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Abstract. The aim of this paper is to present a method based on the isoefficiency model for assessing the scalability in big data environments. The

programs word count and sort were implemented and compared in Hadoop and Spark. The results confirm that isoefficiency presented a linear growth as

the size of the data sets was increased. They were checked experimentally to ensure that the evaluated frameworks are scalable and a sublinear function

was obtained. This paper discusses how scalability in big data is governed by a constant of scalability (β ).
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1. Introduction. The amount of data created globally is increasing sharply. Every day 2.5 Exabytes of data are

generated [23]. Big data refers to data sets that cannot be managed using traditional database systems and techniques.

This data may come from diverse sources, such as; emails, videos, images, logs, online transactions, search queries, health

records or social networking interactions [17, 23, 6]. Moreover, the Internet of Things (IoT) technology has promoted

the creation of several systems that generate enormous quantities of data such as smartphones and sensors. Big data

has received increased attention in recent years from researchers and industrial community. This term has five defining

characteristics: volume, variety, velocity, veracity and value [6]. Volume refers to the magnitude of data sets (multiple

terabytes and petabytes) [6]. Variety refers to the structural heterogeneity in a data set (structured, semi-structured, and

unstructured data). Text, images, audio, and video are examples of unstructured data, which do not have the structure

required to be analyzed by traditional database systems. Velocity refers to the rate at which data is generated and the

speed at which it should be analyzed. As mentioned above, the proliferation of digital devices, such as, smartphones and

sensors has led to an unprecedented rate of data creation and is driving a growing need for real-time analytics. Veracity is

linked to the unreliability inherent in some sources of data. For example, user feelings in social media are uncertain since

they pertain to human judgment. Value is the importance of information extracted from data. The value obtained from big

data sets can contribute to improving productivity and competitiveness and create enormous benefits for consumers [2].

The characteristics of big data increase the complexity of storing, processing and analyzing information and pose

challenges for obtaining the real value of big data. Several technologies have been proposed for addressing this complexity,

such as MapReduce, Hadoop and Spark. MapReduce is a paradigm that parallelizes and executes a program on different

machines [4]. Hadoop and Spark are frameworks for non-relational storage and distributed processing. These technologies

enable processing semi-structured and unstructured data. Large data sets can be stored and processed in a distributed

way [3].

In this scenario, some desirable characteristics of big data environments are scalability, high performance, parallel

processing, high fault tolerance and low cost. The scalability is associated with the efficient management of resources and

measures the ability of a system to react and adapt to changes in the volume of data without degrading its performance

[1]. For example, for opinion mining in twitter, it may be necessary to add new resources continuously, as the number

of tweets increases. The models and technologies developed for big data environments have so far been shown to be

scalable. Nevertheless, some questions are still only partially answered. How should scalability in big data environments

be measured? Is it possible to build a mathematical model of scalability of the big data environment?

In this work, Isoefficiency is introduced as a standard measure of scalability. A model for the evaluation of the

scalability of big data environments is also presented. This model was validated using Hadoop and Spark frameworks,

for this purpose. Wordcount and Sort programs were developed following the MapReduce paradigm. The experimental

evaluation was carried out using data sets whose sizes range from 1Mb to 30Gb (10 data sets). The results show that

the Isoefficiency model for each framework is linear and for each program, the growth behavior is sublinear. Thus, the
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isoefficiency increases as the size of the data set increases, but the isoefficiency growth is low while the file size growth is

accelerated. The results show that the tested frameworks are scalable and follow the sublinear behavior of the Isoefficiency

function, Y (s) = βX(s) where β ≈ [0.47−0.85]< 1. Furthermore, scalability is governed by a constant of scalability β .

The paper proceeds as follows. The next section describes related works. Section 3 discusses the experimental

calculation of Isoefficiency, as well as the proposed model. Section 4 discusses the results of the evaluation and section 5

provides a conclusion.

2. Related work. Related works are organized into two groups: Isoefficiency based measures and comparison of big

data frameworks. Regarding Isoefficiency based measures, several studies have been carried out in different distributed

and parallel systems [24, 21, 27]. Moreover, other measures based on Isoefficiency have been proposed for the analysis of

the scalability. Firstly, E-differentiation is a measure of scalability in parallel systems, which analyzes the change in the

efficiency of a system based on two variables; workload and processors [15]. This measure makes it possible to analyze

scalability based on the workload and not only on the number of processors, as is the case in Isoefficiency. Secondly,

the Isoefficiency maps allow us to understand the performance of parallel systems, and the measurement is based on

techniques such as temperature maps and pressure maps. Isoefficiency maps include several parameters of the parallel

performance in two-dimensional planes, which allows considering additional parameters, such as, the communication

between parallel processes [5].

Regarding the comparison of frameworks, the infrastructure, workload and information type are usually analyzed [4].

In some approaches, a single cluster configuration is implemented, and the size of the data set varies (this latter approach

is used on the present study). This group of studies aims to measure the performance of the framework for large data sets

based on the runtime [25, 4, 14].

On the other hand, some studies perform the comparison between structured and unstructured data sets [14], while

other authors compare the performance between Spark and Hadoop, using different algorithms [11, 13]. In [25] a com-

parison of 5 frameworks was carried out. To this end, different SQL queries were executed, and some measures such as

response time and fault tolerance were analyzed during the query. Conversely, [9] evaluates the scalability of Hadoop and

Spark frameworks based on execution time with relatively small data sets (less than 1.5Gb).

The work shown in [19] presents an Isoefficiency study in the context of big Data. In this work the Isoefficiency

is theoretically analyzed. Some variables, such as, calculation costs, synchronization and communication are studied

in MapReduce applications, modeled as bulk synchronous parallel tasks. The experimental evaluation shows that the

speedup follows a linear trend (100TB data set on 10,000 machines). Finally, other works are devoted to evaluating

pattern recognition algorithms based on the MapReduce paradigm [16, 20, 12].

None of the studies reviewed above develop a mathematical model that describes the scalability of big data Systems,

nor do they describe the behavior of the relationship between Isoefficiency and workload. Neither of the works is focused

on identifying a constant of Isoefficiency that describes the behavior of the scalability in a System. Finally, the model

proposed here can be applied to other experimental evaluations (frameworks, programs and data sizes) due to its three

layer architecture (processing, storage, and evaluation), seen in Fig. 2.1.

3. Proposed method for measuring the scalability of big data environments. Algorithms are described based

on the MapReduce paradigm. Isoefficiency is then calculated according to the size of the data set. Lastly, a model is

developed, and the β constant is computed.

3.1. Modeling of the programs Word Count and Sort. The MapReduce model consists of two functions, Map and

Reduce. Map receives a series of key/value pairs and generates a new intermediate pair key/value that is sent to the Reduce

function. Reduce function combines all the values according to the key [4]. To describe an algorithm using MapReduce,

it is necessary to define the Map and Reduce functions. However, there are few models, guidelines or methods that can be

found to translate algorithms to the MapReduce paradigm. Therefore, some examples of the programs Word Count and

Sort are presented below.

The Word Count program evaluates the number of appearances of each word in a data set. The map function receives

a set of key/value pairs, where the key is the name of the document to be processed, and the value is the content of the

document. For each word found in the content, a key/value pair is returned, where the key is the word, and the value is

1. The Reduce function receives this list and iterates on each element of the list of ones, adding each element. Finally, a

key/value pair is returned with the word and the total number of appearances for each word.
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FIG. 2.1. Architecture for the Proposed Method of the Measuring the Scalability in Big Data Environments

The Sort program computes a sorted list in alphabetical order of the words from data sets. The map function receives

a list of key/value pairs, where the key is the name of the document to be processed, and the value is the content of the

document. For each word in the content, a key/value pair is returned, where the key is the word, and the value is 1. The

Reduce function receives a list of key/value pairs and returns the received key, the value is not taken into account in the

sort program.

3.2. Measuring the Isoefficiency. The measurement is carried out according to the size of the data set and the

consumed resources. Figure 2.1 shows the architecture of the approach that consists of 3 layers; processing, storage,

and evaluation. The input is a set of flat files stored in HDFS(Hadoop Distributed File System). The processing layer

includes the MapReduce based algorithm for evaluation. The storage layer consists of the distributed file system of the

framework to be analyzed (Hadoop and Spark), and the local file system. The distributed file system stores the input data,

and the data returned by the algorithms in the processing layer. The local file system stores the logs generated by the

frameworks during the processing. The logs’ files contain data on the processing time, read data, returned data, and used

resources among others. Finally, in the evaluation layer, the logs’ files are used to calculate all measurements defined for

the evaluation. A report is also created to display the results of each algorithm for the data set’s different sizes.

The Evaluation was carried out using the following three steps: experimental design, configuration of the framework’s

infrastructure, and definition of the metrics.

3.2.1. Experimental design. Two algorithms (Word Count and Sort) are translated to the MapReduce model to run

in Hadoop and Spark frameworks on a cluster with four virtual machines. The efficiency and speedup are used to calculate

the Isoefficiency.

3.2.2. Configuration of the framework infrastructure. Hadoop is a framework for storing and processing large

data sets. Hadoop is based on a master multislave architecture. The main component of Hadoop is the Hadoop distributed

file system (HDFS). HDFS stores large data sets in distributed nodes, offering data redundancy and high-performance

access. Another component is YARN that manages the resources and the MapReduce tasks. Hadoop also has a library to

implement applications following the MapReduce model [18, 22, 26].

For its part, Spark is a fast and general-purpose framework for processing large amounts of data. The main feature

of Spark is its memory processing. Spark is a flexible framework that can be integrated with various data storage tools,
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TABLE 3.1

Hardware Description Nodes

Hardware

Processors number 8

Processors model Intel Xeon E5540 2.53 Ghz

Cache size 8 Mb

RAM 8 Gb

Hard drive size 200 Gb

Software

Operating system Ubuntu 16.04.1 LTS

Big data frameworks Spark 2.0.2, Hadoop 2.7.3

Others Java 8

such as, Hadoop, Cassandra, HBase, among others. Additionally, Spark can be integrated with resource managers, such

as, YARN and Apache Mesos [28, 29, 30].

For the experiments, a cluster with four virtual machines connected to the same network was deployed. The cluster

consists of a master node and three slave nodes. Each node has the hardware and software specifications shown in

Table 3.1.

Figure 3.1 depicts the cluster architecture. The data set includes scientific papers from the ISI Web of Knowledge.

The data set contains metadata, including title, abstract, authors, etc. However, the analysis was done on the complete

paper. The data set is composed of flat files with a total size of 15 Gb. Different samples were taken with different sizes:

100Kb, 1Mb, 13Mb, 100Mb, 512Mb, 1Gb, 5Gb, 10Gb, 20Gb, 30Gb. These data sets were stored in HDFS, and also in a

Google Drive repository, available at:

https://drive.google.com/drive/folders/0B0Zl7SmxErLNMm4tZVdyRG8ya1E?usp=sha

3.2.3. Definition of the Metrics. Execution time (T ) measures the time required to run a program in parallel. T is

calculated as T = T F −T I, T F is the time when the program ends, and T I the time when the program starts [7].

Speedup (S) measures the performance gain obtained by running a program in parallel, compared to the sequential

execution. This metric is defined as the ratio between the time used to solve a problem in a single processor, and the

time necessary to solve the same problem in a parallel system with p identical processors. Thus, T S is the runtime of

the program executed sequentially, and T the runtime of the program executed in parallel [7]. Speedup is defined by

S = T S/T .

Efficiency is defined as the ratio between Speedup (S) and the number of processors P [7], mathematically it is

defined as E = S/P. Furthermore, efficiency is the fraction of the time that each processor is used. In an ideal scenario,

the speedup (S) is equal to the number of processors and the efficiency is equal to 1, but generally, the speedup is less

than the number of processors and efficiency is between 0 and 1.

Isoefficiency (W ) is a measure of the scalability in parallel systems. W measures the relationship between the work-

load and the number of processors. Here the Isoefficiency is defined by Eq. 3.1 as the rate at which the number of

FIG. 3.1. Hardware Architecture for the experiments
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processors must increase in order to keep the efficiency fixed as the workload increases [8, 10].

W = K ∗T0(w,P) (3.1)

where K = E/1−E, that is the scalability constant, and T0 ≈ T ∗ (P− s) which is calculated experimentally.

3.3. The Isoefficiency model. The Isoefficiency of two programs executed in two different frameworks is calculated.

This Isoefficiency is evaluated for different data set sizes(sd). Equation 3.2 represents the fit equation and is computed

through the method of least squares.

Y (sd) = βX(sd) (3.2)

where Y (sd) is the Isoefficiency, X(sd) is the data size evaluated in each experiment. β is the system scalability coefficient,

which is estimated by linear regression. The model is represented by a linear equation, where the least squares adjust

model parameters β to get a best fit. Therefore, the model constructs a model with a structure that fits the yi for successive

x values, using the parameters β ; For the property RSquared, the computation of the total sum of squares is mean adjusted,

other properties related to the sum of squared errors are included such as Standard error, T-statistic and P-value. The model

was implemented in the Mathematica software package.

To study the relationship between the program input and the Isoefficiency, a model based on Eq. (3.2) was built.

In each case, β represents the proportion in which the Isoefficiency grows according to the input. This linear function

represents the scalability of the system. In most cases β grows sub-linearly depending on the data size (sd). The positive

slope β less than 1 means sub-linear behavior, that is, the value on the x-axis is higher than the value on the y-axis. Thus,

the sublinear growth in the Isoefficiency indicates that the system is scalable since the increase of the resources is less

than the increase of the workload.

4. Results. Table 4.1 shows the experimental results. Blue displays the experimental data, and green the calculated

Isoefficiency of Hadoop and Spark frameworks (for Word Count and Sort programs). It can be seen that for a particular

size of data set, the Isoefficiency values are similar for both frameworks. The behavior is the same when the size of the

data set is less than 1 Gb. On the other hand, when the size of the data sets is greater than 5 Gb, the behavior is different.

The Word Count scalability is less than Sort scalability due to the higher consumption of resources.

Table 4.2 shows the statistical model obtained from the experimental evaluation of the two programs. The table

presents the isoefficiency function (m(x)+ b), the function slope (m estimate), the standard error and the p-value, and

the R2.

The results show that, the standard error values and the t-statistics are similar for both programs. A minimum square

error of statistical significance 99% is also achieved. It can be inferred that the results provide reliability in the adjustment

of the model. In this sense, the results are confirmed because the positive slope less than 1 indicates a sub-linear behavior.

This means, that the distance between each point on the x-axis is higher than the distance between each point on the

y-axis. The sub-linear growth of the Isoefficiency indicates that the system is scalable, since the Isoefficiency increases

less than the workload (size of the data set) [8]. Thus, it is confirmed that the frameworks are scalable (for the word count

and sort programs) since a slight increase in resources is required to keep the efficiency.

5. Conclusions and Future works. An experimental evaluation of the Isoefficiency was carried out to analyze the

scalability of two big data frameworks: Hadoop and Spark. The function of Isoefficiency has been obtained according to

the size of the data sets for two MapReduce programs (Wordcount and Sort). The function regulates the Isoefficiency as

a linear function. It was shown that the Isoefficiency of the two frameworks was the same when executing the programs

based on the MapReduce paradigm. From the Isoefficiency function, a sublinear growth of the Isoefficiency associated

with an increase of the data size was evidenced. That is to say, as the data size increases the Isoefficiency of the frameworks

increase in smaller proportion. The experiments show that Hadoop and Spark are an excellent choice to store and process

large data sets, since the results obtained from Isoefficiency are similar. A future project might implement a MapReduce

program for indexing scientific unstructured data using Hadoop, Spark, and Elasticsearch.
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TABLE 4.1

Results of Scalability Experimintation and Proposed Model evaluation.

WORDCOUNT SORT

Mb Hadoop Spark Hadoop Spark

1.0∗10−1 1.88∗10−2 1.88∗10−2 6.64∗10−2 6.64∗10−2

1.0∗100 1.57∗10−1 1.57∗10−1 3.45∗10−1 3.45∗10−1

1.3∗101 1.20∗100 1.20∗100 2.56∗100 2.56∗100

1.0∗102 9.43∗100 9.43∗100 1.26∗101 1.26∗101

5.12∗102 4.27∗101 4.27∗101 4.08∗101 4.08∗101

1.02∗103 8.77∗101 8.77∗101 8.30∗101 8.30∗101

5.12∗103 4.17∗102 4.17∗102 3.33∗102 3.33∗102

1.02∗104 9.22∗102 9.22∗102 6.17∗102 6.17∗102

2.05∗104 1.71∗103 1.71∗103 1.02∗103 1.02∗103

3.07∗104 2.65∗103 2.65∗103 1.45∗103 1.45∗103

5.12∗104 4.38∗103 4.38∗103 2.48∗103 2.48∗103

6.14∗104 5.25∗103 5.25∗103 2.97∗103 2.97∗103

7.17∗104 6.13∗103 6.13∗103 3.46∗103 3.46∗103

8.19∗104 7.0∗103 7.0∗103 3.95∗103 3.95∗103

9.22∗104 7.88∗103 7.88∗103 4.44∗103 4.44∗103

1.02∗105 8.75∗103 8.75∗103 4.93∗103 4.93∗103

1.05∗106 8.97∗104 8.97∗104 5.03∗104 5.03∗104

1.07∗109 9.18∗107 9.18∗107 5.14∗107 5.14∗107

1.10∗1012 9.40∗1010 9.40∗1010 5.27∗1010 5.27∗1010

1.13∗1015 9.63∗1013 9.63∗1013 5.39∗1013 5.39∗1013

1.15∗1018 9.86∗1016 9.86∗1016 5.52∗1016 5.52∗1016

TABLE 4.2

Statistical Model for Scalability

Program/

framework

Equation

Y (t) = βX(t)
β
estimated

Standard

error
T-statistic P-value R2

Wordcount

Hadoop
0.0855x - 0.2874 0.0855 0.0008 110.858 4.8987∗10−14 0.99

Wordcount

Spark
0.0855x - 0.2874 0.0855 0.0008 110.858 4.8987∗10−14 0.99

Sort

Hadoop
0.0479x + 29.4126 0.0479 0.0015 32.2172 9.3867∗10−10 0.99

Sort

Spark
0.0479x + 29.4126 0.0479 0.0015 32.2172 9.3867∗10−10 0.99
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