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Abstract. The increasing complexity of real-time applications presents a challenge to researchers and software designers.
The tasks of these applications usually exchange many data-flows and often need to satisfy real-time constraints. Although the
Network on-Chip (NoC) paradigm offers an underlying communication infrastructure that gives more hardware resources, tasks
and data-flows cannot be performed before their deadlines. In recent works, preemptive wormhole switching with fixed priority
has been introduced to meet real-time constraints of real-time applications. However, it suffers some bottleneck such as hardware
requirement where none of these works takes account of the number of implemented Virtual Channels on the router. To alleviate
this problem, we propose a novel scheduler for soft real-time data-flows application that takes into account the lack on resource in
routers in term of Virtual Channels. Experimental results obtained on a benchmark of synthetic and soft real applications have
shown the efficiency of our approach in term of real-time constraints satisfaction for data-flow traffics and hardware requirements.
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1. Introduction. As the technology advances, the number of processors in a chip grows [1] due to the
transistor integration progress. In the last three decades, the hardware (processors) evolution was exponential
and the Moore law [2] which states that ”the number of transistors on an integrated circuit doubled every year”,
has reached its physical limits due to heat dissipation and energy consumption that increased with the number
of processors. This led nano-architecture engineers to propose a new system-on-chip (SoC) architecture called
network-on-chip (NoC) [3].

Inspired from the classical network, Networks on-Chip (Fig. 1.1) have emerged as a new communication
paradigm in systems on chip [4]. Unlike classical Multiprocessors System on-Chip (MPSoC) shared bus archi-
tectures [5] which do not allow scaling and behave unpredictable when connecting up to 10 processors [6], NoC
systems offer high scalability and improved parallelism [4]. Currently, many systems on-chip manufacturers
have developed commercial NoCs such as TeraFLOPS on-chip network developed by Intel [7] and TILEPro64
developed by Tilera [8].

On the other hand, embedded applications such as those found in aerospace domain [9] are increasingly
complex and subject to strong energy consumption and real-time constraints that require efficient and high
performance execution frameworks. Indeed, tasks of such applications are interdependent and usually exchange
many messages during their execution on processing elements (PE), which requires an efficient underlying
communication infrastructure like the one provided by a NoC. Furthermore, these dataflows are mostly subject
to soft or hard real-time constraints on their period and their deadline, for example. In this conditions, dataflows
must arrive at their destination nodes (Processing Element) in time and any exceeding deadlines can at best
degrade the application performance and at worst have desastrous consequences.

Due to its small buffering requirement, high throughput and low latency, the wormhole switching technique
[10] is the most common flow control mechanism in NoC routers (Fig. 1.2). In this switching technique, a
dataflow is split into packets, and a packet is split into flits1 (Fig. 1.3), where header flit embeds routing
information and data flits contain user data. When a router receives a flit, it is first buffered in an input Virtual
Channel (VC) [11] and then the arbiter function of the current router determines which of the candidate flits the
one that will be routed to the next router. One of the most commonly used arbitration technique is round robin
(RR) [12]. RR handles VC in circular order and ignores packet characteristics such as priority of a packet, which
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Fig. 1.1. 2D mesh network-on-chip.
The figure shows 2D-mesh Network on chip topology where a set of processors are interconnected via routers. NI formats

exchanged messages between application tasks to packets then flits.

Fig. 1.2. Interface views of a typical router: (a) Architectural view; (b) Functional view.

The figure shows the router architecture. It includes five input and output port, arbiter and routing function. Each Input physical

port includes a set of Virtual Channels (VC) connected to buffers. Each buffer has a limited amount of space for flits. For each

cycle, the arbiter and routing fabric select one flit to be routed through the output port. The output port is a physical wire that

transfers flits to next router.

makes it unsuitable for real-time applications where dataflows have priorities and must be routed according to
their priority. To deal with prioritized dataflows, a wormhole switching with a fixed priority preemption has
been proposed [13]. In this switching technique, Virtual Channels of an input port are labeled with a priority
value and each new flit arriving at a router is assigned to the Virtual Channel labeled with the priority of the
flit. This implies that the number of Virtual Channels per input port should be at least equal to the number of
distinctive flit priorities. This constraint is not always feasible. On the one hand, nowaday real-time applications
are more and more greedy and, on the other hand, it is technically not feasible to manufacture routers with a
large number of VC. We notice, for instance, that the experimental Intel Single-chip Cloud Computer (SCC)
NoC [7] implements 8 VC per input port.

In this work, we propose a general-purpose Virtual Channel allocation technique for wormhole switching
with priority pre-emption which is able to schedule soft real-time applications by assigning a Virtual Channel
to a flit of a given priority whatever the complexity of the application (number of priorities) and whatever
the architecture of the router (number of VC per input port). This paper is structured as follows. Section
2 presents recent works related to real-time dataflows scheduling. Section 3 describes the application model
targeted in this work. Section 4 depicts the VC allocation technique we propose. Then, We report and analyse
simulation results performed on synthetic and real-life applications (Sect.5). Finally, we conclude and give some
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Fig. 1.3. Packet formatting in wormhole switching.

An exchanged message is split into packets, and a packet is split into flits. The flit represents the data unit processed by the

router. During packet transmission, flits of the packet can be stored in multiple routers (buffers). If a contention occurs, just a flit

will be blocked not the entire packet.

perspectives.

2. Related Work. During the last few years, real-time dataflows scheduling problem on NoC-based sys-
tems on chip has been widely studied. Various scheduling methods have been proposed in the literature where
the objective is to achieve the real-time constraints of embedded applications using a minimum hardware re-
sources. In this section, we will report the most important work related to this problem.

The preemptive wormhole switching with fixed priority was firstly proposed by Balakrishnan et al. [14] to
address the problem of real-time communication in multiprocessor networks. This technique has subsequently
been adopted by several researchers to estimate the worst case response time for wormhole switching. Hary et al.
[15], in their paper, consider the links traversed by a dataflow as a single shared path and propose their analysis
accordingly, while Kim et al. [16] attempt to construct a dependency graph for its response time analysis.

Shi et al. [17] have adapted the response time analysis in a fixed priority processor proposed in [18] for the
analysis of the response time in the case of several dataflows. The authors consider that the NoC has as many
Virtual Channels (VC) as dataflows, that the VC and dataflows have priorities and that any given priority
dataflow is assigned to the VC that has the same priority. Such proposal presents scaling problems since it
is technically unfeasible to have routers with a large number of VC. The implementation of a VC is indeed
expensive in terms of manufacturing cost and logic area. Mello in [19] has stated that while the Hermes NoC
with a single VC took 17% of the logic area of their hardware test-bed, the design with two and four VC took
32.61% and 75.41% of the logic area respectively. We notice that input ports of routers of a Intel TeraFLOPS
NoC [7] developed by Intel has 8 Virtual Channels.

In order to improve their proposal and reduce hardware resources required to implement their scheduling
strategy, She et al. in [20] suggest another scheduling algorithm that partitions dataflows into clusters and
assigns a unique priority to dataflows of a cluster. This allows to reduce the number of Virtual Channels (since
dataflows of a cluster will be assigned to a single Virtual Channel) and achieve real-time constraints but may
give rise to unpredictable network latency and blocking problem. The latter can take place since a VC stores
different packets shared the same priority and served in FIFO because the priority preemption is only available
between VC and therefore a packet can be blocked by another packet with the same priority which holds a VC
which can in turn block other packets, and so on.

In [21], authors propose a Dynamically Changing Virtual Channels (DCVC) scheduling technique where
each packet still maintains its priority constant during an entire traversal of the NoC but may occupy different
Virtual Channels within routers on its path. According to the authors, this considerably reduces the number of
VC. DCVC however requires the header flits to hold the list of all Virtual Channels of the traversed path which
will overload the routers and induce scalability issues. The same authors suggest in [22] a dynamic priority
policy EDF (Earliest Deadline First) as arbiter in such a way to improve schedulability. The EDF scheduler
allows jobs (task instance) to change their priority dynamically on runtime according to their deadline. A worst
case time analysis has been performed but no implementation has been done. In their last work [23], Nikoli at
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al. propose a timing analysis for arbitrary VC size where they prove that bigger Virtual Channel buffers do not
necessarily help tasks and data-flows to be performed before their deadlines.

Sudev et al. [24] who consider that a preemptive router is expensive in terms of implementation costs
and energy consumption, adopt a real-time non-preemptive router with fixed priority. To process high prior-
ity dataflows, they propose a technique named PTF (Priority Forwarding and Tunneling) which consists in
temporarily increase the priority of low-priority packets that prevent the timely transmission of high-priority
packets and thus avoid the head of line (HoL) phenomenon.

In a later work [25], the authors propose an arbitration technique for non-preemptive routers. In their
proposal, the router suspends the transmission of the current packet upon the arrival of a packet of higher
priority. In that case, the router split the transmission by sending a tail flit followed by the construction of a
new header that initiates a new arbitration request on that router. This would allow the higher priority packet
to start transmission. Like that, they emulate the preemption.

Authors in [37] consider proposed methods in the literature as optimist, and they have improved their
analysis through the distinction between downstream and upstream indirect interferences. However, they do
not take into account the number of available VC. Afterwards, Giroudot at al. [38], have extended [37] to
support the backpressure and flow serialization.

All works presented above propose solutions to schedule real-time data-flows and aim to achieve real time
constraints. However, they all consider that the NoC has as many VC as dataflows. In practice, it is unfeasible
to have routers with a large number of VC. Our challenge is to propose a lightweight algorithm which takes
into account the hardware limitation in term of VC and schedules dataflows whatever the complexity of the
application (number of priorities) and whatever the architecture of the router (number of VC per input port). In
this paper, we propose a new Virtual Channel allocation and assignment technique, which reduces significantly
the number of needed VC implemented in router. Otherwise, each dataflow could find a VC to be allocated
even where there is not as many VC as dataflows. This technique relaxes hardware requirements in term of
buffers (VC) and improve the real-time application schedulability.

3. Application Model. An application is modeled by a finite set Ω = {δ1, δ2, · · · , δn} of n real-time
dataflows δi. Each dataflow δi is characterized by the following parameters:

• Si: Source node,
• Desti: Destination node,
• Ai: Arrival time
• Li: Basic latency which is the maximum transmission time from the source node Si to the destination
node Desti. This parameter is estimated assuming no congestion in the network,

• pi: Period (elapsed time between successive releases of packets of δi),
• Di: Deadline which is the due time that the scheduling of the dataflow must not exceed,
• Pi: Priority.

The basic latency Li can be evaluated using the following formula [26]:

Li = H × dR + F × dT , (3.1)

where :
• H is the number of hops from the source processing element to destination processing element.
• dR is the time it takes for a router to switch a flit.
• dT is the transfer time of a flit from a router to a neighboring router.
• F is the number of data flits in a packet. F is given by the following equation:

F =
size(Packet) +Ad

size(Flit)
, (3.2)

where Ad is the size of the additional data (header and tail flits).
For a regular 2D-mesh NoC, the number of hops H is equal to :

H = |Rx
d −Rx

s |+ |Ry
d −Ry

s |, (3.3)
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where:
• Rx

s and Ry
s are respectively the x and y coordinates of the source processing element,

• Rx
d and R

y
d are respectively the x and y coordinates of the destination processing element.

Hereafter, we will assume that dR=dT=1. So, Eq. 3.1 becomes as follows:

Li = |Rx
d −Rx

s |+ |Ry
d −Ry

s |+ F . (3.4)

4. Modulo-based VC Allocation and Assignment. As mentioned in Sect.2, most of the work dealing
with scheduling real-time applications in NoC consider routers running a fixed priority preemptive wormhole
switching to schedule real-time dataflows [16, 15, 27, 22]. In such routers, a newly arrived high priority header
flit preempts a low priority flit being transmitted. Authors of these works generally assume that there are at
least as many available VC per input port as priorities. Such assumption is technically unrealistic since the
number of VC per input port in real-life NoCs is usually much more smaller than the number of priorities of
real-time dataflows. For instance, Intel TeraFLOPS NoC [7] implements 8 buffers per input port. Moreover,
hardware experience results [19, 28] show that implementing additional buffers is an expensive process.

In this work, we propose a general-purpose VC allocation and assignment strategy named Modulo-based
VC allocation and assignment technique (designated hereafter by MVCAA). The qualifier ”general-purpose” is
used to say that MVCAA allows scheduling soft real-time dataflows whatever the number of VC in a router
and whatever the size of real-time applications (the number of priorities).

Algorithm 1 depicts the pseudo-code of MVCAA. Overall, MVCAA proceeds in two steps. The first step
(Sect.4.1) is the VC allocation and assignment that determines the VC that will host flits of each incoming
dataflow δi of priority Pi. The second one (Sect.4.2) is the scheduling step that determines how the arbiter
selects the VC to process.

Algorithm 1 Pseudo-code of modulo-based VC allocation and assignment (MVCAA).

1: Input: AS= {(δ1,P1), (δ2,P2), · · · , (δn,Pn)} of n couples (Flit, Priority)
2: V C={V C1, V C2, · · · , V Cm } of m Virtual Channels, where m << n

3: Output: ALOC= {(δ1, V Ci1), (δ2,V Ci2), · · · , (δn,V Cim)} of couples (Flit, Allocated V irtual Channel)
4: for (Arriving flit δi) do
5: if ( δi is a header flit) then
6: BufferTag = Pi%|VC|;
7: //Allocate V CBufferTag and assign δi to V CBufferTag;
8: Allocate(δi, V CBufferTag)
9: //Update the V CBufferTag priority register;

10: UpdatePriorityRegister(V CBufferTag, Pi);
11: else//δi is a data flit, in which case assign it to V CBufferTag;
12: Assign(δi, V CBufferTag);
13: end if

14: end for

4.1. Step 1: Assigning a VC to a dataflow. The architecture of a router considered in the present
work is outlined in Fig.4.1. Each input port has a number of Virtual Channels and each Virtual Channel has a
priority tag register (represented by a square on the VC) indicating the current priority of the VC (i. e. priority
of flits the VC currently hosts). Thereby for each incoming dataflow δi of priority Pi, the Virtual Channel V Cj

that would be allocated to that dataflow is determined using the following equation:

∀δi ∈ Ω, δi is assigned to V Cj where j = Pi%(|V C|), (4.1)

where:
- V C: the set of Virtual Channels of a physical input port of a router.
- Ω: the set of dataflows of a real-time application.
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Fig. 4.1. Dynamic VC priority for wormhole Router

Fig. 4.2. Updating VC tags.

If V Cj is free, it is locked and allocated to the dataflow δi, and its priority tag register is set to the priority
Pi of the dataflow δi (Fig. 4.2). The lock of V Cj will be released by the tail flit of the packet. Otherwise, the
current dataflow δi is ignored and the next incoming dataflow is considered.

4.2. Step 2: Scheduling dataflows. At each cycle, the router assigns an output port to each incoming
packet (stored in an input VC) according to its destination using a flow priority-based adaptive routing (see
Sect.4.3). To this purpose, we implement a priority-based arbiter that scans input VC of the router input port
to look for the highest priority packet. If the highest priority packet cannot be routed to the adjacent router
for lack of buffer space in that router, the next highest priority packet is considered. To be aware of the buffers
status of adjacent routers, a credit-based flow control [29] is performed. In credit-based flow control, a credit
counter register associated to each output port indicates the credits of input buffers of the adjacent router in
term of free slots. It sends a ready signal to the arbiter when the number of available buffer slots at the output
buffer is greater than zero. When a header flit is selected to be routed to the next router, the input buffer of
the adjacent router buffer is be locked. This lock will be released once the tail flit leaves the buffer.

4.3. Adaptive XY routing. XY routing is the most popular routing algorithm for 2D mesh or torus
NoC topologies. It first routes a packet in X (horizontal) direction then in Y (vertical) direction. The asset of
XY routing is that it never runs into deadlock or livelock [30]. Its disadvantage is that it produces a high load
in the center of the network which can cause a hot spot.

For a better load balancing, we implemented a half adaptive XY routing [30] where the router first tries
to route the flit in X direction and assigns a free VC if it exists. Otherwise, the router routes the flit in Y
direction. If no VC is free in the two directions, the flit is blocked and the router serves the next dataflow. The
pseudo-code of Priority based half adaptive XY routing is depicted in Alg.2.
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Algorithm 2 Priority based half adaptive XY routing.

1: Input: Flit δi of priority Pi, source node Si and destination node Desti
2: Ouput: nextRouter, destVC
3: destVC = Pi%|V C|;
4: nextRouter = xyRouting(Si, Desti);
5: if (vcAvailable(nextRouter, destVC)) then
6: lock(nextRouter, destVC);
7: moveFlit(δi, nextRouter, destVC);
8: else

9: nextRouter = yxRouting(Si, Desti);
10: if vcAvailable(nextRouter, destVC) then
11: lock(nextRouter, destVC);
12: moveFlit(δi, nextRouter, destVC);
13: else

14: nextRouter = -1;
15: destVC = -1;
16: end if

17: end if

5. Experimental results and analysis. In this section, we will report some experimental results carried
out in this study. The objective of these experiments is twofold: the first is to test the performance of our
proposal (i.e. MVCAA technique, see Sect.4) by comparing it with some state-of-the-art real-time scheduling
methods for NoC-based mutiprocessor system-on chip, the second is to test the scalability of MVCAA when
increasing the size of the NoC. The performance metric retained is the ratio of the number of dataflows that are
missing their deadlines on the number of real-time dataflows injected into the NoC. We recall that a dataflow
δi misses its deadline if its response time Ri is greater than its deadline Di. The response time is given by the
following expression:

Ri = Li +Bi, (5.1)

where Li is the basic latency (see Sect.3) and Bi is the time during which the dataflow δi is blocked in a buffer by
higher priority dataflows. In our case, an estimate of Ri is provided by the NoC simulator [31] and corresponds
to the latency when the dataflow δi reaches its PE destination.

We have compared MVCAA with two state-of-the-art real-time scheduling methods for NoC-based mu-
tiprocessor system-on chip: Priority Share Policy (PSP) of Shi and al. [20], and Dynamically Changing Virtual
Channels (DCVC) of Nikolič and al. [21] where both aim to reduce the number of Virtual Channels for priority-
preemptive NoCs.

Experiments have been carried out on the NoC in-house simulator published in [31]. The simulator imple-
ments a 2D-mesh NoC topology and a wormhole switching technique, uses adaptive XY routing (Alg.2) and
the credit-based flow control. It allows the user to keep track in real-time of the communications and highlights
routers that suffer from congestion. The input of the simulator is an XML file that describes the application
dataflows and the NoC configuration. An application is a set of dataflows and each dartaflow is characterized
by a deadline, a period, an arrival time, a basic latency, a type (header or data flit) and a priority. The NoC is
described by its topology (2D-mesh), the arbitration technique (MCVAA, PSP, DCVC), the NoC size (number
of routers in each dimension), the number of VC per input port and the VC size (number of slots per VC).
Algorithm 3 depicts the simulator kernel. The simulation output is an XML file that reports, for each simulation
cycle, buffer states of the different routers, traffics, latency and missed deadlines of different packets over the
entire NoC. For each cycle and each router and according to the arbitration technique, a dataflow is identified
and routed to the adjacent router using half adaptive XY routing.

Two categories of applications have been considered: synthetic and real-life applications. Synthetic real-
time applications have been generated using the random generator proposed in [32]. Three real-life real-time
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Algorithm 3 NoC simulator kernel [31].

1: Input: AS= {(δi, Pi)/ δi ∈ Ω, Pi: priority of dataflow δi};
2: NoC architecture.
3: Output: NI ALOC={(δi,NIK)/ NIK : Network Interface}
4: load(Application)
5: load(NoC architecture)
6: for cycle = 0 to numCycles do
7: for each NI in NoC do

8: if (NI has traffic to forward) then
9: moveTrafficFromNIToLocalRouter ;

10: end if

11: end for

12: for Each Router R in NoC do

13: for Each Input port of R do //Define output port for each incoming flit;
14: UpdateRouterRequests(Routing);
15: end for

16: for Each Output port of R do

17: CheckCandidateF litsPerOutputPort;
18: RunArbitrationToSelectGrantedF lit;
19: SwitchGrantedF litToNextRouter;
20: MVCAA(AS, V C,ALOC);
21: end for

22: end for

23: end for

Table 5.1

Experimental protocol.

NoC sizes 8×8 and 16×16 2D-mesh
Buffering 4, 5, and 8 VC per input port
Switching Preemptive wormhole
Arbiter Per priority
Flow control Credit-based
Routing Half Adaptive XY routing
Application sizes 10, 20, 30, 40, 50, 70, 80, 100 dataflows

applications have been selected: Video Object Plane Decoder (VOPD) [33, 34], MPEG4 [35], and an autonomous
vehicle application (AutoV) [36]. Table 5.1 summarizes the experimental protocol adopted in our experiments.

5.1. Synthetic applications. Figures 5.1-5.6 give the percentage of missed deadlines for application sizes
ranging from 10 to 100 dataflows and for VC numbers equal to 4, 5 and 8. 100 executions were performed for
each configuration and the average value was considered. Figures 5.1-5.3 (8×8 2D mesh NoC) show that, for
all configurations, MVCAA clearly outperforms DCVC and behaves almost like PSP in terms of the percentage of
missed deadlines. However, for 16×16 2D mesh NoC, MVCAA outperforms both PSP and DCVC (see Figs.5.4-5.6)
and the gap grows with the increase of the size of the application. This proves the robustness of our approach
to increasing the size of the NoC. The performance degradation of PSP and DCVC can be explained by the fact
that for PSP the packet blocking duration (see section 2) increases with the size of NoC (in term of the number
of hops) and will have a negative impact on the number of missed dealines. Regarding DCVC, increasing the size
of the NoC induces the increase of the number of hops and then of the size of DCVC packets which consequently
increases the latency of the packet.

To study the impact of NoC architecture (Number of routers, number of VC per input port) on MVCAA
schedulability of real-time dataflows, we considered 3 NoC sizes (7×7, 8×8 and 16×16) each with diferent
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Fig. 5.1. Percentage of missed deadlines on a 8×8 2D mesh NoC (4 VC).
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Fig. 5.2. Percentage of missed deadlines on a 8×8 2D mesh NoC (5 VC).

numbers of VC per input port (4, 5 and 8). Experimental results are illustrated by Figs. 5.7, 5.8 and 5.9.
Several remarks can be drawn from these figures. The first one is that the increase in the number of VC while
maintaining the architecture unchanged does not significantly impact the schedulability of real-time applications.
This corroborates the fact that multiplying the number of VC in a router does not significantly improve the
scheduling of dataflows, contrary to what is stated in some works as in [16, 17]. Consider the fact that the
router always serves the highest priority packet, it seems that additional VC do not increase the application
performance since all lowers priority packets have to wait for the transmission of the higher one. The other
remark that we can extricate is that by slightly increasing the size of the NoC, one can gain much in quality
of scheduling. We notice indeed that the 16×16 2D-mesh NoC reduces by more than 50% the number missed
deadlines compared to the 8×8 NoC.

5.2. Real-life application. Three real-time embedded benchmarks are considered to evaluate the perfor-
mance of the proposed MVCAA: Video Object Plane Decoder (VOPD) application [33, 34], MPEG4 application [35]



504 M.A. Meghabber, L. Loukil, R. Olejnik, A. El Hassan Benyamina, A. Aroui

0 20 40 60 80 100
0

20

40

60

# of dataflows

%
m
is
se
d
d
ea
d
li
n
es

x
m
in

MVCAA - 8VC
PSP - 8VC

DCVC - 8VC

Fig. 5.3. Percentage of missed deadlines on a 8×8 2D mesh NoC (8 VC).
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Fig. 5.4. Percentage of missed deadlines on a 16×16 2D mesh NoC (4 VC).

and an autonomous vehicle (AutoV) application [36].

VOPD application consists of 17 tasks that exchange data. Figure 5.10 depicts the application architecture,
circles represent tasks and arcs represent exchanged data volume. Values on arcs represent the volume of data
exchanged between tasks connected by the arc. Each task is characterized by three parameters: task period,
capacity and deadline.

MPEG4 consists of 20 tasks and 23 exchanged dataflows. Figure 5.11 gives the application task graph. Each
task is characterized by its task period, its capacity and its deadline, the value on an arc represents the volume
of data exchanged between tasks connected by the arc.

Autonomous vehicle application (AutoV) is characterized by large volume of dataflows (some dataflows
may contain more than 38000 flits) and control loops with short messages. AutoV consists of 33 tasks and 38
dataflows.

We execute these applications on a 8×8 2D-mesh NoC having 8 VC per input port on different dataflow
period instances. The results of the experiments illustrated in Fig. 5.12 show that MVCAA clearly outperforms
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Fig. 5.5. Percentage of missed deadlines on a 16×16 2D mesh NoC (5 VC).
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Fig. 5.6. Percentage of missed deadlines on a 16×16 2D mesh NoC (8 VC).

PSP and DCVC in terms of the percentage of dataflows that have saved their deadlines. The experimental results
show that MVCAA achieves up to 19% for VOPD, 10% for MPEG4. For AutoV application, the improvement is 5%
since the application exchanges huge and voluminous dataflows .

6. Conclusions. Networks-on-chip are an emerging technology and a promising communication paradigm
offering more scalability and parallelism. Priority-based arbitration techniques have been proposed to schedule
real-time applications. These techniques assume, however, that there are at least as many VC per router input
port as there are dataflows. In this work, we have proposed a new priority-based arbitration technique named
Modulo-based VC Allocation and Assignment (MVCAA) that takes into account the number of available VC in
NoC and allows scheduling real-time dataflows regardless of the number of priorities and VC. Experiments have
shown that MVCAA outperforms some state-of-the-art real-time scheduling methods.

As future works, we think that exploring new routing techniques, mapping and priority assignment algo-
rithms would be more promising for real-time applications than implementing more VC within a router.
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Fig. 5.7. 7×7 NoC.
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Fig. 5.8. 8×8 NoC.
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