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A COMPARISON OF MESSAGE PASSING INTERFACE (MPI) AND CO-ARRAY
FORTRAN FOR LARGE FINITE ELEMENT VARIABLY SATURATED FLOW

SIMULATIONS ∗

FRED T. TRACY†, THOMAS C. OPPE‡, AND MAUREEN K. CORCORAN§

Abstract. The purpose of this research is to determine how well co-array FORTRAN (CAF) performs relative to Message
Passing Interface (MPI) on unstructured mesh finite element groundwater modelling applications with large problem sizes and core
counts. This research used almost 150 million nodes and 300 million 3-D prism elements. Results for both the Cray XE6 and Cray
XC30 are given. A comparison of the ghost-node update algorithms with source code provided for both MPI and CAF is also
presented.
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1. Introduction. Several parallel programming paradigms have been developed in recent years as alterna-
tives to the popular software Message Passing Interface (MPI) [1] used for passing messages among the processes
of a distributed memory parallelized program. One of these new ways is the Partitioned Global Address Space
(PGAS) [2] paradigm where arrays partitioned across processes can be referenced by special syntax implemented
in the language. A popular PGAS language for FORTRAN users is co-array FORTRAN (CAF) [3], and a CAF
specification has been adopted in the FORTRAN 2008 standard. CAF has performed better than MPI for
certain applications, and it was found easier to program than MPI. A recent example tested structured-grid
partial-differential-equation applications [4].

A recent paper [7] describing the challenges and scalability results of running a large finite element model
of variably saturated flow [5] in a three-dimensional (3-D) levee on a large high performance, parallel computer
where MPI was used for the communication was published. Using the same levee model, this current research
expands that work by using CAF for the communication and comparing these results with the results using
MPI. The original finite element model consisted of 3,017,367 nodes and 5,836,072 3-D prism elements running
on 32 cores, and the problem and core count were magnified as much as 350 times to achieve 1,044,246,303
nodes and 2,042,625,200 elements.

A traditional partitioning of the mesh achieved approximately the same number of finite element nodes on
each core. Thus, the main communication challenge was updating ghost-node information on the different cores
for a solution of a system of simultaneous, linear equations at each nonlinear iteration. In both the MPI and
CAF versions, the ghost node data are first buffered and then sent to the different cores where they are needed.
Details of the FORTRAN coding for both MPI and CAF are described herein.

2. Description of the problem. The problem consists of steady-state seepage flow through a levee as
shown in Fig. 2.1 and idealised in Fig. 2.2 where there are several soil layers. A detailed description of this
problem is given in [6, 7]. The challenges of parallelization using MPI of the groundwater program used in this
research, when the problem size is approximately one billion nodes and two billion elements, are given in [7].
Performance results are also given. Fig. 2.3 shows a portion of the 3-D mesh of the levee system before a tree
with its root system was added at the toe. More details of the modelling of the woody vegetation are given
in [6]. To model the tree root at the toe of the levee, a 5 ft × 6 ft × 6 ft heterogeneous zone was added in
which the mesh was refined using 1 in × 1 in × 1 in 3-D prism elements (Fig. 2.4). To simulate heterogeneities,
a randomly generated hydraulic conductivity was assigned to each element in this zone. The resulting mesh
consisted of 3,017,367 nodes and 5,836,072 3-D prism elements.
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Fig. 2.1. River side of a levee with trees.�
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Fig. 2.2. Cross section of a levee with material types and elevation of the river.

3. High performance parallel computing. The parallel 3-D groundwater finite element program men-
tioned above was run on Garnet, the Cray XE6 at the U.S. Army Engineer Research and Development Center
(ERDC) [8], and on Lightning, the Cray XC30 at the Air Force Research Laboratory, Aberdeen, MD [9]. At the
time of this study, Garnet consisted of 4,716 dual-socket compute nodes with each socket populated with a 2.5
GHz 16-core AMD 6200 Opteron (Interlagos) processor. Each node had 64 GB memory (60 GB user-accessible)
or an average of 1.875 GB memory per core. The interconnect type was Cray Gemini in a 3-D torus topology.
Garnet was rated at 1.5 peak PFLOPS or 10 GFLOPS per core when these computations were done. Garnet
had a large Lustre file system that was tuned for parallel I/O. At the time of this research, Lightning consisted
of 2,360 dual-socket compute nodes with each socket populated with a 2.7 GHz 12-core Intel Xeon E5-2697v2
(Ivy Bridge) processor. Each node had 64 GB memory (63 GB user-accessible) or an average of 2.625 GB
memory per core. The interconnect type was Cray Aries in a Dragonfly topology. Lightning was rated at 1.2
peak PFLOPS or 21.6 GFLOPS per core when the data in this paper were collected. Lightning had a large
Lustre file system that was also tuned for parallel I/O.

The parallelization of the 3-D seepage/groundwater program was separated into four parts or programs.
One MPI process or one CAF image was placed on each core of a compute node. The four programs are (1)
a partitioner using the Parallel Graph Partitioning and Fill-reducing Matrix Ordering program, ParMETIS
[10], to divide the mesh into approximately equal pieces among the MPI processes or CAF images, (2) a
preparer to provide data, such as owned nodes, ghost nodes, owned elements, ghost elements, and communication
data, needed for each MPI process or CAF image, (3) a finite element program that does the finite element
computations with output files containing results for each owned node of that MPI process or CAF image, and
(4) a post processor that combines all data from each MPI process or CAF image into the final output files.
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Fig. 2.3. Portion of the 3-D mesh before the root zone was added.

The primary communication challenge is ghost node updates in the conjugate gradient or BICG-STAB
[11] linear solvers using either a Picard or Newton linearization [12, 13] of the governing nonlinear equation of
Richards’ equation [14]. As in [7], only times to solution for the finite element part of the program suite were
collected for MPI and CAF and reported in this paper. The ghost node update routine for both MPI and CAF
is examined in detail in the following section.

4. Ghost node update.

4.1. MPI. Table 4.1 gives the ghost node update subroutine for MPI and a description of the important
variables. The subroutine has three steps: (1) a set-up phase in which data are to be received from the different
cores, (2) send data to the different cores, and (3) wait until all the MPI messages have been processed. The
arrays, nstngh, ighost, and nodgh have all been supplied by the preparer program. There are no global arrays
in the parallel versions of the finite element program, i.e., no arrays with sizes of the total number of nodes or
the total number of elements. The elimination of global arrays allowed for much larger finite element meshes
to be run.

4.2. CAF. Table 4.2 gives the ghost node update subroutine for CAF and a description of the important
variables. The same data provided in the MPI version were also provided to the CAF subroutine. The CAF
version of ghost node updating is simpler than the MPI version in that for CAF, data are first placed in a buffer
and then directly “put” into the different cores by the statement,

vc(nst : nst + num - 1)[i] = buff(:)

While in the MPI case, the efficiency of the data transfer is dependent on how well MPI_IRECV, MPI_SEND, and
MPI_WAIT are implemented, the efficiency of the CAF routine is dependent on the quality of the FORTRAN
compiler implementation and internal data transfer capability. It is also important to note that two explicit
barrier calls,

call sync_all

were required in the CAF implementation, whereas none were required in the MPI version. Also, the huge page
option described by

module load craype-hugepages2M

was required to run the CAF version.
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Fig. 2.4. Heterogeneous zone representing the roots of a tree.

5. Results and Analysis. All runs on both computers were done using the Cray compiler with -O1
optimisation.

5.1. Results. Tables 5.1 and 5.2 give the time to solution for the finite element program on the Cray
XE6 and XC30 for different problem sizes and core counts. The m represents how much the original problem
is magnified to produce larger problem sizes. When m = 2, for instance, two original meshes are created and
joined such that the number of elements is exactly doubled, and the number of nodes is doubled less one set of
the nodes common to the two pieces. The original problem was run with 96 cores. Although the MPI version of
the finite element program could run this problem on 32 cores, the first multiple of 32 where the CAF version
would run was 96. Values of m = 1, 2, 5, 10, 20, and 50 were run. The running times for MPI and CAF for
three runs, their respective averages, and the ratio of MPI to CAF running times were tabulated for each m

value and core count.

5.1.1. Analysis. The following observations are made:
• When m = 1 and the number of cores is 96, the ratio of MPI / CAF running times was almost equal.
• As m increased, this ratio got significantly smaller. The ratios become so small that m was not increased

further than 50. Apparently, the global synchronisations required by the CAF implementation became
increasingly costly as the partition size grew.

• The MPI/CAF ratio is larger for the XE6 than the XC30.
• The XC30 running times are approximately half of those of the XE6.
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Table 4.1

Ghost node update for MPI.

Receive FORTRAN code

do i = 1, noproc
num = numngh(i)
if (num .ne. 0) then

itag = 100
nst = nstngh(i)
call MPI_IRECV (v(nst), num, MPI_REAL8, i - 1, itag, MPI_COMM_WORLD, &

ireq(i), ierror)
end if

end do

Send FORTRAN code

allocate (buff(num_max))

do i = 1, noproc
num = ighost(i + 1) - ighost(i)
if (num .ne. 0) then

do j = 1, num
jloc = nodgh(ighost(i) + j)
buff(j) = v(jloc)

end do
itag = 100
call MPI_SEND (buff, num, MPI_REAL8, i - 1, itag, MPI_COMM_WORLD, ierror)

end if
end do

deallocate (buff)

Wait FORTRAN code

do i = 1, noproc
if (numngh(i) .ne. 0) then

call MPI_WAIT (ireq(i), istat, ierror)
end if

end do

noproc = number of cores or MPI processes
num_max = maximum number of ghost node data to send

v = variable to be updated
nstngh(i) = the starting address of v where data are to be received from core, i - 1

numngh(i) = the number of values be received in v from core, i - 1
nodgh = array containing local node numbers whose data are to be sent to other cores
ighost = array containing the accumulated number of ghost nodes whose data

are to be sent
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Table 4.2

Ghost node update for CAF.

Special CAF variables

common / caf / nstnghc(npmx)[*], vc(ndlmx)[*]

CAF put FORTRAN code

call sync_all
allocate (buff(num_max))

do i = 1, noproc
num = ighost(i + 1) - ighost(i)
if (num .ne. 0) then

nst = nstnghc(image)[i]
do j = 1, num

jloc = nodgh(ighost(i) + j)
buff(j) = v(jloc)

end do
vc(nst : nst + num - 1)[i] = buff(:)

end if
end do

call sync_all
deallocate (buff)

do i = nnpown + 1, nnpl
v(i) = vc(i)

end do

noproc = number of cores or CAF images
image = CAF image number
npmx = maximum number of CAF images

nnpl = number of local nodes
ndlmx = maximum number of local nodes

v = variable to be updated
vc = CAF array containing the updated ghost node data

nstnghc(i) = CAF array containing the starting address of v where data are
to be received from core, i

nodgh = array containing local node numbers whose data are to be sent
to other cores

ighost = array containing the accumulated number of ghost nodes whose data
are to be sent
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Table 5.1

Time (sec) for MPI and CAF on the Cray XE6 and XC30 for m = 1, 2, and 5.

m Nodes Elements Cores Cray
Time Time Ratio
MPI CAF MPI/CAF

1 3017367 5836072 96
XE6 788.0 816.0
XC30 323.6 376.6

XE6 786.6 826.7
XC30 324.8 379.2

XE6 767.7 820.7
XC30 322.1 375.3

XE6
Avg.

780.8
Avg.

820.8 0.95
XC30 323.5 377.0 0.86

128
XE6 601.1 658.8
XC30 252.1 322.6

XE6 597.3 723.7
XC30 258.4 325.4

XE6 596.6 628.9
XC30 257.0 343.3

XE6
Avg.

598.3
Avg.

670.5 0.89
XC30 255.8 330.4 0.77

2 6000831 11672144 192
XE6 804.1 1028.7
XC30 283.0 393.6

XE6 788.8 850.2
XC30 281.5 363.7

XE6 786.3 896.4
XC30 281.4 397.8

XE6
Avg.

793.1
Avg.

925.1 0.86
XC30 282.0 385.0 0.73

256
XE6 642.1 914.4
XC30 255.8 408.5

XE6 604.0 692.1
XC30 258.1 383.5

XE6 659.4 917.5
XC30 256.0 386.7

XE6
Avg.

645.2
Avg.

841.3 0.76
XC30 256.6 392.9 0.65

5 14951223 29180360 480
XE6 878.3 1361.8
XC30 344.0 636.8

XE6 819.0 1292.5
XC30 347.3 630.1

XE6 829.4 1287.3
XC30 347.1 635.3

XE6
Avg.

842.2
Avg.

1313.9 0.64
XC30 346.1 634.1 0.55

640
XE6 708.8 1491.8
XC30 260.5 576.3

XE6 599.6 1254.0
XC30 264.4 671.2

XE6 663.4 1241.4
XC30 267.5 595.9

XE6
Avg.

657.3
Avg.

1328.1 0.49
XC30 264.1 614.5 0.43
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Table 5.2

Time (sec) for MPI and CAF on the Cray XE6 and XC30 for m = 10, 20, and 50.

m Nodes Elements Cores Cray
Time Time Ratio
MPI CAF MPI/CAF

10 3017367 58360720 960
XE6 862.0 1691.6
XC30 344.7 910.7

XE6 881.2 1730.2
XC30 353.1 912.2

XE6 867.5 1473.4
XC30 349.5 907.5

XE6
Avg.

870.2
Avg.

1631.7 0.53
XC30 349.1 910.1 0.38

1280
XE6 632.9 1309.0
XC30 266.9 995.1

XE6 624.6 1584.0
XC30 267.6 999.3

XE6 609.4 1768.6
XC30 267.6 998.2

XE6
Avg.

622.3
Avg.

1553.9 0.40
XC30 267.4 997.5 0.27

20 59703183 116721440 1920
XE6 957.7 2685.8
XC30 351.0 1330.3

XE6 852.6 3031.6
XC30 356.3 1465.0

XE6 874.4 2760.2
XC30 363.9 1326.6

XE6
Avg.

894.9
Avg.

2825.9 0.32
XC30 357.1 1374.0 0.26

2560
XE6 659.8 2609.2
XC30 276.5 1496.1

XE6 651.8 2641.7
XC30 276.1 1755.5

XE6 651.2 2283.0
XC30 274.9 1473.7

XE6
Avg.

654.3
Avg.

2511.3 0.26
XC30 275.8 1575.1 0.18

50 149207103 291803600 4800
XE6 882.9 5242.1
XC30 374.6 2990.1

XE6 883.0 5704.6
XC30 356.7 3133.1

XE6 923.0 5255.3
XC30 359.4 3140.2

XE6
Avg.

896.3
Avg.

5400.7 0.17
XC30 363.6 3087.8 0.12

6400
XE6 703.2 5792.8
XC30 306.9 3801.3

XE6 739.6 6902.2
XC30 302.3 3833.0

XE6 749.1 6256.4
XC30 300.3 3796.7

XE6
Avg.

730.6
Avg.

6317.1 0.12
XC30 303.2 3810.3 0.08
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Table 6.1

Consistency check comparing values of pressure head from the original mesh and the mesh for m = 50 for the first 10 nodes
and last 6 nodes of each mesh.

m = 1 m = 50

Node MPI CAF Node MPI CAF

1 129.00000 129.00000 1 129.00000 129.00000

2 128.99678 128.99678 2 128.99678 128.99678

3 128.99345 128.99345 3 128.99345 128.99345

4 119.00000 119.00000 4 119.00000 119.00000

5 118.99735 118.99735 5 118.99735 118.99735

6 124.23808 124.23808 6 124.23808 124.23808

7 118.99464 118.99464 7 118.99464 118.99464

8 123.54520 123.54520 8 123.54520 123.54520

9 128.98993 128.98993 9 128.98993 128.98993

10 110.50000 110.50000 10 110.50000 110.50000

6000826 0.0000000 0.0000000 149207098 0.0000000 0.0000000

6000827 0.041718483 0.041718484 149207099 0.041718479 0.041718479

6000828 3.0365778 3.0365778 149207100 3.0365779 3.0365779

6000829 0.036494873 0.036494870 149207101 0.036494875 0.036494875

6000830 0.0000000 0.0000000 149207102 0.0000000 0.0000000

6000831 0.0000000 0.0000000 149207103 0.0000000 0.0000000

6. Consistency check. A check for consistency for the first 10 nodes and last 6 nodes of the meshes for
m = 1 and m = 50 was done with pressure head results placed in Table 6.1. The MPI and CAF results should
be the same and because of symmetry, the values for m = 1 and m = 50 should also be the same. A comparison
of the MPI and CAF results in Table 6.1 shows excellent consistency.

7. Conclusions. The following conclusions can be drawn:
1. Both MPI and CAF versions ran successfully and gave the same results.
2. As the problem size and process count increased, the results remained consistent.
3. The update routine for CAF was simpler than that for MPI.
4. CAF required more memory than MPI to run the same size mesh.
5. CAF required huge pages, but MPI did not.
6. CAF required explicit barriers, but MPI did not.
7. For the original problem, CAF and MPI performed almost the same when using 96 cores.
8. As the problem size and process count grew, MPI performed much better than CAF.
9. The MPI/CAF ratio is larger for the XE6 than the XC30.

10. The XC30 running times are approximately half of those of the XE6.
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