the same number of migrations: instead to migrate a task between h processors (h-1 mi-

grations), we migrate (h-1) tasks each one between two processors. This reallocation has the advantage that we remain

in the same condition of optimality of the EKG for m=k. Experimental simulations show that the number of migrations,

compared to EKG, is significantly reduced. This reduction can reach 60%.
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