
Scalable Computing: Practice and Experience

Volume 20, Number 1, pp. 113–160. http://www.scpe.org

DOI 10.12694/scpe.v20i1.1465
ISSN 1895-1767
c⃝ 2019 SCPE

A DETAILED DESCRIPTION ON UNSUPERVISED HETEROGENEOUS ANOMALY
BASED INTRUSION DETECTION FRAMEWORK

ASIF IQBAL HAJAMYDEEN∗AND NUR IZURA UDZIR†

Abstract. Observing network traffic flow for anomalies is a common method in Intrusion Detection. More effort has been
taken in utilizing the data mining and machine learning algorithms to construct anomaly based intrusion detection systems, but
the dependency on the learned models that were built based on earlier network behaviour still exists, which restricts those methods
in detecting new or unknown intrusions. Consequently, this investigation proposes a structure to identify an extensive variety of
abnormalities by analysing heterogeneous logs, without utilizing either a prepared model of system transactions or the attributes of
anomalies. To accomplish this, a current segment (clustering) has been used and a few new parts (filtering, aggregating and feature
analysis) have been presented. Several logs from multiple sources are used as input and this data are processed by all the modules
of the framework. As each segment is instrumented for a particular undertaking towards a definitive objective, the commitment
of each segment towards abnormality recognition is estimated with various execution measurements. Ultimately, the framework
is able to detect a broad range of intrusions exist in the logs without using either the attack knowledge or the traffic behavioural
models. The result achieved shows the direction or pathway to design anomaly detectors that can utilize raw traffic logs collected
from heterogeneous sources on the network monitored and correlate the events across the logs to detect intrusions.

Key words: Anomaly detection, Clustering, Heterogeneous logs, Filtering, Feature analysis

AMS subject classifications. 68T10, 68T05

1. Introduction. The contemporary IDS are incompetent in taking advantage on the benefit of heteroge-
neous data sources for investigation to identify intrusions [1]. The significance of using several logs for intrusion
detection was presented and emphasized by Abad et al. [2], and the outcome of attacks on various logs was
demonstrated. As a proof of concept, the existence of an intrusion was determined by correlating the system
calls with network logs and the experiments were conducted to detect a particular anomaly. Artificial data were
used to train and test the model projected. Detection accuracy improved with log correlation, but then predict
the next system call method underperformed for this problem. Apart from that, the description of attack traces
and the way such information were extracted from various log sources used in the study were not described.

UCLog, a unified logging architecture [3] correlates events from various logs for intrusion detection. The
correlations between the activities were utilized to achieve better accuracy and also trace the origin of intrusion
exempting the administrator to examine such information. This was further extended as UCLog+ [4] to parse
and store alerts and incident records. Cross-Layer Based Intrusion Detection and Prevention [5] detects intru-
sions by manipulating the data obtainable through multiple layers of the protocol stack. Most importantly,
Denning (1987) [6] suggested to construct a framework for a general-purpose intrusion-detection expert system
(IDES) which is independent of any system, application environment, system vulnerability, or type of intrusion
needs to be extensively explored and unsupervised heterogeneous anomaly detection framework (UHAD) [7] is
a step towards this directive.

2. Dataset Description. The sensitivity of the data urges to remain proprietary affecting the availability
of datasets regularly [8]. This creates a bigger challenge in gathering the appropriate data for the experiments.
The most accepted log source utilized for intrusion detection nowadays is network traffic and the widespread use
of network traffic was due to its availability and standardization [9]. Selecting useful data is a significant task
in the pre-processing stage [10] and the most essential concern is the form of data sources to consider [4] as the
selection of right data sources helps to identify various kinds of intrusions or attacks. To assess the capability
of the framework proposed in detecting anomalies, the logs captured by heterogeneous sources are needed. One
of the challenges of the Honeynet project i.e., Scan of the Month #34 (SOTM#34) [11], was used as input data
that contains both intrusive and non-intrusive events.

∗Faculty of Information & Sciences Engineering, Management & Science University, 40100 Shah Alam, Selangor, Malaysia
(asif@msu.edu.my).

†Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
.

113

114 A. I. Hajamydeen, N. I. Udzir

The dataset used for the experiments described in this paper has been chosen for the following reasons:
appropriateness of the data and real traffic data.

Appropriateness of the data. Testing the proposed framework requires logs collected directly by hetero-
geneous sources, i.e., operating systems, applications and network devices. SOTM#34 dataset consists of logs
collected from heterogeneous sources and hence appropriate. The KDDCup1999 and DARPA IDS evaluation
datasets were commonly used for testing intrusion detectors consist of data sniffed from a particular location on
the network (Homogeneous data) and not collected directly from the heterogeneous sources where the actions
are destined to and therefore the usage of this data to test the framework is not applicable.

Real traffic data. The framework intends to detect a wide variety of attacks in the absence of a learned
traffic model and therefore requires raw data (naturally unlabelled) recorded directly by multiple sources. While
both KDDCup1999 and DARPA IDS evaluation dataset are synthetic, SOTM#34 contains real log data from
heterogeneous sources and hence suitable. This dataset has been examined by several participants [12, 13, 14, 15]
of the challenge, and also scrutinised by Panichprecha [16] and Herreras and Gomez [17], hence providing better
confidence on the analysis results to assess the capability of the proposed framework. The dataset comprises
of several logs i.e., Apache Server, Linux syslogs, Snort NIDS, and IPTables firewall, which were captured by
dissimilar sources in a Honeynet system.

The Honeynet constitutes three key systems:
• Bridge, a multi-homed host operating an unknown distribution of Unix/Linux and performs rout-
ing/filtering using Netfilters IPTables kernel module.

• Bastion is a Network Intrusion Detection System running Snort with the Bleeding Snort rule sets in
conjunction with those provided with the basic Snort package.

• Combo is the victim system running Red Hat Linux with a 2.4.20-8 kernel, an Intel Pentium III 740
MHz processor, and 128 MB RAM. It runs multiple virtual IP addresses on the 11.11.79.0/24 network.

The framework makes two assumptions about the data used:
Assumption 1: The data from the logging sources has logged every action and is free from unauthorised

alteration(s) or fabrication(s).
Assumption 2: The majority of the logged events are usual traffic with a minority percentage of malicious

traffic.

2.1. Data Pre-processing. Logs were written in a proprietary fashion, since there were no establishments
to standardize log formats [18]. Therefore, the relevant features in a log needed for processing has to be extracted
beforehand. Parsing is the process of extracting meaningful data [19], and translating the data into a format
to ease and enhance further processing. Existing log parsing tools introduce new features derived from existing
features in the resulting parsed log; and this log have to be parsed again to remove the additional features in
order to retain the integrity of the logs. To avoid the overhead of double parsing and also to maintain logs
integrity, we wrote our own parsers rather than using existing tools.

The significance of the custom written parser is as follows:
1. Able to extract all the features as exactly recorded in the log, irrespective of the difference in the

delimiters.
2. Able to extract features precisely without losing any part of the value for the feature.
3. Does not use any kind of log format specifications to extract the features of a specific log.
4. Does not introduces new features derived from the existing features into the parsed log.
5. Able to adjust the timestamp of the events in a log for the time difference between the logs to support

correlation, if the time difference is provided.
6. Able to remove unwanted feature names stored together with the values and also removes unnecessary

punctuations, i.e., white space, comma, equal (=), appearing in between feature values. This is to avoid
misinterpretations of treating a single feature as multiple features by the subsequent process.

However, due to difficulties in precisely extracting the features from Linux syslogs, Sawmill [20] was used
for initial parsing. The parsed log contained ‘(empty)‘, symbolizing the absence of value for a particular feature;
and this was parsed again to replace ‘(empty)‘ with ‘-‘ to maintain uniformity across the logs. The timestamp
in all the logs was separated as date and time while parsing to ease synchronization. The parser is a part of our

A Detailed Description on Unsupervised Heterogeneous Anomaly Based Intrusion Detection Framework 115

extractor which is integrated with supplementary functions, i.e., Isolator and Timestamp Synchronizer. The
feature selection and clustering methods necessitate the number of features in an event should be the same
throughout the log in order to be processed. Therefore, the isolator separates the events of IPTables firewall
log in separate files, as there were differences in the number of features for different connections (TCP, UDP,
ICMP) having 24, 22 and 21 features, respectively. Time is one of the important factors to correlate events
between logs, hence the synchronizer adjusts the timestamp for the time difference between the logs.

Feature selection was used in intrusion detection for recognizing and eliminating insignificant features [21],
and was applied on logs to assist the progressing process to enhance the accuracy in predicting and categorising
abnormal events. Knowing the predictive ability of every feature in relation to every other feature in a log will
assist in precisely identifying the important features. Therefore, feature selection was accomplished by setting
all feature in the log as class attributes to recognise the connection of the set feature with other features. Since
each subset contains events of different durations, feature selection was applied on all datasets to verify, whether
the features selected for a particular log was uniform for all subsets. The selected features of all class attribute
settings were summarized to find the unselected features, and every such unselected feature was removed from
the respective parsed log before further processing. The same strategy was followed for various logs used for
the experiments.

Keeping the evidence in a single common setup [18] by transporting all events from various logs together
facilitates the analysis process in identifying most of the anomalies. The ability to distinguish normal behaviour
from an attack can be better accomplished by analysing more features, but not every feature is relevant to the
detection task [22]. Including all features in the logs will make the schema size bigger leading to difficulty in
managing. Every log records features that they deem as important. Due to this nature, there were variations
in the number of features recorded by a particular log and the values contained in these features. Especially
with the logs from heterogeneous sources, the variations between the features were more diverse. Therefore,
the process of framing a generic schema for a given set of logs becomes critical. To analyse the events from
various logs together, a generic format (GF) was outlined, with common and significant features existing in the
considered logs.

This features, i.e., timestamp, source IP, destination IP, source port, destination port, protocol, were also
used by other researchers [23, 24, 25, 26] for intrusion detection. Moreover, Message was also incorporated
in GF as it states the action performed by the event and their patterns were fully dissimilar for benign and
malicious events. No additional features were introduced in GF to represent the log source an event belongs to,
as it may mislead the clustering method. The framed GF not only states the features for GFL, but also the
relevant features from various logs, that can fit in.

2.2. Data Treatment. This section describes the details on the treatment of data to make it viable for
processing by the framework components. SOTM#34 log data was subjected to two processes namely feature
extraction and feature selection.

2.2.1. Feature Extraction. Five operations were performed on the logs in this phase namely parsing,
synchronizing, relocating, isolating and dividing and are defined as follows:

1. Parse: Extracting the relevant feature(s) from the log events and storing the extracted features using
a common delimiter.

2. Synchronize: Adjusting the time stamp of a particular log to match the time difference with other logs,
enabling the discovery of relationship between events across the logs.

3. Relocating: Moving the events from a subset to another after synchronizing to follow the duration
covered by subsets.

4. Isolate: Separating the events in IPTables firewall log that differs in the number of features it contains.
5. Divide: Separating the IPTables firewall and Snort IDS events in several files to match the time duration

covered by each subset.

Sample events from various logs are provided in Figure 2.1. The followings are the difficulties faced, while
parsing the logs to extract the features precisely:

1. White space or blank space separates the features in an event by all the logs, while it also appears
inside a feature value, e.g., Apache SSL-Error Log.

116 A. I. Hajamydeen, N. I. Udzir

Fig. 2.1. Samples of Raw Logs

2. Some of the features have delimiters to mark the start and end of a value, while others do not have
such delimiters, e.g., Timestamp and Status Code in the Apache Access Log.

3. Delimiters are dissimilar with different features in the same log, e.g., [] for Timestamp and for
ClientRequestLine in Apache Access log, [] for Classification and for Protocol in Snort IDS Log.

4. Delimiter used for a particular feature in the logs from a particular source was also not even, e.g.,
ClientIP in Apache access log is delimited by white spaces whereas Apache error log is delimited by [].

5. The number of features in an event for a particular log is not similar for all the events in that log, e.g.,
TCP, UDP and ICMP connections in IPTables firewall Log.

6. The name of the feature precedes most of the values for all the events in the log, e.g., IPTables firewall
and Linux Message Log.

7. Time stamp format across the logs are not even, e.g., Apache logs includes year in time stamp while
others do not, and the time stamp format of Apache access log differs from the Apache error and Apache
SSL-error log.

There are no establishment to standardize log formats [18], and therefore every logging source writes log in
its own format with the features based on what they consider as important. So, every log was parsed separately
to extract the relevant features. Even though there are five operations in this phase, not all the logs are subject
to all these operations. Variations in the package of data and the lack of time synchronization between the log
events recorded by multiple sources which is very common in production environments necessitates separate
treatment. Hence, this module provides three different apparatus to handle the logs as illustrated in Figures 2.2,

A Detailed Description on Unsupervised Heterogeneous Anomaly Based Intrusion Detection Framework 117

2.3 and 2.4. The common operation available in all the setup is parsing and the application of synchronization,
relocation, isolation and division may vary with logs depending on the package and time difference of the
collected data.

The first step in feature extraction is to identify the boundary of a feature and consequently extracting
the feature values for every log event. To rectify the differences in the delimiters used with various features in
the raw logs, the features in an event has to be given a common delimiter which in our case is a comma (,).
Therefore, all the logs in text files has been parsed to transform the events with a common punctuation and was
recorded in a Comma Separated Value (CSV) file that will ease and enhance further processing. Existing log
parsing tools introduce new features derived from existing features in the resulting parsed log, and this log has
to be parsed again to remove the additional features in order to retain the integrity of the logs. Moreover these
tools do not offer facilities to synchronize the time difference across logs and to segregate events within a log,
if there is a difference in the number of features recorded by the events. Therefore, custom written Perl scripts
for different logs were used to implement this step. But, due to difficulties in parsing Linux Syslog, Sawmill [20]
was used to parse this log.

Apache Server Logs and Linux Syslog. Apache server provides three logs which are access, error and
SSL-error whereas Linux provides three logs that are message, mail and security. All these logs undergo three
operations that are parsing, synchronizing and relocating (Figure 2.2). The number of features and the content

Fig. 2.2. Apache and Linux Logs Parsing Apparatus

of features varies with logs, therefore separate Perl scripts were written to parse each log. The logs provided
in text file were parsed to extract the features and stored in a CSV file. During parsing, the timestamp was
separated as date and time to facilitate synchronization. The year in which the events are recorded was not
available in Linux Syslog and therefore introduced during parsing. The time between the logging sources i.e.,
bridge and bastion, was synchronized and thus IPTables firewall and Snort IDS events were in sync. But then,
the time between the combo (victim machine) and the bridge was not synchronized.

Subsequently the Apache server and Linux syslog events contrasted by 4 hours 47 minutes against IPTables
firewall log [15, 14, 13]. This was taken as the standard to synchronize and subsequently, the synchronizer
balanced Apache server logs and Linux syslogs for the distinction towards the IPTables firewall log. Because
of the adjustment in date and time after synchronization, a portion of the log events have been shifted to the
particular subsets to maintain the time duration covered for every subset.

118 A. I. Hajamydeen, N. I. Udzir

IPTables Firewall Log. The events of IPTables firewall log contains the name of the feature for most of
the features in all the events recorded. Only the value for every feature in an event is needed for processing
and on the other hand, keeping the feature name for every event increases the size of this log. Moreover,
it causes additional overhead while processing events in the subsequent phases. Hence, the feature name
preceding the value and the = that separates the feature name and feature value were removed during parsing.
Moreover the timestamp was separated as date and time to match the format in other logs. After parsing,
the events were isolated according to connections, i.e., TCP, UDP and ICMP, having 24, 22 and 21 features,
respectively. The isolated events were maintained in three separate files and every such file is subdivided into
four separate log files matching the duration of the other log subsets. This will allow the following process to
handle different connections separately with subsets of moderate size. Since the Apache server log and Linux
Syslog were synchronized towards IPTables firewall log, the timestamp of IPTables firewall log does not need
synchronization. The pre-processing flow of IPTables firewall log is illustrated in Figure 2.3.

Fig. 2.3. IPTables Firewall Log Parsing Apparatus

Snort IDS Log. Several Snort IDS log events did not have a value for the features classification and
priority and those events that has the value was preceded by the feature name. Hence the name of these
features in these log events were removed during parsing and a hyphen (-) was introduced for those events
which do not have a value for this feature. Moreover, the timestamp was separated as Date and Time to match
the format followed by other logs. The parsed log events were divided into four separate files to match the
duration of the respective subsets tested. Synchronization and isolation were not needed for this log, as there
was no time difference with IPTables firewall log and no difference in the number of features in between the
events. The pre-processed logs were stored in CSV files, and the flow of process is illustrated in Figure 2.4.

Outcomes of Feature Extraction. Irrespective of the variations in the setup to handle different logs, the
output is provided in CSV files that are ready to be processed by the following modules. The extracted features

A Detailed Description on Unsupervised Heterogeneous Anomaly Based Intrusion Detection Framework 119

Fig. 2.4. Snort IDS Log Parsing Apparatus

of the logs belonging to particular subset is maintained separately. The time taken to parse and synchronize
was less than a second for smaller sized logs, i.e., less than 1000 events, and a maximum of 27 seconds to 50
parse and isolate 179752 events in the IPTables firewall log. The pre-processed logs were maintained in CSV
files and the volume of events in every log by subset is provided in Table 2.1.

Table 2.1

Details of the Log Subsets

Log Type Subset-1 Subset-2 Subset-3 Subset-4
Access 256 539 1280 464
Error 433 604 1270 484

SSL Error 74 64 29 48
TCP 9632 32646 34748 13210
UDP 613 1996 2387 1546
ICMP 171 789 1303 474
Message 112 149 208 103
Mail 42 62 54 31

Security 138 263 232 122
Snort 4423 17049 5013 10293

Total Events 15894 54161 46524 26775

2.2.2. Feature Selection and Retention. Selection and retention of features for every log is accom-
plished in two steps as illustrated in Figure 2.5 which includes:

1. Selecting features and summarizing the selected features identified for a particular log.
2. Removing unselected features from the respective log.

Weka’s CfsSubsetEval estimates features by considering the specific predictive capacity of each feature and
BestFirst scans for intricate dealings between features [27]. Since the target was to increase the precision by
using only the features assisting in predicting the anomalous events, Weka’s [28] CfsSubsetEval and BestFirst
methods were used to implement this step. The log for which the features need to be selected is loaded into
Weka Explorer. The attribute evaluator is set to CfsSubsetEval and the search method is set to Best-First. To
perform the selection process, a feature in the log is set as class attribute to recognise the association of the
fixed feature with further features and the features selected are noted. Knowing the predictive ability of every

120 A. I. Hajamydeen, N. I. Udzir

Fig. 2.5. Feature Selection Strategy

feature in relation to every other features in a log will assist in precisely identifying the important features and
therefore every feature in the log is set as class attribute and the selected features were recorded. The number
of times the features are selected for a log depends on the number of features in the log. The selected features
of every class attribute setting were summarized to find the unselected features of a particular log. The same
apparatus is used for different logs and every log used for the experiment is subject to this process to find
the optimal set of features for a particular log. Subsequently, the features selected for a particular log across
different subsets were summarized to find the unselected features. Every such unselected feature was removed
from the respective parsed log before further processing. The selected features used for further processing is
provided in Table 2.2.

Most importantly, this final set of features selected for every log consists of all significant features planned
to be extracted for GFL except IPTables firewall log. The feature protocol in the IPTables firewall log was not
selected for any class attribute setting. This is because the events of this log were previously isolated according
to connections (TCP, UDP, ICMP), due to the difference in the number of features recorded for each of these
connections. Therefore, the isolated events recorded in separate logs contained the same value for the feature
protocol. Moreover the feature selection algorithm also requires the number of features in all the events to be
the same. Eventually, applying feature selection on this isolated log events have not selected this feature for
any class attribute setting, due to the similarity of the values for this feature, i.e. protocol.

2.2.3. Framing Generic Format. The features for GFL were identified by examining the features avail-
able in the logs. The only feature available in all the logs was the Timestamp (Date fd, Time ft). Features like
Source IP Address (fsip) existed in all logs except Apache SSLError and Linux mail log, whereas Destination

A Detailed Description on Unsupervised Heterogeneous Anomaly Based Intrusion Detection Framework 121

Table 2.2

Features Selected from Parsed Logs

Log Features
Apache Server Access Date, Time, IPclient, Clid, Userid, clientRequestLine, Status Code, Object-

Size, Referrer, Agent
Error Date, Time, clientIP, Msg

SSL-Error Date, Time, Severity, Msg
IPTables firewall TCP Date, Time, Bridge, Direction, Protocol, IN, PHYSIN, OUT, PHYSOUT,

LEN, TOS, PREC, TTL, ID,DF, SPT, DPT, WINDOW, RES, STATUS,
URGP, SRC, DST

UDP Date, Time, Bridge, Direction, Protocol, IN, PHYSIN, OUT, PHYSOUT,
LEN, TOS, PREC, TTL, ID,DF, SPT, DPT, LEN, SRC, DST

ICMP Date, Time, Bridge, Direction, Protocol, IN, PHYSIN, OUT, PHYSOUT,
LEN, TOS, PREC, TTL, ID,DF, TYPE, CODE, id, seq, SRC, DST

Linux Syslog Message Date, time, Logging device, Daemon, PID, Operation, User, Tty, UID,
EUID, Remote host, System message

Mail Date, time, Logging device, From, To, Daemon, Mailer, Stat, Class, Priority,
Protocol, Message ID, Relay, Control address, DSN, Queue ID, Messages
queued, Messages delivered, Bytes queued, Bytes delivered, Delay, Xdelay

Security Date, time, Logging device, Daemon, PID, Operation, User, Source, System
message, Messages

Snort IDS Date, time, Logging device, Destination IP, Source port, Destination port,
Classification, Snort priority

IP Address (fdip), Source port (fsp), Destination port (fdp) and Protocol (fpr) were available only in IPTables
firewall log and Snort IDS logs. Initially GFL (Table 2.3) was constructed with these seven features from various

Table 2.3

Generic Format Specification - Version 1

Generic

Format

Date Time Source IP Destination

IP

Source

Port

Destination Port Protocol Log Source

Access Date Time IPclient Log name

Error Date Time ClientIP Log name

SSL-
Error

Date Time Log name

TCP Date Time SRC DST SPT DPT PROTO Log name

UDP Date Time SRC DST SPT DPT Protocol Log name

ICMP Date Time SRC DST Log name

Mail Date time Log name

Message Date time Remote host Log name

Security Date time Log name

Snort
IDS

Date time SourceIP Destination
IP

Source port Destination port Protocol Log name

logs. Additionally a feature by name log-source was introduced in GFL to specify the name of the log an event
belongs to, since it consists of events from various logs. The aforesaid features of the filtered events from all
the logs (whichever GFL features available in the respective log) were brought forward to GFL. Clustering this
GFL resulted in higher false negatives affecting the accuracy of clusters, which eventually resulted in detecting
only 12% of the anomalous events in the log. Message (fme) is a feature available in most logs except IPTables
firewall log, but it has different names in various logs. Therefore, a common name (Message) was suggested,
and the respective features from various logs were extracted accordingly.

The new version of GFL (Table 2.4) includes all the features from the previous version together with the
Message. Clustering the GFL with these nine features has improved the accuracy (nearly 80% in average) than

122 A. I. Hajamydeen, N. I. Udzir

using the previous version of GFL. But, the subsequent detection of anomalies remains approximately the same
as the previous. The improvement in the accuracy was due to the introduction of Message, but still the usage
of log-source as a feature of GFL which does not exist as a feature in the actual logs affected the classification
of events. In order to avoid the effect of log-source in classifying the events, log-source was removed from the
GFL. The next version of GFL constitutes only eight features excluding log-source and is presented in Table
2.5. The features were extracted accordingly from the respective logs and recorded in GFL. Clustering this GFL
improved the accuracy to nearly 90% and a substantial increase in detected anomalous events. IPTables firewall
log merely watches and records the traffic through the network and it can be taken as an additional option to
improve detection. Therefore, it was excluded from the GFL used for clustering and the events were maintained
separately to be used for correlation during analysis. Many of the features stated in GFL, especially IP address

Table 2.4

Generic Format Specification - Version 2

Generic

Format

Date Time Source

IP

Destination

IP

Source

Port

Destination

Port

Protocol Message Log

Source

Access Date Time IPclient Client Re-
quest Line

Log name

Error Date Time ClientIP Msg Log name

SSL-Error Date Time Msg Log name

TCP Date Time SRC DST SPT DPT PROTO Log name

UDP Date Time SRC DST SPT DPT Protocol Log name

ICMP Date Time SRC DST Log name

Mail Date time Log name

Message Date time Remote
host

System Mes-
sage

Log name

Security Date time System Mes-
sage

Log name

Snort IDS Date time SourceIP Destination
IP

Source
port

Destination
port

Protocol Rule Log name

Table 2.5

Generic Format Specification - Version 3

Generic Format Date Time Source IP Destination IP Source

Port

Destination

Port

Protocol Message

Access Date Time IPclient Client
Request
Line

Error Date Time ClientIP Msg

SSL-Error Date Time Msg

TCP Date Time SRC DST SPT DPT PROTO

UDP Date Time SRC DST SPT DPT Protocol

ICMP Date Time SRC DST

Mail Date time

Message Date time Remote
host

System
Message

Security Date time System
Message

Snort IDS Date time SourceIP Destination IP Source port Destination
port

Protocol Rule

and port numbers, were not available in Apache SSL-Error and Linux mail log. Therefore, the events belonging
to these logs were also excluded from the GFL that was used for the following process, i.e., clustering, and were
maintained separately as per the features stated in GFL (Table 2.6) to be used at some stage during analysis.
Out of the eight features used to construct GFL, fme has gained critical importance because it exhibits more
about the action performed on the system than the other features. The Message (fme) feature was available in
all the logs except IPTables firewall log and therefore the STATUS feature available in TCP connections of this
log was used as Message. The Source IP (fsip) and Source port (fsp) appears as a part of the SystemMessage
in Linux security log. In order to facilitate the clustering and further analysis, both of these features has been
extracted and replicated as a separate feature in this log for all the events where Source IP (fsip) and Source

A Detailed Description on Unsupervised Heterogeneous Anomaly Based Intrusion Detection Framework 123

Table 2.6

Generic Format Specification - Proposed

Generic Format Date Time Source IP Destination

IP

Source

Port

Destination

Port

Protocol Message

Access Date Time IPclient client Re-
questLine

Error Date Time ClientIP Msg

Message Date time Remote
host

System
message

Security Date time Source Port System
message

Snort IDS Date time SourceIP Destination IP Source port Destination
port

Protocol Rule

SSL-Error Date Time Msg

TCP Date Time SRC DST SPT DPT PROTO STATUS

UDP Date Time SRC DST SPT DPT Protocol

ICMP Date Time SRC DST

Mail Date time

port (fsp) is available in SystemMessage. The final version of GFL used for analysis was constructed with
eight features as mentioned in Table 2.6. The GFL features and the corresponding features chosen from various
logs that fit in GFL were tabulated (Table 2.6). The usage of GFL with these features (as stated in Table
2.6) increased the clustering accuracy to an average of 95% with various subsets which naturally improved the
volume of anomalies detected.

Adding features to GFL, which is available in any one of the logs considered, decreased the clustering accu-
racy and also the subsequent detection of anomalies. Therefore, the proposed GFL was considered appropriate
for the set of logs considered for detection. Moreover, the set of features chosen for GFL not only applies for
the logs considered, but also to a wide variety of logs of similar nature. However, the reader should note that
the selection of features for GFL and the appropriate features selected from different logs was based on the logs
considered and it may differ with different logs.

3. UHAD Components. The main objective of the framework is to detect anomalous events by corre-
lating the information available in various logs and the process involved to achieve that is summarised in the
overall algorithm. Apart from this, every single process stated in the algorithm has been designed to achieve
a specific goal that contributes to the ultimate objective. Therefore, this section describes various components
of the framework used in the process of anomaly detection and also specifies the reason behind choosing these
components. It also states the metrics used to evaluate the performance of each component.

3.1. Clustering Events. The objective of this step is to separate abnormal events from the normal events
for various logs. As there were many patterns in the log for both normal and abnormal, the number of distinctive
patterns needs to be identified. Manual analysis of log events to identify unique patterns is almost impractical
as it takes longer time and prone to errors. Therefore, the usual events are to be recognized and reduced before
analysis to decrease the processing overhead.

Clustering is an unsupervised learning scheme for grouping similar or identical events together. It also has
the ability to decide on the existence of intrusive events in the raw logs [29] by grouping these events in separate
clusters. Therefore, we make use of the clustering algorithms to group the log events according to the patterns.
The traditional steps like training and testing employed in machine learning based intrusion detectors [31] and
data mining based intrusion detectors [30, 32, 33, 34] by splitting or rearranging the test data to differentiate
with training data to suit the requirements of a particular study was not used. Even though this method often
results in better precision and accuracy, it deteriorates performance, if the tested data contain events that were
not learned by the training model, making it unreliable for real time detection. To overcome these limitations
of model based approaches, only the clustered events of a particular log were used for further analysis and not
the cluster model which was usually used to detect anomalies in upcoming log events. Therefore, the proposed
strategy makes use of the existing clustering algorithms to group the log events and the parameters required
by these algorithms were manipulated based on the log examined. The clustering methods used necessitate
the amount of cluster (K) to assemble the events. As several logs were used, clustering each log with different

124 A. I. Hajamydeen, N. I. Udzir

clusters (K) to select the best cluster is time consuming. In order to isolate dissimilar event patterns in detached
clusters, K was manipulated based on the patterns in the log. A procedure comprising two stages was used for
isolating log events, which are:

Step 1: Predicting the best number of clusters (Kij) for a given Eij , and
Step 2: Clustering Eij using the predicted Kij .

Applying the clustering method distinctly for dissimilar services improves the detection quality [35]. Every
log is an outcome of a service and therefore every single log from a source was treated separately for this step.
IPTables firewall log is an additional option to improve the ways of detection as it just watches and records the
traffic through it. Therefore, it was excluded for clustering and will be used for correlation during analysis to
support the anomalies identified.

In step 1, the ideal number of clusters (Kij), i.e., the number of clusters that is appropriate for a partic-
ular log to be grouped, was manipulated according to the experimental setting stated in Experiment 1. The
manipulated Kij serves as the output for step 1 and accordingly Kij was used to cluster the respective logs in
step 2.

There are numerous clustering methods and every method generates clusters differently for the same dataset.
This poses the difficulty in deciding the appropriate algorithm for a particular context. The usage of existing
clustering algorithms, especially K-Means and EM clustering for intrusion detection is very common and was
used in many previous works [30, 32, 35, 36, 37, 38, 39, 40, 41, 42]. Siriporn and Benjawan [43] used Farthest
First (FF) and K-Means clustering to detect intrusions [44] and used FF especially to detect rare attacks. This
exposes the application of these algorithms for intrusion detection and the results achieved suggest the use of
these algorithms for this purpose.

K-Means [45] treats all features equally [42] and is computationally faster with the ability to handle larger
datasets. Moreover, it is order independent, i.e., it generates the same clusters of data irrespective of the
sequence of the data presented. Since voluminous data received from the logging sources have to be grouped with
minimum time consumption to facilitate anomaly detection, the usage of K-Means is applicable and appropriate.
Farthest First (FF) [46] is a fast, simple, approximate, [28] hierarchical and distance based clustering using a
distance measurement analogous to K-Means [47]. The calculation of cluster centroids in consecutive iterations
by FF is contrary to that of K-Means, i.e., places each cluster centroid in turn at a point farthest from the
current cluster centroid. This speeds up the cluster process due to less reassignments and adjustments with most
datasets. This nature of FF helps to produce accurate clusters provided the events were qualitatively different
from the other with minimum time consumption. EM [48] is an iterative clustering algorithm that groups the
data in a way that is different from K-Means. It has the ability to optimize large number of features and also
finds good estimates of the missing values in the features of a dataset. The log events examined contains many
features and the values for some of the features were not available in many of the events in the log. In this case
EM provides better judgement on the missing values in the logs thereby producing better clusters. Although,
K-Means and FF are faster in clustering compared to EM, all the three algorithms were tested to know its
ability in accurately grouping different patterns and volume of events.

In step 2, the events from various logs were clustered using the respective Kij manipulated from step 1.
Three clustering algorithms namely K-Means, EM and FF were used for clustering and its accuracy in clustering
events of various logs were compared. The chosen clustering methods uses K in generating clusters and seed
value to resolve on initial cluster centres. Even the same algorithm produces dissimilar clusters with different
parameter initializations, led to the difficulty in selecting the suitable parameters. Because of this reason, the K
value needed for clustering was predicted using EM in the previous step, i.e., step 1. No methods were available
to manipulate the appropriate seed value for a given set of events. Choosing random seed values and clustering
several times will increase the processing time. Therefore, the default seed value or the seed value equivalents to
the number of events being clustered were used with different settings. The experiment for step 2 was conducted
according to Experiment 2. Apart from that, in order to analyse the performance of the algorithm in separating
normal and abnormal events in various logs, the clusters generated by various algorithms and its settings with
different logs were examined.

3.2. Filtering Clustered Events. The objective of this phase is to eliminate the usual events (noise)
whilst holding the anomalous events for subsequent processing. Filtering is a process of reducing events for

A Detailed Description on Unsupervised Heterogeneous Anomaly Based Intrusion Detection Framework 125

further analysis that are unlikely to hold information of importance [19]. Hence the clustered events were
filtered to remove the unneeded events. Since anomalous events were less in number compared to benign events
generated by normal usage, it falls in smaller clusters. Therefore, the smaller clusters needs to be identified
based on the volume of events it contains. Since, multiple logs with different event volumes were used for
detection, deciding a common cluster size to identify smaller clusters is not reasonable. Hence, a threshold (Et)
for identifying sparse clusters was calculated based on the volume of events and clusters for a particular log and
the threshold is defined as:

Et = {Eij/kij}(3.1)

Threshold may vary with logs due to the difference in the volume of events and the number of clusters generated
for each log. Filtering events using this calculated threshold was to remove normal events (referred as filtered-
out events) and to retain abnormal events (referred as filtered-in events) for further scrutiny. Therefore, the
characteristics of anomalies were not required for filtering events. The clustered logs were filtered and evaluated
according to the specification stated in Experiment 3.

3.3. Aggregating Filtered-In Events. The aim of this step is to combine the redundant events thereby
reducing the events in the filtered log. Though, the filtered-in events were basically abnormal, using only
the unique events will reduce processing overhead and increase the accuracy in formation of clusters. Even
though much work use sampling methods for data reduction, it has been noted by Tavallaee et al. [49], that
sampling methods in anomaly detection introduces a significant bias that degrades the performance. Hence,
we chose aggregating instead, as both were basically data reduction techniques. Aggregation merges redundant
records into a single record [19]. A group of two or more events were united, if all the features in the events were
accurately analogous to the directly succeeding event(s), and the accumulated event serves as the representative.
No features were introduced in the aggregated log to symbolize those aggregated events. The volume of events
that gets reduced due to aggregation is based on the feature values that an event contains and therefore there
are chances of zero reduction, if all the events in the filtered log were unique. Therefore the percentage of events
reduced was not evaluated.

3.4. Transferring Events. The objective of this step is to extract the selected features of all the events
from various aggregated logs as stated in GF and appropriately placing the respective features in GFL. This is
to enable the analysis process to examine the events from various logs in a single structured format. Since all
the GFL features were not existing in all the logs, absence of a specific feature in a log was substituted with a
hyphen (-) during transfer. The performance of this step was verified to make sure whether the stated features
in GF for every single event in the aggregated logs (E∗∗

ij) were completely transferred to GFL.

3.5. Clustering GFE. Despite the fact that the logs were clustered and filtered earlier, there are prob-
abilities of having a less number of usual or irrelevant events; due to the imprecision in clustering and/or the
succeeding withholding by the filtering threshold. To determine such events and also to discover the association
between the events in GFL which comprises events from several logs, GFE was re-clustered. The GFE was
clustered using the same two-step strategy, algorithms and parameter settings used previously for the individ-
ual logs. GFL was maintained separately according to the algorithms and settings used in the previous phases.
This is to enable separate treatment of GFL accordingly in this phase and also the subsequent phases with
respect to the algorithms and settings. The step 1 of the clustering strategy was carried out as per the setup
provided in Experiment 4. Experiments for step 2 was conducted according to the algorithms and settings
provided in Experiment 5. The clustered events (GFE) were stored in ARFF format and maintained separately
with respect to algorithm and the respective settings.

3.6. Detecting Anomalous Events by Analysing Features. The aim of this step is to analyse clus-
tered events to identify the relation between them with respect to the features it contains and thereby detecting
the anomalous events from various logs. A mixed approach that uses multiple features of anomalies might be
an eligible solution for different circumstances [50]. Therefore, the analysis process concentrates on features
namely IP address (fsip, fdip) and port numbers (fsp, fdp). Additionally cluster number (fk) was also used to
get a clear picture of the intrusions.

126 A. I. Hajamydeen, N. I. Udzir

3.6.1. IP Address Analysis. Normally an intrusion leaves multiple signs of its presence in various logs
[2, 4]. As such, the events related to an intrusion may have been captured by various logs. To discover the
presence of such intrusive events in multiple logs, this step identifies the relation between the IP address, i.e.,
source IP address (fsip) and destination IP address (fdip), of the events from various logs and the clustered GFL
events (GFE) were used for analysis. Every abnormal activity that was captured by Apache server logs and
Linux syslog must have raised an alert in Snort IDS log, as IDS has this capacity by design. So, the IP address
that exists in Linux and Apache events that also exist in Snort IDS events were identified primarily. Not all IP
address in Apache and Linux log has an matching with Snort IDS log, since some of the anomalous activities
may have been missed by Snort IDS; but then, the anomalous patterns must have joined together in the same
cluster during clustering. Therefore, to detect also those abnormal activities which were missed by Snort IDS
log, all the events in those clusters to which the identified IP address belongs to were extracted and considered
as anomalous. The experiments for this step were conducted and the detected anomalous events IPAE were
evaluated as per Experiment 6. Attacks are frequently launched from an IP address or from an IP subnet [37]
and therefore capturing every abnormal action originating from various IP address becomes significant. This
is the reason behind evaluating the coverage of IP address in the detected anomalous events apart from the
anomalous events itself.

3.6.2. Port Number Analysis. The objective of this step is to identify anomalous events based on port
numbers. This is not a substitute to IP Address analysis, but to recognise and retain those anomalous events
which were available in those clusters that were not identified by IP analysis. The findings of Kim et al. [51]
also reveals that the usage of port numbers for classifying network traffic is still applicable and also suggest to
use port based analysis methods. Most of the anomalous activities were launched from a host by exploiting
the unassigned and dynamic ports, since no fixed service was running on these ports. Therefore, the source
port number (fsp) and the destination port number (fdp) of the events were checked against the listing of
the dynamic and unassigned port numbers as per Internet Assigned Numbers Authority (IANA). As most of
the normal events have been filtered out in the previous phases, those events in (GFE) having port numbers
matching with the IANA listing of dynamic and unassigned port numbers were detected and considered as
anomalous. The experiments for this step were conducted and the detected anomalous events (PAE) were
evaluated as per Experiment 7.

3.7. Consolidating Anomalous Events. The objective of this step is to consolidate the anomalous
events discovered by both analysis methods to serve as the output of the framework. This was achieved by
performing three operations namely combining, correlating and concentrating the events. Some of the anomalous
events which were recognized during IP analysis may also have been recognized during port analysis. Therefore,
these anomalous events, i.e., IPAE and PAE were compared to identify the distinct events and every event was
brought together for correlation. To recognize the relation between the events of Linux Syslog, Apache logs
and Snort IDS log with IPTables firewall log, the IP address (fsip and fdip), excluding internal IP address) of
these events were compared with IPTables firewall log; and the matching events from IPTables firewall log were
extracted and appended with the previously combined events. To concentrate on the most critical anomalous
events, less significant events were reduced using a threshold (At) on the occurrence of events pertaining to
an IP address. This was accomplished by identifying IP addresses of events which satisfies a specific threshold
(At), and consequently the events pertaining to these IP address were extracted. These extracted events are
deemed as anomalous and serves as the result of the framework. The experiments for this step were conducted
and the consolidated anomalous events (AE) were evaluated as per Experiment 8.

4. Experimental Design for UHAD. This section illustrates the Unsupervised Heterogeneous Anomaly
Detection Framework (UHAD) and the data pre-processing steps were discussed in detail followed by the abstract
description of the framework. The inner details of the framework components were described together with the
algorithm or strategy used to implement the components. Additionally, the flow of data, the input received
and the output generated by each of the components were also presented. Finally, the contribution of the
framework components towards anomaly detection was also discussed. The details of the experiments done at
each step, i.e., clustering, filtering and analysis, of the framework are described in this section. This includes
the respective algorithms used, together with the parameter settings or the needed parameters of the algorithm

A Detailed Description on Unsupervised Heterogeneous Anomaly Based Intrusion Detection Framework 127

and the parameters evaluated.

4.1. Experiment 1: Manipulating Ideal Clusters for Individual Logs. Prediction of the best
number of clusters by clustering the logs using EM clustering with the default parameter values, i.e., K = -1
and seed = 100 (K is used by the clustering algorithm to classify the given set of events into K clusters and seed
is used to identify the initial cluster centre for every cluster). Apache server log constitutes three logs namely
access, error and SSL-error log whereas Linux Syslog constitutes three logs namely message, mail and security
log. All the events recorded by Snort IDS were provided in a single log. Every log was treated separately by
EM clustering to manipulate the ideal number of clusters that a log can be clustered.

4.2. Experiment 2: Clustering Individual Logs. To capture the impact of K and seed in clustering,
the algorithms were tested with four different parameter settings. The default seed value of K-Means, EM
and FF are 10, 100 and 1, respectively. The settings used are as follows: Setting-1 (S1): Ideal clusters (Kij)
manipulated in step 1.1 of the overall algorithm with the default seed of the respective clustering algorithm.
Setting-2 (S2): Ideal clusters (Kij) manipulated in step 1.1 of the overall algorithm with the seed value set to the
total number of events in a particular log (Lij). Setting-3 (S3): Doubling up ideal clusters (Kij) manipulated
in step 1.1 of the overall algorithm with the default seed of the respective clustering algorithm. Setting-4 (S4):
Doubling up ideal clusters (Kij) manipulated in step 1.1 of the overall algorithm with the seed value set to the
total number of events in a particular log (Lij). The experimental setup for the step 2 of the clustering strategy
is provided in Table 4.1. Every log was clustered with all the three algorithms and four settings and therefore the
experiments were conducted 12 times on every log. Subsequently the clustering accuracy achieved with different
algorithms and settings were calculated separately. The ability of the clustering algorithm in identifying and

Table 4.1

Experiment 2 - Clustering Individual Logs

Algorithms Settings Evaluated Parameter
K-Means, EM, FF 1, 2, 3, 4 Accuracy

placing the events in the respective cluster gains significance, as it helps the following component to identify
and remove those clusters which are insignificant. Hence, the quality of clusters produced by these algorithms
was calculated using Weka Experimenter with 10 fold cross validation and 10 iterations to allow every part
of the log to be tested. A true positive (TP) decision assigns two similar events in the same cluster whereas
a true negative (TN) decision assigns two dissimilar events to different clusters. Failure to assign the events
in the appropriate cluster is measured using false positive (FP) and false negatives (FN). FP decision assigns
two dissimilar events to the same cluster whereas FN decision assigns two similar events to different clusters.
All these four measurements decides the cluster goodness and therefore the accuracy of clustering is calculated
using the following formula:

Accuracy =
TP + TN

FP + FN + TP + TN

The accuracy achieved by various algorithms and settings with various logs were evaluated.

4.3. Experiment 3: Filter-in Events of Sparse Clusters. Every clustered log with the respective
algorithms and settings were filtered separately according to the threshold calculated for the respective log.
During the calculation of the threshold, if the calculated threshold turns to be a decimal number, e.g., 20.3, it
was rounded to the next ascending integer, e.g., 21. The number of events in the cluster, i.e., cluster size, is a
whole number and the cluster size must be less than the threshold to be filtered-in, the threshold was rounded
to the next integer. The percentage of events reduced with different logs with the algorithms and settings due to
the application of the threshold is evaluated and the volume of abnormal events retained for further examination
were analysed. This is to ensure that, the application of filtering threshold is able to reduce the log events and
at the same time, retains the abnormal events.

128 A. I. Hajamydeen, N. I. Udzir

4.4. Experiment 4: Manipulating Ideal Clusters for Individual Logs. Prediction of the best
number of clusters for GFL using EM clustering with the default parameter values, i.e., K = -1 and seed = 100.
As GFL was maintained separately for each algorithm and setting, the clusters appropriate for that GFL were
manipulated separately.

4.5. Experiment 5: Clustering GFL. Using the K manipulated in the first step (Experiment 4), GFL
was clustered with the configuration provided in Table 4.2. TP, TN, FP and FP were measured to calculate
the accuracy of clusters formed using the formula stated in Experiment 2.

Table 4.2

Experiment 5 - Clustering GFL

Algorithms Settings Evaluated Parameter
K-Means, EM, FF 1, 2, 3, 4 Accuracy

4.6. Experiment 6: Anomaly Detection using IP Address. Every clustered GFL, i.e., GFE, with the
respective algorithms and settings were analysed separately based on the relationship between the events with
respect to IP Address and Cluster Number. The volume of anomalous events (IPAE) detected and the volume
of IP addresses covered by these anomalous events was evaluated. Additionally, the results of IP analysis was
compared with SOTM/#34 analysis results which serves as the ground truth for the anomalies in this dataset.
This is to ascertain the ability of the framework in detecting anomalous events without using a knowledge-base
or traffic models.

4.7. Experiment 7: Anomaly Detection using Port Number. Every clustered GFL with the re-
spective algorithms and settings were analysed separately based on port numbers. The volume of anomalous
events detected and the volume of IP addresses covered by these anomalous events were evaluated.

4.8. Experiment 8: Consolidating Anomalous Events. The anomalous events detected by IPA and
PA with the respective algorithms and settings were consolidated separately. The threshold was used to focus on
the most significant anomalies that needs to be immediately addressed and the impact of the variable threshold
(At), i.e., 3, 6, 9, in retaining the anomalous events from various IP addresses were evaluated. A three-way
handshake (also called as three message handshake and/or SYN-SYN-ACK) is a method used to set up a
connection over an Internet Protocol based network. In other words, there must be at least three events related
to an IP address in a traffic log to signify the establishment of a connection between two machines. Hence the
threshold was chosen as three, which requires at least three events from an IP address to exist in the log to
be selected as consolidated. This will also show whether the victim machine has responded to the request of
the attacker. The threshold is increased by six and nine to focus especially on those events which may provide
enough evidence on the anomalous actions between attack source and victim.

To overcome the limitation of unsupervised anomaly detection approaches, we propose UHAD (Unsuper-
vised Heterogeneous log-based Anomaly Detection), a knowledge independent framework that uses unsupervised
clustering algorithms to detect anomalous events from heterogeneous logs. The grouped log events are further
examined by several knowledge independent functions to detect anomalies. Every component receives the pro-
cessed log events from the preceding component, and manipulates the needed parameters for the process based
on the log events received.

The components of the framework are implemented using the following applications:
• Weka (Waikato Environment for Knowledge Analysis) is a popular collection of machine learning al-
gorithms written in Java which can be applied directly to a dataset or called from your own Java
code and is well-suited for developing novel machine learning schemes. It supports several data mining
tasks and particularly data pre-processing, classification, regression, clustering, feature selection, and
visualization.

• Perl is a high-level, interpreted, dynamic programming language offering dominant text processing
services with no limitations on the data size enabling straightforward manipulation of text files. Feature
selection tools in Weka were utilized during data pre-processing and the clustering tools were used to

A Detailed Description on Unsupervised Heterogeneous Anomaly Based Intrusion Detection Framework 129

implement the two-step clustering strategy proposed in the framework. The new algorithms proposed
for filtering, aggregating, transferring, consolidating and analysing features were written using Perl.

5. Design of UHAD Framework. The goal of the framework is to detect anomalies in an unsupervised
fashion without using any kind of knowledge on attacks or a trained model of network behaviour. This is
accomplished by correlating and analysing the event features in heterogeneous logs. The framework consists
of two major phases with several components in each phase. The first phase considers individual logs from
multiple sources separately, starting from clustering and passes through several components before the events
from various logs were transferred to a common format (i.e., Generic Format Log (GFL)), whereas the next
phase considers the events in GFL as input, which was clustered and analysed to identify anomalies. UHAD
primarily relies on the pattern of log events and its features to detect anomalies, making it applicable to the
evolving network traffic environment. The overall framework of UHAD is illustrated in Figure 5.1, and the first
and second phases are illustrated in Figure 5.2 and Figure 5.3, respectively.

Fig. 5.1. Overall Framework of UHAD

Only the Cluster Events component, i.e., component (1) in Figure 5.2 and component (5) in Figure 5.3,
utilize existing algorithms available in Weka, while other components are newly proposed algorithms written in
Perl.

5.1. UHAD Components. The framework is composed of seven co-operating components, where every
component performs a specific task in the process of anomaly detection, and the details of the tasks carried out
by each component are described in the following sections.

5.1.1. Clustering Events. The log events were clustered using a two-step strategy and every log was
treated separately for this step. The log is subjected to two operations as illustrated in Figure 5.4 and both the
operations were implemented using Weka.

Predicting Clusters. Out of the three clustering algorithms (i.e., K-Means, EM and FF) chosen to be
used in the framework, EM alone has the capacity to predict the number of cluster that is appropriate for the
given dataset. This unique capacity of EM clustering is utilized to implement the first step in our clustering
strategy. The Weka [28] implementation of EM algorithm manipulates the number of clusters for a given set of
instances using cross validation by separating the instances into a number of partitions called folds. The steps
involved in predicting the number of clusters by cross validation are as follows:

1. Number of clusters (k) is set to 1.
2. Training instances are split randomly into 10 folds.
3. EM is executed 10 times with 10 folds by the usual cross validation.
4. Log likelihood is averaged over all the 10 results.
5. If the log likelihood has increased, the number of clusters (k) is incremented by 1 and the process

repeats from step 2.
For those training sets containing 10 instances or more, the fold is set to 10 otherwise the number of folds

is set to the number of instances. In the first step a given set of events Eij is loaded to Weka to manipulate the

130 A. I. Hajamydeen, N. I. Udzir

Fig. 5.2. Event Reduction and Integration in UHAD

best number of clusters (Kij) using EM. As the intention of this step is to predict the number of clusters, the
default seed value 100 was used with the number of clusters (K) set to -1 to enable EM to predict the number
of clusters. The clusters (Kij) thus predicted is used to cluster the events (Eij) in the next step.

Generating Clusters. The details of the clustering algorithms used in the second step of the clustering
strategy implemented in UHAD is as follows:

Expectation Maximization. The EM algorithm [48] comprises of two recursive steps, Expectation and
Maximization, which uses a statistical model called Gaussian finite mixtures to accomplish the objective of
producing the most likely set of clusters for a given dataset, given the number of clusters (K). The model includes
a set of K probability distributions to provide data representation for each cluster. Each K distribution is defined
by parameters like number of iterations and the difference in log likelihood between successive iterations. Initially
these parameters are deduced by the algorithm based on the input data, which is subsequently determined by the
probability that a particular instance belongs to specific cluster for the given data by utilizing these parameter
deduced. Parameter distribution is amended again and this continues until the generated clusters have a certain
level of overall cluster goodness or until the maximum number of iterations is reached.

K-Means. K-means [45] is a simple and popular clustering method that divides instances based on the
attribute values into K disjoint clusters. Instances that shape the cluster have similar attribute values and K
specifies the number of cluster to be generated. The steps of K-means algorithm are as follows:

1. Define the number of clusters K.
2. Initialize the K cluster centroids by randomly dividing all instances into K clusters, calculating their

centroids, and verifying that all centroids differs from the other.
3. Iterate on all instances and calculate the distances of centroids for all clusters. Assign each object to

the cluster with the nearest centroid.
4. Recalculate the centroids of both modified clusters.
5. Repeat step 3 until the centroids change.

A Detailed Description on Unsupervised Heterogeneous Anomaly Based Intrusion Detection Framework 131

Fig. 5.3. Anomaly Detection in UHAD

Fig. 5.4. Two-Step Clustering Strategy

Moreover, a distance function is needed to calculate the distance (i.e. similarity) between two instances and
the most commonly used is the Euclidean distance where every attribute contributes evenly to the calculation
of this value. The algorithm has the skill to treat the features in the events equally and segregates precisely in
likely clusters. Additionally it has the capacity to handle larger datasets with a lesser processing time justifies
the importance of using it in the second step of the clustering strategy.

132 A. I. Hajamydeen, N. I. Udzir

Farthest First. Farthest first [46] is an alternative of K-Means that places every cluster center in turn at
the point farthest from the existing cluster center and this point lies inside the data area. Since there is less
reassignment, the process of clustering is faster. The logs (Lij) captured from Apache server, Linux and Snort
IDS were clustered according to the specification stated in Experiment 2. Therefore every log was clustered
12 times, and the clusters thus generated were maintained separately for further processing and evaluation.
The clustered events were stored in its native format, i.e. Attribute Relation File Format (ARFF) for further
processing and not the trained model.

5.1.2. Filtering Clustered Events. The filtering algorithm (Figure 5.5) was implemented using the
script written in Perl which receives a clustered file in ARFF format as input and produces the filtered-in events
in CSV format. The ARFF file was parsed to eliminate the header generated during clustering and the relevant

Fig. 5.5. Filtering Strategy for Individual Logs

features of every log together with the cluster number were extracted to a CSV file before proceeding with
filtering. In some cases, the number of clusters generated was lesser than the number of clusters requested
and therefore the parsed clusters were scanned to identify the number of clusters. As such, the threshold was
calculated based on the identified number of clusters and the total events clustered. The volume of events and
the identified number of clusters varies from log to log and therefore the threshold calculated also varies. The
volume of events in every cluster was found and those clusters whose size was less than the calculated threshold
(Et) was filtered-in for further scrutiny as mentioned in the algorithm (Figure 5.5). The cluster an event belongs
to was also included in the filtered log to verify the patterns of events in each cluster.

5.1.3. Aggregating Filtered-In Events. Filtered-in log was received as input and the redundant events
were combined by checking every event to produce an aggregated log and the algorithm is illustrated in Figure
5.6. Even though the log was previously clustered and filtered, the order in which the log event appears
in the original log was maintained. Therefore, every event in the log was compared with the event that is
immediately following it. As an analogy, if the current event being scrutinized is equivalent to the previous
event automatically the current event is dropped and the next event becomes the current event whereas if the
current event is different from the previous event, then the current event is retained and it becomes the previous
event.

5.1.4. Transferring Events to GFL. The process of extracting the events from various logs and trans-
ferring the events to GFL is automated using custom written script. The events in Apache server, Linux syslog
and Snort IDS logs were transferred to GFL excluding Apache SSLError and Linux mail log, since many of the
GFL features were not available in these logs; but they are maintained separately to be used at some stage in
the analysis. As IPTables firewall log was also used only during analysis, these events were stored separately

A Detailed Description on Unsupervised Heterogeneous Anomaly Based Intrusion Detection Framework 133

Fig. 5.6. Aggregating Strategy for Individual Logs

as per the features specified in GF. The transfer of events from various log sources is depicted in Figure 5.7.
In some logs, source IP address was not recorded as separate feature, but then as a part of another feature

Fig. 5.7. Transferring Events to GFL

and therefore it was extracted and represented as a separate feature. Since we compare the performance of
three algorithms with four settings, the GFL events were maintained separately according to the algorithm and
parameter settings.

5.1.5. Clustering GFE. The GFL events which was maintained according to clustering algorithms and
their respective settings were considered separately for this step. In the first step a given set of GFL events
(GFE) is loaded into Weka to manipulate the ideal number of clusters (Kg) using EM. The default seed value
100 was used with the number of clusters (K) set to -1 to enable EM to predict the number of clusters. The
clusters (Kg) thus predicted is used to cluster GFE. The respective GFL events were clustered using the same
algorithm and parameter settings. The clustered events were stored in ARFF format for further processing.

5.1.6. Analyse Features to Identify Anomalous Events. The analysis process intends to discover the
relationship between events pertaining to the various features represented by the events to detect anomalous
events. We performed analysis using the features IP address (fsip; fdip), port number (fsp; fdp) and cluster
number (fk).

134 A. I. Hajamydeen, N. I. Udzir

IP Address Analysis. The analysis procedure (Figure 5.8) receives clustered log events (GFE) as input
which was scanned several times, before an event was decided as anomalous. During the analysis process three
features were manipulated which are source IP address (fsip), destination IP address (fdip) and cluster number
(fk). Although checking the IP address of the events was focused, the cluster number of these events was also

Fig. 5.8. IP Address Analysis

manipulated to get a big picture of the events related to intrusions. The first pass was to identify the unique IP
address in log events, where fsip was checked in case of inbound connections and fdip for outbound connections.
Those identified unique IP addresses existing in Apache and Linux logs were checked for its existence in Snort
IDS log, and vice versa. Since there were no labels specified in GFL to identify the log which an event belongs
to, the events were identified by the non-availability of feature values in that event, i.e., Apache and Linux log
events do not have values for the features destination IP address (fdip), source port (fsp), destination port (fdp)
and protocol (fpr).

The events containing IP addresses that were selected for its existence in multiple log sources, were checked
to identify the cluster which they belong to. All the events belonging to the identified clusters were extracted
and deemed as anomalous which serves as the result of the analysis. The results were evaluated based on the
volume of anomalous events identified by the analysis and also the number of IP addresses covered by these
events from where the intrusion have originated. To verify the validity of the events detected, it was compared
with the results of SOTM#34 challenge, to substantiate the coverage of anomalies by UHAD.

Port Number Analysis (PA). Ports possess significant discriminative control in classifying certain types
of traffic when used with other features [51] and most anomalous activities utilises the unused and unassigned
ports. The same set of GFL events (GFE) used for IP address analysis were used for port analysis, too. Since

A Detailed Description on Unsupervised Heterogeneous Anomaly Based Intrusion Detection Framework 135

the analysis (Figure 5.9) was based on port numbers, those events without it will be automatically excluded
from analysis. In the case of inbound connections the source port number of the events was checked against

Fig. 5.9. Port Number Analysis

the listing of the dynamic and unassigned port numbers as per Internet Assigned Numbers Authority (IANA).
In this manner, the destination ports of the matching events were checked for the availability of well-known
port numbers, similar to 20, 21, 22, 23, 25 and 80 to generate anomalous event list, as intrusive events mostly
succeed through these ports on the victim host. Then again for outbound connections, the destination port
number of the events was checked against the listing of the dynamic and unassigned port numbers according to
IANA. All the matching events were regarded as anomalous and was moved to a distinct CSV file.

5.1.7. Consolidate Anomalous Events. Three operations were performed, namely uniting, associating
and concentrating to consolidate the anomalous events detected by the analysis methods, i.e. IPA and PA, and
the process is illustrated in Figure 5.10. Initially all the anomalous events detected by IPA was copied to a
CSV file referred as an intermediate anomalous events list (iAE) and every single event in the list is referred
as iAe. Every anomalous event detected by PA was compared with every single anomalous event of IPA and
non-matching anomalous events of PA will be appended to iAE. Unique IP addresses excluding internal IP
addresses, i.e., 11.11.*.*, represented by the iAE events were identified and every such IP address was compared
with IP address of IPTables firewall log events maintained in a separate log as per GF. All the IPTables firewall
log events containing IP address matching with the identified IP addresses were appended to iAE. Now iAE
contains the detected anomalous events (AE) captured from various sources that serves as the result of the
framework. In order to concentrate on significant anomalous events, a threshold (At), i.e., 3, 6, 9, was used to
consolidate the anomalous events based on the IP address. Since the unique IP addresses were already found
before correlation, the occurrence of the iAE events containing these IP addresses were counted. Those IP
addresses satisfying the threshold (At) were identified. The iAE events were checked for these IP addresses,
and those events satisfies the threshold were extracted and maintained separately. This to verify that, whether
applying the threshold at this point supported to focus on the most significant anomalous events or it reduced
such events. All the new algorithms proposed to implement various components of the framework were written
in Perl.

The limitation of the filtering component deployed in UHAD [10] is further improved with the refined filterer
[52] by increasing the volume of retained abnormal events; hence, the other components of the framework [52]
in are basically the same as UHAD [10]. The aim of the refined filterer is to retain all the abnormal events in
the log for subsequent processing, irrespective of the existence of such events in larger number in the logs and
the inaccuracies in clustering. The refined filterer receives a clustered log (Eij) which is initially scanned to

136 A. I. Hajamydeen, N. I. Udzir

Fig. 5.10. Comparing Anomalous Events

identify the volume of events (nEij) and the number of clusters (Kij) to calculate the filtering threshold (Et),
i.e., Et = nEij/ Kij .

The filtering threshold calculated as such is equivalent to the average cluster size. The calculated filtering
threshold was used to identify the sparse and dense clusters in the clustered log, and the events of sparse (Eij*)

and dense clusters (E#
ij) were identified, extracted and maintained separately. But then, there are chances

that some of the abnormal events may have been mixed up with normal events in dense clusters due to the

A Detailed Description on Unsupervised Heterogeneous Anomaly Based Intrusion Detection Framework 137

inaccuracy in clustering or the similarities between the feature values of abnormal and normal events. Therefore,
such abnormal events in dense clusters must be identified and included in filtered-in events for further processing.

In order to achieve that, subsequently, every event in the dense clusters was compared against every event
in the sparse clusters, i.e., the respective features in these events were separately or individually compared.
The cluster number in the log that was included during the process of clustering, which also appears in the
filtered events is excluded from the counted features for a particular log. Those events in the dense clusters
which match with any one of the events in sparse clusters (abnormal events) are considered abnormal, and the

matching events (E#
ij) i.e., those events having a match of at least 50% of features in between the events, were

added to the set of filtered-in events after all such events were identified. For instance, if there are six features
in the log events compared, then at least three features of an event in the dense clusters must exactly match
with any one of the events in the sparse clusters in order to be filtered-in for further processing. As there
may be subtle difference in the patterns of abnormal events grouped in sparse and dense clusters, comparing
both categories by features for exact matches is not reasonable and will not assist in retaining majority of the
abnormal events. Therefore, 50% is chosen as the minimum matching between events in order to consider for
further processing. This is based on the assumption that the sparse clusters contain only abnormal events and
the misclassified abnormal events in dense clusters should be partially or completely matching with any of the
events in sparse clusters. Therefore, the dense cluster events were checked against sparse cluster events, and
the matching events of dense clusters were also filtered-in together with sparse clusters for further examination.

Moreover, the refined filterer strives to retain every abnormal event in the log irrespective of the inaccuracy
in some of the clusters generated. The refined filterer is very much process intensive as every event in the
dense clusters has to be compared with every event in sparse clusters and moreover every feature of the event
is individually compared with another event. Additionally, the logs clustered with the reordered events were
also filtered using the refined filterer to verify whether the filterer managed to retain the abnormal events as it
does with the clustered events of original log. This is to evaluate the effect of reordering and the subsequent
clustering on the refined filterer especially on the retention of abnormal events.

6. Results and Discussions. To assess the capability of the framework in discovering anomalies, the
log events captured by multiple sources in a Honeynet system were used. A total of four subsets with varying
duration were tested. First and foremost, the idea behind the development of this framework is to detect a
wide range of anomalous events by analysing various logs without using any kind of knowledge on anomalies or
the models of network traffic behaviour. All the components implemented in this framework work towards the
aforesaid objective. Apart from this, every component has a specific objective towards the main objective, and
hence the performance of every component was measured with different metrics as stated in Chapter 3. The
performance of the framework as a whole in detecting various anomalous events were evaluated by comparing
its results with the SOTM/#34 challenge results [12, 13, 14, 15] provided at Honeynet.org.

6.1. Clustered Events. This section describes the results of the two-step clustering strategy implemented
in the framework. Firstly, the predicted clusters for various logs were discussed. Secondly, the accuracy achieved
with various clustering algorithms with different parametric settings were compared. Additionally, the relation
of clustering accuracy with the actual formation of clusters with respect to abnormal events were examined.

6.1.1. Predicted Clusters. The clusters for each log were predicted according to Experiment 1 speci-
fication. EM clustering was applied with the default values for the parameters (i.e. K = -1, seed = 100) on
the selected features of the individual logs (Eij) to estimate the best number of clusters (Kij). For example,
while predicting the number of clusters for Apache Access log, EM at the start selects eight clusters by cross
validation, but concludes generating only five clusters (0, 1, 2, 6, 7) as shown in Figure 6.1.

Therefore, the best number of clusters selected for this log was five, and the similar approach was followed
for all the logs in manipulating the ideal number of clusters. The cluster predicted by EM for various logs
is provided in Table 6.1. This reveals the fact that the number of clusters predicted were not influenced by
the number of features and events in a log, but by the patterns of the events, i.e, the more the number of
distinct patterns, the higher the number of clusters predicted. Apache error log consisting of 433 events with
five features resulted in seven clusters whereas Snort IDS log consisting of 4423 events with 11 features resulted
in only three clusters. This also revealed the fact that there is no relation between the number of events and

138 A. I. Hajamydeen, N. I. Udzir

Fig. 6.1. Manipulating Clusters using EM

Table 6.1

Ideal Clusters by EM

Log Type Suset-1 Subset-2 Subset-3 Subset-4
Access 5 5 8 6
Error 7 6 7 7

SSL-Error 2 4 4 3
Message 5 5 5 7
Mail 2 2 4 4

Security 4 4 4 6
Snort IDS 3 8 6 7

its features with the clusters predicted.

The time taken to predict the ideal number of clusters by EM for each log varied from seconds to hours
depending on the volume of events and its features. The time taken to manipulate the events to predict clusters
for Linux Message log with 112 events took five seconds whereas Snort IDS log with 17049 events took 1 hour
30 minutes and 12 seconds. Moreover, prediction time also depends on the existence of varying patterns in the
log, eventually resulting in more number of clusters, e.g., Linux message log with 105 events took 10 seconds
to predict seven clusters, whereas 112 events belonging to the same type of log took five seconds to predict five
clusters. The manual effort and time spent in finding the ideal clusters for a particular log using our strategy is
far lesser than that of the usual method, i.e., applying the clustering algorithm on a dataset several times with
different clusters (K) and choosing the best clusters among them. Thus the clustering strategy implemented in
our framework facilitates the process in finding the appropriate clusters for the logs with less time consumption
and manual effort.

A Detailed Description on Unsupervised Heterogeneous Anomaly Based Intrusion Detection Framework 139

6.1.2. Clustering Accuracy and Cluster Analysis. Using the clusters (Kij) manipulated from step
1 (Experiment 1), the logs were clustered according to the algorithms and settings stated in Experiment 2,
and the clustered events (Eij) were recorded in ARFF format. Every clustered log was maintained separately
according to subsets, algorithms and settings. The accuracy of the clusters generated for various logs by the
algorithms with different settings were evaluated. The maximum time taken to cluster 17049 events of Snort
IDS with seven clusters, i.e., the log containing the highest number of events in subset-2, was 2 minutes and 5
seconds by EM whereas K-Means and FF took only 17 seconds and 2 seconds, respectively. The accuracy of
K-Means, EM and FF in clustering various logs with different parameter settings was evaluated, i.e., comparing
the accuracy of the default setting (setting-1) with other settings (settings 2, 3 and 4). This is to recognize the
impact of seed and K on accuracy, when increased. In addition, the relation of accuracy and the parametric
settings with the actual grouping of abnormal events in separate clusters were also examined. As we have
tested four subsets containing various logs, the results are discussed subset by subset. Previously the results
of subset-1 was presented in Hajamydeen et.al. [7], and therefore the results of the other three subsets, i.e.,
subset-2, subset-3, subset-4, were only discussed.

Subset-2. The accuracy achieved with various settings for this subset exhibits a similar pattern like subset-
1 and is illustrated in Figure 6.2. Increasing the seed value alone (setting-2) improved the accuracy in all logs

Fig. 6.2. K-Means Clustering Accuracy (Subset-2)

except the Linux Message log. This was because of the similarity between the feature values in this log. Doubling
k with the default seed (setting-3) increased the accuracy with all the logs. But, increasing both seed and k
together (setting-4) decreased the accuracy with all logs except Snort IDS logs, thus signifying the sensitive
nature of K-Means to initialisation parameters. This also shows the need for customised seed value than using
the default seed especially with those logs having events of bigger volume. The increase in accuracy with settings
2 and 4 for this log also shows the importance of a customised seed value especially with bigger sized logs. There
were 14 successful intrusive events and 58 unsuccessful intrusive events in the Apache error log.

Analysing the clusters generated with various settings showed that setting-4 formed better clusters by
grouping the intrusive events in separate clusters. There were 12 clusters generated from 0 to 11 consisting of
events 120, 54, 75, 14, 1, 60, 67, 13, 1, 24, 33 and 142, respectively. All the 14 successful intrusive events were
grouped in Cluster 3 and the 58 unsuccessful intrusive events with another nine abnormal events in Cluster 6.
This was due to the impact of increased seed and k on clustering even though the accuracy with various settings
did not reflect that. The accuracy of EM with subset-2 as illustrated in Figure 6.3 expressed a reverse accuracy
pattern with respect to settings compared to subset-1. The accuracy of clustering was improved when the ideal
clusters (k) were doubled (setting 3) with all the logs, and declined when the seed was increased with settings

140 A. I. Hajamydeen, N. I. Udzir

Fig. 6.3. EM Clustering Accuracy (Subset-2)

2 and 4 with most of the logs. This shows that the accuracy factor is not only influenced by k and seed, but
also by the volume of events and their patterns. A better cluster formation was achieved by EM with setting-4
for the Apache error log. Out of the 12 clusters (107, 51,39, 54, 24, 0, 47, 60, 26, 54, 142 and 0) generated for
this log, two of them were empty clusters, i.e., Clusters 5 and 11. The 58 unsuccessful intrusive events were
grouped together in Cluster 7 with another two abnormal events. The 14 successful events were joined together
with another 93 abnormal events. In terms of cluster formation, K-Means formed better clusters compared to
EM, even though EM achieved the highest accuracy for this log.

The clustering accuracy of FF with subset-2 (Figure 6.4) expressed a similar pattern like subset-1 with
settings 3 and 4, however, the pattern was opposite with setting-2 which resulted in a sharp decline in accuracy
with Apache error, Linux message and Snort IDS log. Although FF is not very sensitive to seed values, the

Fig. 6.4. FF Clustering Accuracy (Subset-2)

sharp increase and decrease in accuracy with settings 2 and 4 was due to the diverse event patterns in the logs.
Moreover, the cluster formation for the logs was similar between settings 1 and 2 and also with settings 3 and 4.

A Detailed Description on Unsupervised Heterogeneous Anomaly Based Intrusion Detection Framework 141

The unsuccessful intrusive events of Apache error log were grouped together in Cluster 4 and successful
ones in cluster 6 together with other abnormal events. Doubling k with settings 3 and 4 resulted in better
formation of similar clusters. The clusters generated by FF was better than EM but inferior to K-Means. This
subset contained more events in all the logs compared to subset-1 and KMeans formed better clusters for this
subset. This shows the capacity of K-Means in handling voluminous log events.

Subset-3. The accuracy of K-Means with subset-3 is illustrated in Figure 6.5. A similar accuracy pattern
like subsets 1 and 2 was achieved with settings 3 and 4 for this subset. But with setting-2, the increase in seed
value decreased the accuracy. This shows the sensitive nature of K-Means to initial parameters. Although, the

Fig. 6.5. K-Means Clustering Accuracy (Subset-3)

volume of events in Apache access and error log was high compared to subsets 1 and 2, K-Means achieved a
better accuracy for this log than the other subsets. This exposes the capacity of K-Means in handling larger
datasets. Linux security log consists of 234 events where 12 events are related to xinetd crash and the pattern
of these events were very different from others.

Even though there were eight features recorded by this log, the majority of the events do not have values for
all these features resulted in a lower accuracy, i.e., below 70%. This was also reflected appropriately in cluster
formation. All these intrusive events were joined together in Cluster 0, i.e., the biggest cluster, for the settings
1, 2 and 4. For setting-3, these events was separated in two clusters, i.e, Cluster 0 and 4. All the 10 events
in Cluster 4 was related to xinetd crash, and another two events were in Cluster 0, i.e, the biggest cluster.
Although, the accuracy achieved for this setting is the lowest, the cluster formation was better. This also shows
that cluster formation was not directly reflected in accuracy.

In the case of Snort IDS logs consisting of 5013 events, all the events pertaining to the intrusion were
grouped in smaller clusters for all the settings. Especially, K-Means with setting-1 grouped majority of the
intrusive events in the smallest cluster, i.e., Cluster 5, and in several smaller clusters for setting-3. This shows
that the default seed performed better in cluster formation for this log and is also reflected in accuracy. The
pattern of accuracy achieved by EM with subset-3 (Figure 6.6) is similar to subset-1 for settings 2 and 3 whereas
it was similar to subset-2 for setting-4. The default setting (setting-1) achieved the highest accuracy for Apache
access and Linux message log. The increase in seed and k (setting-4) improved the accuracy in Snort IDS log,
exposing the contribution of seed and k together with bigger sized logs. In spite of the absence of values for the
features in most of the events of Linux security log, EM formed better clusters compared to K-Means, showing
its capacity in handling events of this nature.

All the 12 events related to xinetd crash were grouped together in a smaller cluster for settings 1, 2 and 3.
For setting-4, 10 of these events were grouped in a separate cluster and another two events in a smaller cluster.

142 A. I. Hajamydeen, N. I. Udzir

Fig. 6.6. EM Clustering Accuracy (Subset-3)

All the intrusive events captured by Snort IDS log were grouped in smaller cluster with setting-4. This shows
the involvement of seed and K together in cluster formation. With subset-3, FF achieved accuracy (Figure 6.7)
of identical pattern like subset-1. An average accuracy above 90% was achieved by FF for various settings with
all the logs, except the Snort IDS log for the default setting. The accuracy achieved by FF with various settings
were not appropriately reflected in cluster formation. Intrusive events related to xinetd crash in Linux security

Fig. 6.7. FF Clustering Accuracy (Subset-3)

log that has a unique pattern than the other events were grouped in the biggest cluster for all the settings.
Even in Snort IDS log, the events related to various intrusions were grouped in bigger clusters.

Subset-4. The accuracy achieved by K-Means for this subset plotted in Figure 6.8 exposed a similar pattern
with subset-3. Even though doubling K (setting-3) increased accuracy, increasing the seed together with doubled
K did not improve the accuracy. This is due to sensitive nature of K-Means to initialisation parameters. There
were 434 events in Apache access log, out of which 78 events were the outcomes of unsuccessful intrusions
originated from two IP addresses and the patterns of events from these IP addresses were different from each

A Detailed Description on Unsupervised Heterogeneous Anomaly Based Intrusion Detection Framework 143

Fig. 6.8. K-Means Clustering Accuracy (Subset-4)

other. Settings 3 and 4 generated better clusters by separating intrusive events in two clusters according to IP
address. One of these clusters contained only intrusive events and the other cluster contained intrusive events
together with other events as well. In case of Snort IDS log, majority of the events related to intrusions were
grouped in smaller clusters and a small number of such events gathered in big clusters together with other
events for all the settings.

Better clusters were generated with settings 1 and 2 for this log, although settings 3 and 4 showed better
accuracy. EM achieved the highest average accuracy of 96.89% for this subset, but the pattern of accuracy
with various settings were very different from all the other three subsets and exactly opposite to subset-3. The
accuracy achieved by EM for various logs is depicted in Figure 6.9. Better cluster were formed by EM with
setting-4 for Apache access log, but the cluster formation was inferior to the ones generated by K-Means. In
case of Snort IDS log, all the events related to intrusions were grouped in smaller clusters for the same setting.
Like EM, FF also achieved the highest accuracy (Figure 6.10) with this subset, but then the pattern of accuracy

Fig. 6.9. EM Clustering Accuracy (Subset-4)

144 A. I. Hajamydeen, N. I. Udzir

with respect to settings was similar to the achievement of K-Means with this subset. Analysing the clusters

Fig. 6.10. FF Clustering Accuracy (Subset-4)

generated by FF with settings 3 and 4 for Apache access log revealed that all the unsuccessful intrusive events
were precisely grouped in separate clusters and the cluster formation was better than K-Means. Like subset-3,
all the intrusive events captured by Snort IDS log were grouped in bigger clusters for all the settings together
with other events. The poor cluster generation of FF for this log with various settings were also reflected in the
accuracy.

Analysing the clusters generated with the four log subsets tested provides the following conclusions:
1. Although the clustering strategy implemented achieved a better accuracy, none of the algorithm showed

a consistent performance in terms of accuracy and cluster formation with all the subsets. Better clusters
were formed by EM with subsets 1 and 4, and K-Means with subsets 2 and 3. This was due to the
volume of events contained in these subsets for various logs.

2. Accuracy and cluster formation by a particular clustering algorithm was inconsistent with different logs
in the same subset. This was due to capacity of the algorithm in handling a particular type of data as
the number of features and the content of features varies with logs. Even in some logs the values for
certain features were not available in most of the events.

3. Usage of settings 3 and 4 improved cluster formation with most of the logs. This was due to the
increase in k which grouped the abnormal events precisely in separate clusters. EMs performance with
this setting varied with subsets was due to its nature of forming clusters based on the available patterns
in the log irrespective of the requested clusters. The cluster formation by FF with settings 3 and 4 were
similar and this was due to the non-reactive nature of FF to seed values.

4. Examining the clusters generated shows that, the accuracy was not directly reflected in the formation
of clusters. This is because calculation of accuracy is based on the context of the algorithms capacity in
handling data, whereas the clusters produced were analysed based on the formation of abnormal events
in separate clusters within the context of the research.

5. K-Means performed better even with the big sized logs, showing its capacity in handling larger datasets.
6. EM performed better with the logs where the values for certain features were not available in most of

the events in the log.
7. FF generated better clusters with those logs where the events patterns were qualitatively different. This

is due to its nature of calculating the cluster centroids in successive iterations which is opposite to that
of K-Means.

Overall, the clustering strategy implemented in this phase achieved a better accuracy and cluster formation.

A Detailed Description on Unsupervised Heterogeneous Anomaly Based Intrusion Detection Framework 145

Due to the inconsistent performance of a particular algorithm and setting with various logs, deploying multiple
algorithms and settings becomes necessary. This phase could be further extended by designing a recommender
method to suggest the best clusters of various logs among those generated with various algorithms and settings,
for further processing.

6.2. Filtered Events. In this phase, the clustered logs were filtered using a calculated threshold and
the filtered-in events were retained for further process. The percentage of events reduced and the volume of
abnormal events retained from the clustered logs with the three algorithms and its settings were evaluated
(Experiment 3).

6.2.1. Event Reduction. Every clustered log was scanned to identify the number of events and clusters
to calculate the threshold, and those clusters which satisfies the threshold were filtered-in.

Subset-2. The volume of events in various logs were relatively higher than that of subset-1 and especially
the Snort IDS log contained 17049 events. Applying the threshold on various clustered logs for this subset
reduced an average of 71% events and retained an average of 29% events for further examination and is provided
in Table 6.2. Applying the threshold on Apache access log clustered by FF with setting-4 reduced 93.88% events
whilst retaining 6.12% events, which was due to the better clusters formed by FF for this log.

Table 6.2

Percentage of Reduction (Subset-2)

Algorithms Settings Access Error Message Security Snort IDS
Setting-1 75.51 57.28 68.87 86.09 72.79

K-Means Setting-2 38.03 67.22 84.77 96.62 79.36
Setting-3 77.74 85.60 67.55 79.70 74.86
Setting-4 69.02 85.76 78.81 89.47 65.40
Setting-1 57.88 60.60 64.24 81.95 55.90

EM Setting-2 74.77 56.79 52.98 69.17 63.78
Setting-3 79.78 61.42 52.98 68.42 67.44
Setting-4 70.69 41.23 52.98 65.41 59.86
Setting-1 76.25 76.32 68.87 82.71 56.57

FF Setting-2 86.09 65.56 68.87 68.42 67.26
Setting-3 85.16 77.98 76.82 92.48 82.62
Setting-4 93.88 71.69 76.82 92.48 77.53

Applying the threshold on Apache error log clustered by K-Means with setting-4 reduced 85.76% events
whilst retaining 14.24% events was due to the better cluster formation achieved by K-Means for this log. This
also reveals the fact that better cluster generation will increase the volume of reduction which in turn reduces
the processing overhead of the subsequent framework components.

Subset-3. The volume of events in this log subset was higher than subset-1, especially the events in
Apache access and error log. Application of threshold on this log subset reduced an average of 73% events while
retaining 27% events and the details of the event reduced with various logs is provided in Table 6.3. In some
cases, due to the availability of more abnormal events in the log it was grouped in bigger clusters. Usage of the
calculated threshold to filter the clustered events has reduced such abnormal events in bigger clusters making it
unavailable for subsequent examination. For instance, FF produced better clusters for Apache access and error
log, resulting in reducing more than 85% of the events from these logs. But, this reduction has removed most
of the abnormal events in bigger clusters that did not satisfy the threshold.

Subset-4. The volume of events in this log subset was higher than subset-1, especially the events in
Apache access and error log. Application of threshold on this log subset reduced an average of 74% events while
retaining 26% events, and the details of the events reduced with various logs is provided in Table 6.4. Applying
the threshold on Apache access log clustered by K-Means with setting-3 reduced 81.9% of events. But then all

146 A. I. Hajamydeen, N. I. Udzir

Table 6.3

Percentage of Reduction (Subset-3)

Algorithms Settings Access Error Message Security Snort IDS
Setting-1 72.27 75.67 74.76 81.62 65.53

K-Means Setting-2 71.56 79.76 90.95 74.79 75.80
Setting-3 68.67 80.00 87.14 76.92 51.53
Setting-4 53.59 75.28 72.38 61.97 74.93
Setting-1 55.70 67.40 45.71 57.69 78.48

EM Setting-2 70.86 85.28 45.71 57.69 78.48
Setting-3 68.83 78.11 60.48 57.69 62.24
Setting-4 85.16 64.41 50.00 57.69 74.29
Setting-1 89.30 89.84 60.48 84.62 75.82

FF Setting-2 83.91 89.84 60.48 84.62 83.12
Setting-3 88.91 93.46 64.29 75.21 87.65
Setting-4 86.88 93.46 64.76 72.22 88.25

the abnormal events in this log were filtered-out by the threshold, due to the formation of such events in bigger
clusters.

Table 6.4

Percentage of Reduction (Subset-4)

Algorithms Settings Access Error Message Security SnortIDS
Setting-1 44.40 71.28 69.52 96.75 70.56

K-Means Setting-2 74.57 89.67 68.57 96.75 50.33
Setting-3 81.90 80.17 80.00 86.99 65.93
Setting-4 76.72 80.58 76.19 91.87 65.26
Setting-1 69.18 73.97 64.76 82.11 68.62

EM Setting-2 69.18 64.26 71.43 91.06 54.44
Setting-3 78.66 67.56 64.76 82.11 73.62
Setting-4 61.64 54.55 74.29 82.11 71.09
Setting-1 43.97 67.15 83.81 82.11 83.43

FF Setting-2 54.09 62.81 91.43 82.11 80.24
Setting-3 62.28 72.93 79.05 91.06 83.07
Setting-4 72.41 73.55 79.05 91.06 83.47

6.2.2. Abnormal Event Retention. The abnormal events filtered-in by the threshold were analysed to
verify whether all the anomalous events were retained. This is to ensure that, the application of threshold on
the clustered events have not removed the significant events needed for further scrutiny.

Subset-2. There were two unsuccessful and one successful intrusive events in Apache access log and all
these events were retained with clusters generated by all the algorithms and settings. But in the case of Apache
error log, there were 14 successful intrusive events and 58 unsuccessful events. The 14 successful events were
retained from K-Means clusters for setting 2 and 4, and from EM clusters with setting-2. The 58 unsuccessful
intrusive events were retained from EM clusters for settings 1 and 4, and from FF clusters with settings 1 and
2. None of the algorithms retained both successful and unsuccessful events together for all the settings. This
was due to the cluster formation with various settings and the placement of such events in bigger clusters which
were filtered by the threshold.

Subset-3. There were 72 successful and 436 unsuccessful intrusive events in Apache access log. All the
successful events were retained by the threshold from EM clusters. A maximum of 209 (47.94%) unsuccessful

A Detailed Description on Unsupervised Heterogeneous Anomaly Based Intrusion Detection Framework 147

events were retained from K-Means cluster with setting-4. There were 484 intrusive events recorded by Apache
error log, and a maximum of 102 (21.07%) such events were retained by the threshold from EM clusters with
settings 1, 3 and 4. This was due to the high volume of such events in this log, which eventually joined together
in bigger clusters and therefore filtered-out by the threshold.

Subset-4. There were 78 unsuccessful intrusive events in Apache error log. All these events were retained
by the threshold from K-Means clusters with setting-1, and from FF clusters with settings 1 and 2. But the
volume of events retained gets declined for settings 3 and 4 with K-Means and FF-clusters. This was because, the
calculated threshold value decreased due to the increase in the number of clusters generated for these settings.
Therefore, those unsuccessful events in a slightly bigger clusters was filtered out. But then, with EM clusters,
51 events were retained for settings 1 and 2, and 61 events for settings 3 and 4. The increase in retention was
due to the nature of EM, by generating clusters depending only on the available patterns irrespective of the
requested clusters.

The following are the conclusions that were drawn, analysing the filtered logs:

• There was no uniform increase or decrease in reduction of events with respect to algorithms and its
settings. This was due to the varying event patterns in different logs and the influence of initialisation
parameters, i.e, K and seed, on cluster formation.

• Event reduction varies with the calculated threshold and cluster size of the log being filtered. Threshold
varied with the number of clusters generated whereas cluster size was influenced by the cluster formation
which changes with the algorithms and settings, thereby influencing the reduction of events.

• Precise cluster formation did not always retain the maximum number of intrusive events when the
volume of such events in the log was high. This was due to formation of such events in bigger clusters,
which was eventually filtered out by the threshold.

• Application of calculated threshold managed to retain most or all the intrusive events in various logs,
but then in some cases it failed, when such events were high or wrongly placed in the bigger clusters.

6.3. Aggregated Events. The filtered-in events were aggregated to reduce the duplicates, i.e., an event
that contains similar values for all the features like the previous event. No additional feature was introduced
in aggregated log to specify the number of events that were combined together to represent an aggregated
event. Subsequently, all the intrusive events filtered-in were unique, accumulation did not eliminate any of
these events. Fewer number of filtered-in events were reduced in logs, but then further process was not affected
by this reduction. Apache access and error log were trimmed to an average of 12.75%, whereas an average of 2%
in Linux syslog. Nearly 75% of the filtered in events were reduced in SSL-Error log was because of analogous
event patterns recorded in this log with the same timestamp. Aggregation reduced an average of 20% filtered-in
events in Snort IDS log. A similar percentage of reduction was accomplished by accumulation with the other
three subsets as well. All the events that were retained by the respective logs after it has been filtered and
aggregated were abnormal of some kind.

6.4. Transferred Events. The events transferred to GFL from various logs were filtered and aggregated
in the previous phases. The unavailability of a feature in a log was replaced with a hyphen when transferred
to the GFL. No additional features were introduced to represent the log type it belongs to, as it may mislead
the clustering method. Although all the logs with the specified features in GFL were used for investigation to
detect intrusions, only certain logs were transported to GFL format to be used in the clustering phase. Apache
and Linux events were captured directly by the victim system and every abnormal activity expressed by Apache
server logs and Linux syslog should have generated events in Snort IDS log, as it has been designed to capture
such actions. As we planned to group the events to evaluate the relationship between the abnormal events of
Apache server logs and Linux syslog with the events of Snort IDS, these events were transferred to GFL. Since
the events of Apache SSL-Error log and Linux mail log did not have IP address and port number, these events
were not transferred. As stated in GF the respective features of the excluded logs were maintained separately
to be used in the analysis phase. A custom written Perl script extracted the features from various logs as
stated in GF and transferred it to GFL, which took less than 5 seconds for transferring 11000 events. Since we
have tested three algorithms with four settings, the volume of events transferred from individual logs to GFL
varies with the algorithms and their respective settings. Therefore, the respective GFL events were maintained

148 A. I. Hajamydeen, N. I. Udzir

separately to be processed in subsequent phases and volume of GFL events for all the subsets is provided in
Table 6.5. Every GFL was verified to ensure whether all the events in the aggregated logs were completely

Table 6.5

GFL Events

Algorithms Settings Subset-1 Subset-2 Subset-3 Subset-4
Setting-1 2067 5001 2300 3258

K-Means Setting-2 1145 3731 1773 4975
Setting-3 1803 4566 2954 3583
Setting-4 1966 5957 2041 3733
Setting-1 1232 7808 2076 3375

EM Setting-2 2664 6623 1738 4760
Setting-3 1776 5917 2600 2881
Setting-4 2635 7171 2021 3221
Setting-1 2193 7515 1544 1971

FF Setting-2 1319 5962 1222 2279
Setting-3 946 3157 913 1969
Setting-4 1545 3842 907 1873

transferred to GFL and the features extracted from various logs has been appropriately placed in the respective
GFL features. Verification showed that the events from the respective logs were completely and appropriately
placed in GFL without errors.

6.5. Clustered GFE. The GFL constitutes events from various logs that were mostly abnormal and
these events were clustered to find the relationship between them using the same clustering strategy used
before. Different volumes of GFL events which varies according to the algorithms and settings were clustered
separately. The ideal number of clusters for GFL was manipulated using EM as stated in Experiment 4, and the
resulting clusters (K) were used to group GFL as per Experiment 5 stated. As the GFL constitutes events from
various logs which were clustered and filtered previously, accurate cluster formation and subsequent retention
of abnormal events in those phases affected the clustering accuracy and formation in this phase.

Since the volume of events in GFL that was clustered varies with algorithms and settings, the accuracy
achieved with various algorithms and settings could not be directly compared.

Subset-2. The accuracy of clustering by various algorithms and settings for subset-2 is illustrated in Figure
6.11.

The maximum accuracy 100% achieved by FF with setting-4 was due to the grouping of likely events
precisely in separate clusters. Especially, the Snort IDS events with different patterns were grouped in separate
clusters. K-Means with setting-1, generated clusters which contained events from various logs together. Like
K-Means, FF and EM with setting-1 also generated clusters containing events from various logs together in the
same cluster. This was due to the similarity between the event features contained in the GFL.

Subset-3. The accuracy of clustering by various algorithms and settings for subset-3 is illustrated in Figure
6.12. Like subset-2, the highest accuracy of 100% was achieved with FF due to the precise cluster formation
with respect to the patterns. All the three algorithms generated clusters separating the events according to the
patterns for this subset, i.e., Linux and Apache events joined together in the same clusters whereas Snort IDS
events joined together in separate clusters. But the clusters generated by K-Means with setting-2 contained
clusters with events from various logs.

Subset-4. The accuracy of clustering by various algorithms and settings for subset-4 is illustrated in Figure
6.13. Like subsets 2 and 3, the highest accuracy was achieved by FF due to the separation of events in various
logs according to patterns. K-Means generated clusters that constitute events from various logs was due to its
nature of giving equal importance to all the features in the log and also the feature similarity of the events in
GFL.

A Detailed Description on Unsupervised Heterogeneous Anomaly Based Intrusion Detection Framework 149

Fig. 6.11. Clustering Accuracy with GFL (Subset-2)

Fig. 6.12. Clustering Accuracy with GFL (Subset-3)

Analysing the clusters generated by various algorithms with varying volume of GFL events provides the
following conclusions:

1. The variations in clustering accuracy and cluster formation with different algorithms and settings was
not only due to the parameter initialisation for that setting, but also due to the variations in volume of events
clustered with that algorithm and setting.

2. FF achieved the maximum accuracy with all the four subsets exposed its capacity in clustering hetero-
geneous log events of varying patterns, despite the absence of values for some of the features.

3. K-Means produced clusters that constitutes events from various logs together for most of the subsets.
This was not only due to the similarity in the event features, but also shows its capacity in treating features in
an event equally.

6.6. Anomaly Detection. In this phase, the clustered GFL events were examined to detect anomalies
by finding the relationship between the features recorded by the events form various logs. The features source

150 A. I. Hajamydeen, N. I. Udzir

Fig. 6.13. Clustering Accuracy with GFL (Subset-4)

IP address (fsip) and destination IP address (fdip) together with cluster number (fk) were examined during IP
Address analysis and the features source port number (fsp) and destination port number (fdp) were examined
during port number analysis. Previously the results of subset-1 for anomaly detection was presented in Ha-
jamydeen et.al. [7], and therefore the results of the other three subsets, i.e., subset-2, subset-3, subset-4, were
only discussed. Moreover, a portion of the results on the other three subsets, i.e., subset-2, subset-3, subset-4,
were mentioned in Hajamydeen et.al. [52] for comparison purposes, but not detailed.

6.6.1. IP Address Analysis. Every clustered GFL with the respective algorithms and settings were
analysed separately and the resulting anomalous events were evaluated as per Experiment 6. Most or all
clustered events of GFL were basically anomalous and IP analysis managed to locate the anomalies by identifying
the relation between events with respect to IP Address followed by cluster number. IP analysis indicated its
capacity in recognising most of the anomalous events in the logs and the volume of anomalous events recognised
was affected by the creation of clusters in individual logs and GFL.

Subset-2. The volume of events in this subset was larger compared to other subsets. The anomalous
events detected by IP analysis using the clustered events generated by various algorithms with different settings
are illustrated in Figure 6.14. The best performance for this subset was achieved with K-Means clusters by
discovering most of the anomalous events through IP analysis. This was due to the capacity of K-Means in
generating better clusters even with bigger datasets. There were 16 events related to successful intrusion and
59 events related to unsuccessful intrusion exploiting the AWStats vulnerability recorded in Apache access and
error log which originated from two IP addresses. The events pertaining to this activity was not available in
Snort IDS log, as it was missed by Snort. But IP analysis managed to detect most of these anomalous events.
The volume of events detected by IP analysis from these IP addresses are illustrated in Figure 6.15. IP analysis
detected all the unsuccessful intrusive events with EM clusters for settings 1 and 4, and with FF clusters for
settings 1 and 2, but then, most of the successful intrusive events were not detected with these settings. All the
successful events were detected with K-Means clusters for settings 2 and 4, and with EM clusters for setting-2.
This was due to the unavailability of these events for analysis, since it was filtered-out in the previous phase.
Including the IP addresses for which the results are plotted (Figure 6.15), there were seven IP addresses from
where the anomalous activity have originated and there were 1252 events related to these IP addresses in various
logs.

Over 900 anomalous events from six IP addresses were detected with the clusters generated by K-Means for
settings 1 and 2. With K-Means clusters for settings 3 and 4, the events related to all the seven IP addresses
were detected, but then the volume of such events were less compared to the other two settings. The volume

A Detailed Description on Unsupervised Heterogeneous Anomaly Based Intrusion Detection Framework 151

Fig. 6.14. Anomaly Detection by IP Address Analysis (Subset-2)

Fig. 6.15. Anomalous Events by IP (Subset-2)

of events or the number of IP addresses detected with the clusters of a particular setting was influenced by the
cluster formation and the subsequent application filtering threshold based on cluster formation. Although IP
analysis detected the most number of anomalous events with FF clusters for this subset, it failed to detect most
of the significant anomalies pertaining to these seven IP addresses. This was because of the unavailability of
these events due to cluster formation and subsequent application of filtering threshold in the previous phases.

Subset-3. Like subset-2, IP analysis detected majority of the anomalous events with K-Means clusters for
this subset too. The anomalous events detected by IP analysis using the clustered events generated by various
algorithms with different settings are illustrated in Figure 6.16. The anomalous events have originated from ten
IP addresses and there were 1901 such events in this subset. A maximum of 423 events from nine IP addresses
were detected by IP analysis with K-Means clusters. This was due to the volume of such events were large and
most of these events were filtered out by the threshold, making it unavailable for analysis. A maximum of 126
events were detected with EM clusters and 71 events with FF clusters. This reveals the performance of the EM

152 A. I. Hajamydeen, N. I. Udzir

and FF clustering in handling bigger size logs.

Fig. 6.16. Anomaly Detection by IP Address Analysis (Subset-3)

There were 30 events related to xinetd crash which originated from three IP addresses that were recorded
by Linux security and Snort IDS log. A total of 20 such events were detected by IP analysis with K-Means and
FF clusters as illustrated in Figure 6.17. The figure also shows that, the event from the IP address 195.22.66.28

Fig. 6.17. Anomalous Events by IP (Subset-3)

was not detected with the clusters of any algorithms. There was only one event from the IP address 195.22.66.28
that was recorded by Linux security log and this event was filtered out for all the settings with K-Means and
FF clusters, making it unavailable for analysis. Even though this event was retained after filtering with EM
clusters, the failure of IP analysis to detect it was due to the cluster formation with GFL.

Subset-4. The anomalous events identified by IP analysis for various algorithms with different settings are
illustrated in Figure 6.18. IP analysis detected most of the anomalous events with K-Means and EM clusters
for this subset as illustrated in Figure 6.19. There were 144 events originated from three IP addresses and
especially the events related to RPC attack was recorded only in Snort IDS log.

A Detailed Description on Unsupervised Heterogeneous Anomaly Based Intrusion Detection Framework 153

Fig. 6.18. Anomaly Detection by IP Address Analysis (Subset-4)

IP analysis detected majority of the anomalous events from the IP addresses 220.110.29.27 and 59.120.2.133
with the clusters generated by various algorithms and the respective settings. The RPC attack originated from
62.111.213.88 were not detected by IP analysis, which was due to the cluster formation with GFL with some of
the settings.

Fig. 6.19. Anomalous Events by IP (Subset-4)

The following are the conclusions drawn based on the detected anomalies by IP analysis:
• The detection performance of was dependent on the performance of the previous phases. As IP analysis
bases its decisions from the log events received as input which was manipulated by the previous phases,
the performance of these phases affected the detection process.

• The detection performance declined with those log subsets having a larger volume of anomalous events.
Although, the clustering strategy implemented generated better clusters, the high volume of anomalous
events in the logs were grouped in bigger clusters. The application of threshold filtered-out these
anomalous events and hence not available for analysis.

154 A. I. Hajamydeen, N. I. Udzir

• The maximum number of anomalous events from various IP addresses were detected with EM clusters
for subsets 1 and 4, whereas with K-Means clusters for subsets 2 and 3. The volume of events in various
logs with subsets 2 and 3 were high, and K-Means forming better clusters than EM especially with
these subset shows its ability in handling larger datasets.

6.6.2. Port Number Analysis. Every clustered GFL with the respective algorithms and settings were
analysed separately and the resulting anomalous events were evaluated as per Experiment 7. A simple port
analysis was done by comparing the port number of the events with the IANA listing of unassigned and dynamic
port numbers. Only the Snort IDS events in GFE were scrutinized, since it contains both source and destination
ports.

Subset-2. The volume of anomalous events detected by port analysis with various algorithms and its
settings are illustrated in Figure 6.20. A maximum of 595 events were detected by port analysis for this subset

Fig. 6.20. Anomaly Detection by Port Number Analysis (Subset-2)

with EM clusters and the highest number 105 of anomalous events detected with setting-4 shows the impact
of K on cluster formation. The anomalous events pertaining to AWStats vulnerability were not detected by
port analysis which was available in this subset. The events related to this activity were recorded by Apache
access and error log and was missed by Snort IDS. Since port analysis considers only those events with port
numbers, these events were not detected. There were five IP addresses recorded by Snort IDS log from where
the intrusions originated, out of which the events related to one IP address was detected with most of the
clusters generated with various algorithms. This was due to cluster formation and the subsequent retention of
events by the threshold for this log.

Subset-3. The anomalous events detected by port analysis for this subset with various algorithms and its
settings are illustrated in Figure 6.21. A maximum of 111 events were detected with FF clusters (setting-2),
which includes seven anomalous events from two IP addresses as stated in SOTM#34 analysis results. Similarly,
a maximum of 78 events were detected with EM clusters (setting-4) which comprises 10 anomalous events from
two IP addresses. This was due to cluster formation and the subsequent retention of events by the threshold
for this log.

Subset-4. The anomalous events detected by port analysis for subset-4 with various algorithms and its
settings are illustrated in Figure 6.22. There were 90 anomalous events originated from three IP address that
were recorded by Snort IDS log. A maximum of 20 anomalous events from two IP addresses were detected
by port analysis with K-Means clusters (setting-2). Although the events from these two IP addresses were
detected with the clusters generated with EM and FF with certain settings, the volume of events detected were

A Detailed Description on Unsupervised Heterogeneous Anomaly Based Intrusion Detection Framework 155

Fig. 6.21. Anomaly Detection by Port Number Analysis (Subset-3)

Fig. 6.22. Anomaly Detection by Port Number Analysis (Subset-4)

less compared to K-Means. This was due to the cluster formation of these algorithms with Snort IDS log.
Moreover, the volume of events in Snort IDS log for this subset was large. The better performance of K-Means
with this subset shows its ability in clustering voluminous log events, thereby supporting the detection process.

In conclusion,

• Approximately 10% to 15% of the anomalous events in the logs were detected by port analysis was due
to the unavailability of port numbers in most of the log events.

• A range of 1 to 187 anomalous events that were missed during IP analysis were discovered by port
analysis with various subsets. Most of the events identified by port analysis were already identified
during IP analysis reduces the need for port analysis.

• The detection of anomalous events by port analysis was influenced by the cluster formation in Snort
IDS log and the succeeding events retained by the filtering threshold.

6.7. Consolidated Anomalous Events. The anomalous events detected by IPA and PA with the re-
spective algorithms and settings were consolidated separately and the resulting anomalous events were evaluated
as per Experiment 8. In the process of consolidation, the distinct anomalous events identified by both analysis

156 A. I. Hajamydeen, N. I. Udzir

methods were initially combined together. To get a better picture of the successful and unsuccessful intrusion,
those IPTables firewall log events whose IP address matches the IP address of the combined anomalous events
were extracted and merged with the combined analysis results. The volume of events that gets added during
correlation depends on the available IP addresses of the events detected during analysis and the corresponding
match with IPTables firewall log. The anomalous events were concentrated using a threshold on the occurrence
of events pertaining to an IP address after correlating with IPTables firewall log. This was performed to trim
down the insignificant events that can be disregarded. Since varying volume of events were detected with the
clusters generated with various algorithms and settings in the previous phase, combining and correlating these
events also yielded varying volume of events. Concentrating these events with a specific threshold reduced a
small number of events according to the occurrence of events related to an IP address. Although concentration
trimmed down most of the insignificant events, there are chances of significant anomalous events being reduced,
as the threshold is based on IP address. Therefore, after concentrating the events with several thresholds, the
consolidated events with various threshold was verified to ensure whether the application of threshold removed
or reduced the significant anomalous events, i.e., as stated in SOTM#34 analysis results, from various IP ad-
dresses. Therefore the significant anomalous events detected by UHAD which was also mentioned in SOTM/#34
analysis results were discussed in this section. But then, UHAD has detected more number of anomalous events
than those mentioned in SOTM#34 analysis results.

Subset-2. Even though the volume of events in this subset was high, concentrating the events with the
threshold, i.e., At= 9, reduced an average of 3% significant anomalous events. The details of the significant
anomalous events retained from the clusters generated with various settings and algorithms is provided in Figure
6.23. A total of 1339 significant anomalous events which was launched from several IP addresses were retained

Fig. 6.23. Retention of Significant Anomalous Events (Subset-2)

after combining and correlating the events detected with K-Means clusters. Applying the threshold, i.e., At=
9, removed 31 of these events from three IP addresses.

Subset-3. The effect of threshold in retaining significant anomalous events is presented in Figure 6.24. A
minimum average of 0.8% significant anomalous events were reduced with K-Means clusters and a maximum
average of 4.3% events were removed with EM clusters during concentration with the maximum threshold, i.e.,
At= 9. This was due to the poor cluster formation by EM for this subset with most settings. A maximum
of 2205 events were yielded after combining and correlating the detected events with K-Means clusters for
setting-3. Applying the threshold, i.e., At= 9, removed 16 anomalous events from two IP addresses.

Subset-4. The details of the significant anomalous events retained from the clusters generated with various
settings and algorithms is provided in Figure 6.25. A minimum average of 0.6% significant anomalous events

A Detailed Description on Unsupervised Heterogeneous Anomaly Based Intrusion Detection Framework 157

Fig. 6.24. Retention of Significant Anomalous Events (Subset-3)

Fig. 6.25. Retention of Significant Anomalous Events (Subset-4)

were reduced with K-Means clusters and a maximum average of 1.8% events were removed with FF clusters
during concentration with the maximum threshold, i.e., At= 9. A maximum of 555 significant anomalous events
were captured after combining and correlating the detected events with EM clusters for setting-1. Application
of threshold, At= 9 reduced three events from an IP address.

The following conclusions are drawn from consolidating the detected events:

• As the reduction was based on the IP addresses of those events that were detected and correlated
previously, the output of this phase highly depends on the log events received from the previous phase.
Therefore, the volume of events yielded after consolidation varies with the detected events of various
algorithms and settings.

• Concentrating the detected events with the threshold not only reduced the insignificant events but
also reduced a minimum number of significant anomalous events. Though the usage of threshold is
not viable at this end, it will assist in focusing the most critical events that need to be immediately
addressed.

UHAD detected a wide range of anomalies which includes Nimda scans, CodeRed worms, SSH Brute Force

158 A. I. Hajamydeen, N. I. Udzir

scans, CONNECT scans, IRC Traces, RPC attack, Xinetd crash and the AWStats vulnerability exploit. The
low percentage of anomalies detected with subset-3 is due to the high volume of events and anomalies in this
subset.

7. Conclusion and Future Works. The majority of the intrusion detection mechanisms available were
knowledge dependent which makes use of the characteristics of anomalies or the model of traffic behaviour
to detect anomalies which restricts the mechanisms to detect only known anomalies. Moreover, the existing
detection methods considers a single type of log for analysis, which confines the method to detect anomalies
presented only in those logs and the anomalies in the other logs were left behind. To overcome these limitations,
this thesis has presented a new framework UHAD to detect a variety of anomalies by scrutinizing logs from
heterogeneous sources, without using the characteristics of anomalies that hold the specification of the actions to
match with events or the usual method of training and testing commonly used in anomaly detectors. Although,
the three clustering algorithms tested in the framework took less time to predict and generate clusters, the
accuracy of the clusters generated by an algorithm were not consistent across different logs and subsets. This
was due to the capacity of the clustering algorithms in handling the event patterns and features in a particular
log. Additionally, the clustering parameters used to group the events also influenced the accuracy. Subsequently,
applying the filtering threshold which was automatically calculated based on these generated clusters, managed
to retain majority of the abnormal events and removed the normal or insignificant events with most of the logs
and subsets. With some of the logs, the filtering threshold failed to retain the abnormal events was due to the
existence of more number of such abnormal events of similar patterns that were grouped in larger clusters. The
usage of GFL induced the process of classifying heterogeneous log events in a single structure and enabled faster
analysis by the detection algorithms. Introducing more features in GFL, which did not existed in many of the
logs, affected accurate cluster formation thereby reducing the volume of the events detected during analysis. This
shows the criticality in selecting the appropriate features for GFL based on the logs considered. Further analysis
of the GFL based on the IP addresses and port numbers detected the events related to a wide range of anomalies
and most importantly, more anomalies were detected during IP address analysis than port number analysis.
Manipulating IP address (source IP and destination IP) together with the cluster number supported the analysis
process in detecting majority of the anomalous events. Moreover, almost all the anomalies detected by port
analysis were also detected by IP address analysis thereby reducing the need for port analysis. Consolidating
the detected anomalies assisted in focusing the most significant anomalous events, but then failed to retain a
few of the anomalous events, when the occurrence of such events did not satisfy the threshold applied.

The proficiency and precision of UHAD in recognizing intrusions were scrutinized using three clustering
algorithms with four parametric settings and the results achieved were compared with the ground truth available
at Honeynet.org for this dataset, i.e. SOTM#34. The detected anomalies were analogous with the output of
other methods, therefore demonstrating the accuracy of UHAD in detecting anomalies. Among the three
algorithms used by the framework, EM and K-Means generated better clusters supporting the investigation
process to identify the majority of the anomalies in all the four subsets. The coverage of anomalies with FF
clusters were marginally lower than EM and K-Means, but is also appropriate for this framework due to its
faster clustering even with larger datasets.

All the parameters used in UHAD were manipulated based on the tested dataset only. Therefore, the
accuracy of clusters and subsequent retention of anomalies by the threshold were influenced by these parameters.
None of the algorithm showed a consistent accuracy with a specific parameter setting; and also the performance
of a particular algorithm was not steady with different subsets. Because of this, some of the anomalous events
were filtered-out by the threshold, making it unavailable for further investigation. Since this is the first step
towards building an unsupervised anomaly detector using heterogeneous logs that calculates all the required
parameters based on tested data itself; the mechanism of manipulating the clustering parameters and filtering
threshold could be refined to improve the precision of anomaly detection. A recommender method could be
designed to select the most accurate clusters for a particular log, among those produced by various algorithms
with different parametric settings. This method need to evaluate various output parameters based on the
clusters generated which requires criteria and threshold to be framed in order to evaluate such parameters to
choose the accurate clusters. Subsequently, these selected clusters can be used for further investigation to detect
almost all the anomalies. UHAD can also be tested with various datasets collected from heterogeneous sources

A Detailed Description on Unsupervised Heterogeneous Anomaly Based Intrusion Detection Framework 159

to substantiate its capacity in discovering the anomalous events pertaining to a wide range of intrusions.

REFERENCES

[1] S. More, M. Matthews, A. Joshi and T. Finin, A Knowledge-Based Approach To Intrusion Detection Modeling. In 2012
IEEE Symposium on Security and Privacy Workshops (SPW),2012, pp. 75–81. IEEE.

[2] C. Abad,J. Taylor, C. Sengul, W. Yurcik, Y. Zhou and K. Rowe, Log correlation for intrusion detection: A proof of
concept, In Proceedings of 19th Annual Computer Security Applications Conference., 2003, pp. 255–264.

[3] Z. Li, J. Taylor, E. Partridge,Y. Zhou, W. Yurcik, C. Abad, J. Barlow and J. Rosendale, UCLog: A unified, correlated
logging architecture for intrusion detection, In the 12th International Conference on Telecommunication Systems-Modeling
and Analysis (ICTSM)., 2004.

[4] W. Yurcik, C. Abad, R. Hasan, M. Saleem and S. Sridharan, UCLog+: A Security Data Management System for
Correlating Alerts, Incidents, and Raw Data From Remote Logs, Arxiv preprint cs/0607111., 2006.

[5] R. Kumari and K. Sharma, Cross-Layer Based Intrusion Detection and Prevention for Network, In Handbook of Research
on Network Forensics and Analysis Techniques, 2018, pp. 38-56. IGI Global.

[6] D. Denning, An intrusion-detection model, IEEE Transactions on software engineering., 2(1987), pp. 222-232.
[7] A. Hajamydeen, N. Udzir, R. Mahmod and A. Ghani, An unsupervised heterogeneous log-based framework for anomaly

detection, Turkish Journal of Electrical Engineering and Computer Sciences., 24(2016), pp. 1117-1134.
[8] S. Peisert and M. Bishop, How to design computer security experiments, In Fifth World Conference on Information Security

Education., 2007 , pp. 141–148. Springer.
[9] E. Barse and E. Jonsson, Extracting attack manifestations to determine log data requirements for intrusion detection, In

20th Annual Computer Security Applications Conference., 2004, pp. 158–167. IEEE.
[10] X. Wang, A. Abraham and K. Smith, Intelligent web traffic mining and analysis, Journal of Network and Computer

Applications., 28.2(2005), pp. 147–165.
[11] A. Chuvakin, Scan of the Month 34, http://www.honeynet.org/scans/scan34/, 2005.
[12] Andrew, Scan of the month 34-Solution, http://www.honeynet.org/scans/scan34/sols/3/sotm/, 2005.
[13] M. Richard and M. Ligh, Project Honeynet Scan of the Month 34, http://project.honeynet.org/scans/scan34/sols/1/index.

html, 2005.
[14] C. Kronberg, Analysis of the log files given in SOTM34, http://project.honeynet.org/scans/scan34/sols/2/proc.pdf, 2005.
[15] A. Chuvakin, Scan of the Month Challenge 34- Official Solution, http://project.honeynet.org/scans/scan34/sols/sotm34-

anton.html, 2005.
[16] S. Panichprecha, Abstracting and Correlating Heterogeneous Events to Detect Complex Scenarios, PhD thesis, Queensland

University of Technology, Brisbane, Australia., 2009.
[17] J. Herrerias and R. Gomez, Log analysis towards an automated forensic diagnosis system, In International Conference on

Availability, Reliability, and Security, ARES’10., 2010, pp. 659–664.
[18] J. Herrerias and R. Gomez, A log correlation model to support the evidence search process in a forensic investigation, In

Second International Workshop on Systematic Approaches to Digital Forensic Engineering, SADFE., 2007, pp. 31–42.
[19] K. Kent and M. Souppaya, Guide to computer security log management, NIST Special Publication, 800–92.,2006.
[20] G. Ferrar, Sawmill (Version 8.1.10), http://www.sawmill.met, 2011.
[21] F. Amiri, M. Yousefi, C. Lucas, A. Shakery and N. Yazdani, Mutual information-based feature selection for intrusion

detection systems, Journal of Network and Computer Applications., 34.4(2011), pp. 1184–1199.
[22] T. Chou, K. Yen and J. Luo, Network intrusion detection design using feature selection of soft computing paradigms,

International Journal of Computational Intelligence., 4.3(2008), pp. 196–208.
[23] C. Sinclair, L. Pierce and S. Matzner, An application of machine learning to network intrusion detection, In Proceedings.

15th Annual Computer Security Applications Conference., 1999, pp. 371–377. IEEE.
[24] D. Barbara, N. Wu and S. Jajodia, Detecting novel network intrusions using bayes estimators, In Proceedings of the First

SIAM International Conference on Data Mining., 2001.
[25] Y. Li, N. Wu, X. Wang and S. Jajodia, Enhancing profiles for anomaly detection using time granularities, Journal of

Computer Security., 10.1-2(2002). pp.137– 157
[26] S. Staniford, J. Hoagland and J. McAlerney, Practical automated detection of stealthy portscans, Journal of Computer

Security., 10.1-2(2002), pp.105–136 .
[27] H. Tribak, I. Rojas and O. Valenzuela, Comparison of Soft-Computing Techniques for classification of Intrusion-

Detection, In Proceedings of the 2010 International Conference on Mathematical Models for Engineering Science., 2010,
pp.284–288. World Scientific and Engineering Academy and Society (WSEAS).

[28] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann and I. Witten, The Weka data mining software: An
update, ACM SIGKDD Explorations Newsletter., 2009, pp.10–18.

[29] P. Garcia-Teodoro, J. Diaz-Verdejo, G. Macia-Fernandez and E. Vazquez, Anomaly-based network intrusion detection:
Techniques, systems and challenges, Computers & Security., 28.1-2(2009), pp. 18–28.

[30] J. Erman, M. Arlitt and A. Mahanti, Traffic classification using clustering algorithms, In Proceedings of the 2006 SIG-
COMM workshop on Mining network data., 2006, pp.281–286.ACM.

[31] M. Aneja, T. Bhatia, G. Sharma and G. Shrivastava, Artificial Intelligence Based Intrusion Detection System to Detect
Flooding Attack in VANETs, In Handbook of Research on Network Forensics and Analysis Techniques., 2018, pp. 87-100.
IGI Global.

[32] I. Syarif, A. Prugel-Bennett and G. Wills, Unsupervised clustering approach for network anomaly detection, Networked

160 A. I. Hajamydeen, N. I. Udzir

Digital Technologies, 2012, pp. 135–145.
[33] J. Song, H. Takakura, Y. Okabe and K. Nakao, Toward a more practical unsupervised anomaly detection system, Infor-

mation Sciences., 231(2011), pp. 4-14.
[34] G. Wang, J. Hao, J. Ma and L. Huang, A new approach to intrusion detection using artificial neural networks and fuzzy

clustering, Expert Systems with Applications., 37.9(2010), pp. 6225–6232.
[35] G. Munz, S. Li and G. Carle, Traffic anomaly detection using K-Means clustering, GI/ITG Workshop MMBnet., 2007.
[36] Y. Liu, W. Li and Y. Li, Network traffic classification using kmeans clustering, In Second International Multi-Symposiums

on Computer and Computational Sciences., 2007, pp.360–365. IEEE.
[37] R. Smith, N. Japkowicz, M. Dondo and P. Mason, Using unsupervised learning for network alert correlation, Advances

in Artifcial Intelligence., 2008, pp.308–319.
[38] U. Zurutuza, R. Uribeetxeberria, E. Azketa, G. Gil, J. Lizarraga and M. Fernndez, Combined data mining approach

for intrusion detection, In International Conference on Security and Criptography., 2008.
[39] M. Panda and M. Patra, A novel classification via clustering method for anomaly based network intrusion detection system,

International Journal of Recent Trends in Engineering., 2(2009), pp. 1–6.
[40] M. Siraj, M. Maarof and S. Hashim, Intelligent alert clustering model for network intrusion analysis, Int. J. Advance. Soft

Comput. Appl., 1(2009), pp. 33–48.
[41] U. Zurutuza, R. Basagoiti and A. Aztiria, Behavior analysis of domain servers through windows security event log mining,

J. Inform. Assurance Security., 5.4(2010), pp.418–425.
[42] G. Tjhai, S. Furnell, M. Papadaki and N. Clarke, A preliminary two-stage alarm correlation and filtering system using

SOM neural network and K-means algorithm, Computers & Security., 29.6(2010), pp.712–723.
[43] O. Siriporn and S. Benjawan, Anomaly detection and characterization to classify traffic anomalies case study: TOT public

company limited network, In World Academy of Science, Engineering and Technology., 2008, pp.407–415.
[44] M. Panda and M. Patra, A hybrid clustering approach for network intrusion detection using cobweb and FFT, Journal of

Intelligent Systems., 18.3(2009), pp.229–246.
[45] J. MacQueen, Some methods for classification and analysis of multivariate observations, In Proceedings of the Fifth Berkeley

Symposium on Mathematical Statistics and Probability., 1967.
[46] S. Dasgupta, Performance guarantees for hierarchical clustering, In Computational Learning Theory., 2002, pp.351–363.
[47] X. Zheng, Z. Cai and Q. Li, An experimental comparison of three kinds of clustering algorithms, In Proceedings of Interna-

tional Conference on Neural Networks and Brain., 2005, pp. 767–771. IEEE.
[48] A. Dempster, N. Laird and D. Rubin, Maximum likelihood from incoming data via the EM algorithm, J. Royal Stat. Soc.,

1977, pp.1–38.
[49] M. Tavallaee, N. Stakhanova and A. Ghorbani, Toward credible evaluation of anomaly-based intrusion-detection methods,

IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews., 40.5(2010), pp. 516–524.
[50] X. Yu, L. Tang and J. Han, Filtering and refinement: A two-stage approach for efficient and effective anomaly detection,

In 2009 Ninth IEEE International Conference on Data Mining., 2009, pp. 617–626.
[51] H. Kim, K. Claffy, M. Fomenkov, D. Barman, M. Faloutsos and K. Lee, Internet traffic classification demystified:

Myths, caveats, and the best practices, In Proceedings of the 2008 ACM CoNEXT Conference., 2008.
[52] A. Hajamydeen and N. Udzir, A refined filter for UHAD to improve anomaly detection, Security and Communication

Networks., 9(2016), pp. 2434-2447.

Edited by: Khaleel Ahmad
Received: Nov 19, 2018
Accepted: Feb 11, 2019

