
Scalable Computing: Practice and Experience
Volume 20, Number 2, pp. 299–315. http://www.scpe.org

DOI 10.12694/scpe.v20i2.1520
ISSN 1895-1767
c⃝ 2019 SCPE

STATIC LOAD BALANCING TECHNIQUE

FOR GEOGRAPHICALLY PARTITIONED PUBLIC CLOUD

MANDEEP KAUR∗AND RAJNI MOHANA†

Abstract. Large number of users are shifting to the cloud system for their different kind of needs. Hence the number of
applications on public cloud are increasing day by day. Handling public cloud is becoming unmanageable in comparison to other
counterparts. Though fog technology has reduced the load on centralized cloud resources to a remarkable extent, still load handled
at cloud end is significantly high. Geographic partitioning of public cloud can resolve these issues by adding manageability and
efficiency in this situation. Dividing public cloud in smaller partitions opens ways to manage resources and requests in a better
way. But, partitioned clouds introduce different ends for submission and operations of tasks and virtual machines. We have tried
to handle all these complexities in this paper. Proposed work is focused upon load balancing in the partitioned public cloud
by combining centralized and decentralized approaches, assuming the presence of fog layer. A load balancer entity is used for
decentralized load balancing at partitions and a controller entity is used for centralized level to balance the overall load at various
partitions. In the proposed approach, it is assumed that jobs are segregated first. All the jobs which can be handled locally by
fog resources are not forwarded to the cloud layer directly. Those are processed locally by decentralized fog resources. Selection
of an appropriate Virtual Machine (VM) for filtered set of job, which are forwarded to cloud environment, is done in three steps.
Initially, selecting the partition with a maximum available capacity of resources. Then finding the appropriate node with maximum
available resources, within a selected partition. And finally, the VM with minimum execution time for a task is chosen. Results
are compared with the results produced in this work with First Come First Serve (FCFS) and Shortest Job First (SJF) algorithms,
implemented in same setup i.e. partitioned cloud. This paper compares the Waiting Time, Finish Time and Actual Run Time of
tasks using these algorithms. After initial experimentation, it is found that in most of the cases, while comparing above parameters,
the proposed approach is producing better results than FCFS algorithm. But results produced by SJF algorithm produce better
results. To reduce the number of unhandled jobs, a new load state is introduced which checks load beyond conventional load states.
Major objective of this approach is to reduce the need of runtime virtual machine migration and to reduce the wastage of resources,
which may be occurring due to predefined values of threshold. The implementation is done using CloudSim.

Key words: Load Balancing, Public Cloud, Cloud Partitioning, Geographically Partitioned Cloud, Static Load Balancing, Over-

loaded Node Management, Fog Computing, IoT Devices, Fog stratum.

AMS subject classifications. 68M14, 68M20

1. Introduction. Cloud Computing has the potential to affect a large part of IT industry. Nowadays,
developers need not to concern about the over-provisioning or under-provisioning of resources. Elasticity of
resources without spending a large amount of funds is a unique concept of its kind [2]. Basic characteristics of
Cloud Computing as user friendliness, virtualization, automatic adaptation, scalability, resource optimization,
pay-per-use, service SLAs, infrastructure SLAs etc. are attracting users in masses [26]. Cloud Computing
is proving itself so beneficial, but there is a requirement of efforts to maintain performance and efficiency of
services. Handling concurrent jobs, users and processes through such a large set of machines is a very difficult
task. Load balancing is one of the serious concerns in success of cloud computing. Emerging trends like edge
or fog computing are being integrated with cloud computing. These share the load on public cloud by shifting
significant amount of work from centralized public resources to local fog processing units. Fog/Edge computing
is the future of cloud technology. Apart from heavy load challenge, another big concern is of imbalanced
load among servers. Many kinds of troubles occur due to overloaded as well as under loaded servers. Under
loaded servers cause inefficient energy consumption, inefficient use of resources and add-on to the management
overheads. On the other hand, overloaded servers can cause delay in response, low speed of processing, decreased
throughput, increased makespan etc. To handle both these situations it is very important to adopt a load
balancing mechanism which can distribute tasks evenly among all available servers [28]. Recent growth in the
field of IoT has further increased the challenges. As per CISCO cloud traffic is expected to rise upto 14.1 ZB
per year by [27]. Data associated IoT devices are the main cause of this growth. Similarly, Internet of Vehicles
(IoV) is also an emerging concept which is a subclass of IoT. It refers to the network of heterogenous sensors

∗Computer Science Engineering and Information Technology, Jaypee University of Information Technology and School of Com-
puter Applications and Lovely Professional University, India (mandeep.13695@lpu.co.in)

†Computer Science Engineering and Information Technology, Jaypee University of Information Technology, India
(rajni.mohana@juit.ac.in)

299

300 Mandeep Kaur, Rajni Mohana

installed on vehicles [5]. In all such applications major issue is of latency. To handle these latency issues a new
term fog computing has been introduced. Fog computing is capable to reduce the operational cost of cloud
data centres and helps to avoid revenue loss due to WAN propagation delays [22]. Need of optimal allocation of
jobs to available fog resources has led the researchers towards load balancing in fog networks [21]. In paper [12]
authors have presented an in-depth analysis of principles of Green-IoT. This chapter also highlights different
kind of barriers challenging implementation of Green-IoT in real life. Load balancing can either be dynamic or
static. In dynamic load balancing, load status of nodes is checked while jobs are running. During the execution
process if any node gets overloaded then few of the jobs are shifted to some other node, with lesser load. This
process is known as virtual migration. Static load balancing, efforts are made to distribute tasks equally among
VMs. That means while initially putting tasks in VMs, possible efforts are made to keep task distribution
even. This method of load balancing is very efficient as it will reduce the need of VM migrations. Run time
VM migrations are a kind of interrupt or overhead during the execution period of tasks [17]. In this paper,
we have focused on static load balancing part. Load management becomes even more challenging when we are
considering a large public cloud. A public cloud has numerous nodes, scattered around in various geographic
locations. Huge number of users and large amount of outsourced cloud data makes it very difficult to achieve
the performance requirements and system usability [30]. Cloud Partitioning is one of the popular techniques
used for load management in clouds. In this technique, clouds are divided into small groups of nodes. Small
partitions are more manageable as compared to large, public set of nodes. So handling load will become simple
and efficient by using this technique. This paper is an attempt to implement decentralized load balancing
through cloud partitioning at an initial state of task submission.

Contribution The main contribution of this work is to design and evaluate a decentralized load management
model for public clouds and fog layer in a partitioned environment. It can fully utilize the resources available
with Datacentres. Our objective is to introduce a technique for load balancing in a partitioned cloud. The
proposed approach suggests that in a public cloud, presence of a substantial number of nodes can be used as a
privilege. Static load balancing is done depending upon a threshold value. This value denotes the allowable and
optimal amount of load in a partition at a time. Once the load in a partition has reached at that threshold value,
that node will no more be considered for job allocation until a few of its jobs have been finished. Considering
that we are talking about a public cloud, there must be a scope of remaining resources to handle a few of the
jobs, maybe with minor resource requirements. Hence, while calculating the load state of a partition, keeping
records of load at all nodes under a partition, its available resources and required resources of jobs can be
very helpful. Proposed work implements static load balancing for handling load mismatches during the initial
allocation of virtual machines. Static load balancing gives an overall better performance.

Allocation done with a node with a current maximum capacity of resources will be more reliable and need
of VM migrations during run time can be reduced. Decentralized load calculation and management through is
tremendously capable to reduce execution time to compare, search and allocation process.

Few extra efforts are involved in calculating load status of all the nodes in all partitions. Use of decentralized
approach reduces this overhead. Finally, central controller will be getting details from partition balancers hence
there is very less communication required across the partitions.

Paper Structure In following sections of this paper, a decentralized load management technique is discussed.
Section 2 contains the literature review and existing work done in this area. In Section 3, the proposed approach
is discussed in detail. An experimental, simulation-based evaluation and comparative study of our approach
along with the retrieved measurements are presented and discussed in Section 4. Finally, Section 5 concludes
this paper and identifies paths for future work.

2. Related Work. Many researchers have addressed the load balancing challenges in their work. In [7]
a load balancing technique the cloud public cloud based upon cloud partitioning. They proposed to switch
load balancing technology based upon the situation of load at a time. This algorithm applies game theory to
handle the partitions with high load status. Though this algorithm needed further experiment to determine the
efficient refresh rate and load degree calculation mechanism. The tradeoff was that much testing is required to
guarantee system availability and efficiency.

Static Load Balancing Technique for Geographically Partitioned Public Cloud 301

Authors in [24] have proposed a system to perform load balancing as well as dynamic cloud partitioning.
Major components of this approach are Partition Manager: responsible for assigning a job to a partition and
Job Distributor: which decides the node to which this task can be allocated. To ensure effective distribution
of load, partitions are created dynamically. This is done with the help of the honey bee algorithm. This paper
left scope to improve the transparency and cloud division beyond geographic limits. They have used game
theory to improve the efficiency in a cloud environment. According to the researcher the network is divided
into cluster using a clustering algorithm. Every node is a part of a cluster. Every cluster has an Inter Cluster
Communication (ICC) node. Clustering is done while initialization of the network.

In work presented by [8], authors have addressed the issues of Service availability and reliability, Lack of
Service Level Agreements, Customer data security and privacy and Government compliance regulation require-
ments. They have proposed intelligent workload factoring service for proactive workload management with a
fast and frequent data detection mechanism at the core. This mechanism helps not only in factoring requests
on the volume of data, but also on contents of data. Major design goals of this workload refactoring include
avoiding overloading scenario through load redirection, smoothening the workload dynamics in base zone appli-
cation platform, and making flash cloud zone application platform agile through load decomposition. There are
few improvements required, such as data security management for hybrid platform, handling data replication
and consistency in the flash crowd zone, and load balancing schemes are implemented in two zones.

Authors in [14] have proposed a solution to calculate load degree based upon the turnaround time. This
approach helps load balancer to improve load balancing strategies of a load balancing model in a public cloud.
An idea of preliminary evaluation of a cloud partitioning approach is expressed in [23], which distributes task
execution requests in a volunteer cloud. Validation is done through a simulation-based statistical analysis,
using the Google workload data trace. Evaluations of this model are based on comparison between the results
of purposed approach and the results of an unpartitioned cloud, using same random data sets. This approach
has improvement scope, such as using the bio-inspired solution to add more sophistication. Adding lightweight
performance monitors can help in improving performance. A workload classification mechanism can make
workload management better. User Module submits the VM allocation request to Front-End Module, which is
endowed with best-fit heuristic and random load balancing heuristic. It submits the VM allocation requests to
the Server Manager Module. The Server Manager Module is responsible for balancing the load across hosts and
performs energy-efficient server consolidation. This Module uses two threshold values, load-related migration
threshold and load-related activation threshold to accomplish its job. Authors tried to remove the scheduling
decision from Job’s Critical Path to improving scheduling decision accuracy in [1]. For this, they have used
Schedule First and Manage later approach and job replication. In their proposed model, they suggest replication
of jobs and distributing these replicas to multiple servers. Whichever server will pick this job first will notify
other servers having a copy of the same job. The main goal of this approach is to make task scheduling simple
by removing load balancing tasks from the process of VM allocation. Though, this approach adds a signal
propagation delay in the processing time.

In work expressed in [11], authors have tried to highlight multiple issues such as elasticity, energy efficiency,
and high operational costs etc. For this, they have developed a combination of algorithms for initial VM
placement, partial VM migration, and full VM migration. The initial VM placement algorithm can create or
destroy VMs at any time, based on the current load at that VM. A Partial VM Migration algorithm is used
by over utilized compute nodes to shifts few of the jobs to one or more other compute nodes. Full migration
algorithm is used to shift full load of a compute node if it is underutilized. The purpose of this migration is
to reduce the overall energy consumption of a Datacentre. A star-based partitioning and index algorithm for
Resource Description Framework (RDF) data of robotic systems in [29] has devised a 3-step process. In first
step a start structure is created by using MapReduce and HDFS to construct a coarsened weighted graph. In
second step a balance partitioning algorithm is used to divide this graph. In third step a Compressed and
Linked S-tree index is proposed to improve the query efficiency. In their paper [18] have discussed the need of
fog computing by exploring its taxonomy, applications and various technologies involved in it. This paper has
very well described the difference between cloud computing and fog computing. A mobility and heterogeneity-
aware partitioning algorithm to support cross-domain resources partitioning, is presented in [9]. In this paper
a service popularity-based smart resources partitioning (SPSRP) scheme is proposed. The basic architecture of

302 Mandeep Kaur, Rajni Mohana

SPSRP scheme decouples the computing control layer from data processing layer.

In [6] authors have discussed the tradeoff between power consumption and transmission delay in fog cloud
computing. They have proposed an optimal workload allocation between fog and cloud resources. Objective
achieved is to get job done with minimal power consumption and restricted transmission delay. For improving
efficiency and security [15] have proposed a model to authenticate and compare the load status of various Edge
Data Centres (EDCs). SDN-based modified constrained optimization particle swarm optimization (MPSO-
CO) algorithm proposed by [25] uses the reverse of mutation particles and linear decrease inertia weight to
enhance the performance of constrained optimization particle swarm optimization (PSO-CO). This technique
results in reduced latency and improved QoS in Software Defined Cloud/Fog Networking (SDCFN). Technique
proposed by [10] decouples computing control layer from data procession layer through a service popularity-
based smart resource partitioning (SPSRP) controller. Table 2.1 presents the summarized view of research work
done on static load balancing until now. In [16] authors have proposed a model based upon time-based data
driven approach to predict load predictions in various in different utilization sectors. This model is capable to
accurately predict the energy demand in residential and commercial sector of smart device users.

Authors of [4] have discussed about the variants of Ant Colony Optimization (ACO) and its role in solving
discrete problems in various areas of science and engineering discipline, including load balancing. Finding
an appropriate node with sufficient resources is a crucial part of load balancing. One such method to find
efficient sources is a logarithmic spiral based local search strategy, namely logarithmic spiral local search (LSLS),
suggested by [20]. In [19] authors have presented a deep understanding about taxonomy of fog computing, its
differences from cloud computing and edge computing technologies, applications, emerging key technologies and
various challenges involved in fog technology. Authors of [3] have presented an Artificial Bee Colony (ABC)
Optimization algorithm.

As compared to the above approaches, our proposal suggests a combination of centralized and decentralized
load management. It ensures the benefits of unlimited resources of public cloud while removing the complexities
of handling the substantial number of nodes. Proposed model ensures the better utilization of resources in the
partitioned public cloud environment. It also helps in retaining the individual identity of nodes in a partition to
ensure the accessibility to load status information and other details of a node. Initially, the node with maximum
available resource instances is chosen for job allocation. So, chances of dynamic VM migration can be reduced.
The objective is to increase the efficiency of load balancing mechanism lowering the usage and management
costs.

3. Proposed Approach. This section contains the presentation model, task distribution between various
modules and algorithm of our proposed approach for load balancing in public clouds and fog layer. The cloud
is initially partitioned statically based on geographic location. In proposing a model, the primary objective
is to reduce the size of public cloud by dividing it into multiple partitions and to apply a decentralized load
balancing mechanism to ensure optimal utilization of resources. It is assumed that a significant part of total
load is processed at fog layer. These jobs, restricted to reach cloud layer include the latency sensitive and
security sensitive jobs. Fog computing environment is required to be implemented in time critical applications.
In current scenario data is generated by IoT devices and processed in cloud environment. Most operations of
these IoT devices depend upon data transmission to-and-from cloud layer. This is not considered feasible while
keeping in view the time and distance constraints. Similarly, the applications involving sensitive data which
user is not intended to share on public cloud can be shifted from cloud to fog environment.
So, cloud environment is responsible for jobs left unprocessed by fog environment.

As shown in Fig. 3.1, major entities in this model are clients, partitions, nodes, load balancers and con-
trollers. A node is a provider which holds physical cloud resources which a client requires to process his job.
Within that partition, a load balancer is deployed to keep track of load status of the partition. This balancer
collects load-related data of individual nodes, compares it with threshold value to determine in which load
category this partition falls currently. Same information is conveyed to the controller for making a final decision
related to task allocation to a partition and anode. Balancers are local to partitions whereas a centralized
controller is an entity which can keep track about all the partitions through information received from load
balancers.

The proposed model is a composition of three software modules which are Client (CM), Balancer (BM) and

Static Load Balancing Technique for Geographically Partitioned Public Cloud 303

Table 2.1
Summarized view of research work done on static load balancing

Title Proposed Model Limitation

A Load Balancing
Model Based on
Cloud Partitioning
for the Public Cloud
[7]

Load balance model for the public cloud based
on the cloud partitioning concept with a switch
mechanism to choose different strategies for dif-
ferent situations like high, low, normal load sta-
tus. This model applies game theory to load bal-
ancing strategy to improve the efficiency in the
public cloud environment.

1. Lacks detailed cloud division methodology, 2.
Effectively determining the refresh period, 3. De-
vising a good algorithm to set Load degree, 4.
Testing is required to compare different load bal-
ancing strategies, 5. Many tests are to be per-
formed to guarantee system availability and effi-
ciency.

A novel approach for
Dynamic Cloud Par-
titioning and Load
Balancing in Cloud
Computing Environ-
ment [24]

The strategic model that performs load balanc-
ing as well as dynamic partition of the nodes of
different cloud. Game theory is used to load bal-
ancing strategy to improve the efficiency in the
cloud environment

1. Need to increase levels of transparency 2. Re-
quires effective technique in updating the status
report. 3. The time intervals are not very well
managed, 4. Dynamic balancing technique could
be made dynamic, 5. Finding alternatives to ge-
ographical cloud division methodology.

A Cluster-Based
Load Balancing
Algorithm in Cloud
Computing (Surbhi
Kapoor, 2015)

A distributed algorithm for load balancing in the
master-slave architecture that outperforms the
Closest Datacentre algorithm in terms of task dis-
tribution across the system and optimal system
performance

To evaluate effectiveness of the proposed model
in scenarios where a node belongs to more than
one cluster and we believe that effective load bal-
ancing could be achieved in this case as well

Resource Alloca-
tion Issues and
Challenges in
Cloud Comput-
ing (S.Thamarai
Selvi, 2014)

Addressed issues are: 1. Resource Provisioning,
2. Job Scheduling, 3. Resource Overbooking,
4. Scalability, 5. Pricing, 6. Load Balancing, 7.
Multitier applications, 8. Availability, 9. Over-
heads in Network I/O Workloads, 10. QoS con-
straints

1. Lacks elasticity, 2. Need to minimize the costs
and maximize resource utilization, 3. Need to
assure high availability for long running jobs, 4.
Better parallel task scheduling

Proactive Workload
Management in Hy-
brid Cloud Comput-
ing+B17 [8]

Addressed issues are: 1. Service availability and
reliability, 2. Lack of Service Level Agreements,
3. Customer data security and privacy, 4. Gov-
ernment compliance regulation requirements

1. Load balancing schemes are implemented in
two zones, 2. Efficient data replication and con-
sistency management in the flash crowd zone, 3.
Better security management for a hybrid plat-
form

Load Degree Calcu-
lation for the Public
Cloud based on the
Cloud Partition-
ing Model using
Turnaround Time
[14]

Solution to calculate Load degree of a node in the
public cloud based on the Turn Around Time

Lacks efficiency of algorithms

A Workload-Based
Approach to Parti-
tion the Volunteer
Cloud [23]

A preliminary evaluation of a cloud partitioning
approach to distribute task execution requests in
volunteer cloud. Comparison between the results
of the proposed model, i.e. partitioned cloud and
an unpartitioned cloud which uses the same ran-
dom tasks.

1. Requires more sophisticated algorithms such
as bio-inspired solutions, 2. Adding lightweight
performance monitoring, 3. Better workload clas-
sification mechanisms

Replication-based
Load Balancing [1]

Removing the Scheduling Decision from Jobs
Critical Path, Improving Scheduling Decision Ac-
curacy. Schedule First and Manage later ap-
proach is used by implementing Job replication.

1. Presence of signal propagation delay, 2. Devise
single parameter configuration that is optimal for
all systems.

Decentralized and
Energy-Efficient
Workload Manage-
ment in Enterprise
Clouds [11]

An issue addressed: 1. Elasticity, 2. Scalability,
3. High operational costs, 4. Efficient energy
consumption. Three algorithms are introduced
which are: 1. Initial VM Placement, 2. Partial
VM Migration, 3. Full VM Migration,

1. Needs decentralized workload manager in an
open-source cloud operating system, such as e.g.,
OpenStack, 2. Can use additional parameters
into load-balancing algorithms,

A Partitioning and
Index Algorithm for
RDF Data of Cloud-
based Robotic Sys-
tems [29]

Considers the 2-hop star structure as the basis
object and proposes a partitioning and index al-
gorithm

More orientation towards data structure opera-
tions. Output is dependent upon datasets, query
type and strategies for graph operations.

304 Mandeep Kaur, Rajni Mohana

Fig. 3.1. Architecture of Proposed Model for Load Balancing in Partitioned Cloud

Centralized Controller (CCM). These three modules have pre-assigned roles to play during initial VM allocation
to a task. These modules are capable to interact with each other wherever required. Following three modules
are involved in the overall processing of the proposed approach. These are:

1. Client Module (CM) : Main responsibility of this Module is to filter the jobs to be processed by cloud
environment and to submit those requests to a server node, through a broker. While submitting a
request, the client is responsible to provide details about the resource requirement of that task. These
details are very much important while choosing a node for final job allocation.

2. Balancer Module (BM) : Balancer module is local to partitions. They receive a notification whenever a
client submits a task to a node belonging to that partition. Balancer has overall responsibility to manage
load in a partition. It must keep record of load status of each node in the partition. The balancer is
the accessing point of load status information of a partition, hence a controller always interacts with
this module.

3. Centralized Controller Module (CCM) : This Module works like a centralized entity. It collects infor-
mation from Balancer of all the partitions and makes decisions based on that information. Controller
module is invoked by a Balancer whenever it finds all its local nodes are fully occupied. The controller
asks all other partitions Balancer for their load status and finally directs job to the partition which
fulfills following criteria.
(a) Maximum amount of available resources.
(b) Enough resources to cater the needs of the job.

In the proposed model, a Client Module (CM) captures the details of the service request being submitted to a
node by a user. These modules prepare an estimate of resources required by the current job. Once the resource
requirement details are ready, a notification is sent to the Balancer (BM) of the partition to which this node is
associated with.

On receiving this notification Balancer (BM) will search resource availability status of that specific node and

Static Load Balancing Technique for Geographically Partitioned Public Cloud 305

Fig. 3.2. Distribution of Tasks between Fog and Cloud.

will compare it with the resource requirement of the newly submitted job. If BM finds that sufficient number
of resources are available, then it will allocate the job to the same node. Else it will compare jobs resource
requirement with resource availability of other nodes in the same partition. If there exists any node(s) which are
having sufficient resources to serve current job, then job is allocate to that node. If there is more than one such
node, then the best possible allocation is done by allocating jobs to the node which has maximum availability
of resources so that there are least chances of a need of VM migration.

If BM finds no node within partition which can serve job, then it will notify the Central Controller Module
(CCM). CCM has the centralized access to the status of all partitions via their load balancers. Upon receiving
notifications from BM, CCM will ask for fresh status information from all other BMs. On receiving this, first it
will check the load status of all partitions. If it finds a single partition with normal or low load status, then the
next step is to search for a node in that partition which has maximum available resources with it and the job
is assigned to that node. Load status of nodes and the partition is updated in terms of resource availability. If
there are multiple partitions then the one with max availability status is chosen and following same process a
node is chosen in it.

There is a possibility that the load status of all the partitions is high, i.e. all the partitions have number
of nodes with high load status than predefined threshold value. In such situation, resource availability of
individual nodes is checked. Reason behind this step is that may be the percentage of nodes with high work
load is exceeding threshold. But still, in remaining percentage there can be few nodes with low or normal load.
The available resources of these nodes are usually ignored, but can be utilized in a better manner.

In rare situations, CCM would have not find any individual node with low or normal load status. In that
case client module is notified about the non-availability of resources and job is kept unallocated till some of the
running jobs are not complete and resources allocated to them are released. Summarized working of all the 3
modules is described in Table 3.1.

Job Distribution among cloud and fog Layer

It is a crucial decision-making point to distribute the jobs among fog and cloud, which highly depends upon their
contribution in this fabricated system. Cloud services are assumed to provide services as well as data analytics
required in operations of IoT devices. Fog provides various types of data services in IoT environment such as
Data Filtering, segregation, Aggregation, Data Encryption, Catching etc. [13]. Hence it can be concluded that
fog environment will retain all job requests which are short-span and more frequent. On the other hand, cloud
environment will handle jobs which are less frequent, long term and require large amount of resources.

In the proposed model, the load balancing algorithm is being applied on the jobs submitted to cloud.

Evaluating Load Status for Node Allocation

As described earlier the partitions groups certain number of data centers. Each datacenter accommodates one

306 Mandeep Kaur, Rajni Mohana

Table 3.1
Role of various modules

Stepwise
Process

Client Module (CM) Balancer Module (BM)
Central Controller Module
(CCM)

Step-1
Capture details of a service request
being submitted by a user.

Step-2

Based upon pre-defined categories,
segregate the jobs deciding if it is
to be processed locally in fog envi-
ronment or cloud environment.

Step-3
Send the job to appropriate end,
based upon decision made in Step-
2.

Step-4
Prepare estimates of required re-
sources.

Step-5
If the current node is overloaded
then notifies the Balancer Module
of the current partition.

Step-6
Notified about the new job sub-
mission. Receives resource require-
ment details from Client Module.

Step-7

Traverse all the nodes in the par-
tition and compares their resource
availability status with resource re-
quirement details.

Step-8

Allocates job to the best suitable
node based upon the resource avail-
ability. Or notifies the Central Con-
troller Module if no node is avail-
able locally in the partition.

Step-9
Notified by the Balancer Module,
collects status information from all
the balancer Modules.

Stepwise
Process

Client Module (CM) Balancer Module (BM)
Central Controller Module
(CCM)

Step-10
Picks the best suitable partition
based upon load status.

Step-11

Picks the best suitable node in
that partition, based upon resource
availability. Notify concerned Bal-
ancer Module.

Step-12

Allocate job to notified node. Up-
date load status and resource avail-
ability details of partition and node
respectively.

Step-13

If all partitions have a high load
status, then traverse the entire list
of individual nodes and pick the one
with maximum available resources.

Step-14

Compare this nodes resource with
the requirement. If sufficient re-
sources are available, Notify con-
cerned Balancer Module.

Step-15

Allocate job to notified node. Up-
date load status and resource avail-
ability details of partition and node
respectively.

Step-16
If none of the nodes possess suf-
ficient resources, then notify the
client Module.

Step-17
Get notification from Controller
Module to wait.

Step-18
Capture details when the job is pro-
cessed and the response is sent to
the client.

Static Load Balancing Technique for Geographically Partitioned Public Cloud 307

or more hosts, which are physical instances of resources which a client can request. These hosts can create k
number of VMs as per requirement. Task allocation is done to these Virtual machines (nodes). There is a need
to evaluate the availability at two levels as given below:

1. Determining the partition Pi, to which a job can be assigned.
2. Determining the node Ni, inside partition Pi, to which a job can be assigned.

As partitions do not have any load status of their own, they depend upon the load status S of individual
nodes grouped inside them. Four predefined load states are considered, which are common for partitions and
nodes and are calculated as follows:

1. Idle load state

(a) A node Nj falls under idle state if its available resources R(n)j exceed a threshold t(n)idle. i.e.

Nidle = R(n)j>t(n)idle

where t(n)idle is the threshold at which a node is considered idle. Nidle shows the idle status of
node N.

(b) A Partition Pi falls under idle state if the number of idle nodes in this partition has exceeded a
threshold t(p)idle i.e.

Pidle = Count(Nidle) > t(p)idle

where t(p)idle is the threshold at which a partition is considered idle. Pidle shows the idle status
of partition P.

2. Normal load state

(a) A node Nj falls under normal state if its available resources R(n)j exceed a threshold t(n)normal.
i.e.

Nnormal = R(n)j>t(n)normal

where t(n)normal is the threshold at which a node is considered normal. Nnormal shows the normal
status of node N.

(b) A Partition Pi falls under normal state if the number of normal nodes in this partition has exceeded
a threshold t(p)normal i.e.

Pnormal = Count(Nnormal) > t(p)normal

where t(p)normal is the threshold at which a partition is considered normal. Pnormal shows the
normal status of partition P.

3. Overloaded load state

(a) A node Nj falls under ovld state if its available resources R(n)j exceed a threshold t(n)ovld. i.e.

Novld = R(n)j>t(n)ovld

where t(n)ovld is the threshold at which a node is considered ovld. Novld shows the ovld status of
node N.

(b) A Partition Pi falls under ovld state if the number of ovld nodes in this partition has exceeded a
threshold t(p)ovld i.e.

Povld = Count(Novld) > t(p)ovld

where t(p)ovld is the threshold at which a partition is considered ovld. Povld shows the ovld status
of partition P.

308 Mandeep Kaur, Rajni Mohana

4. Full load state A Partition Pi falls under full state if the number of full nodes in this partition has
exceeded a threshold t(p)full i.e.

Pfull = Count(Nfull) > t(p)full

where t(p)full is the threshold at which a partition is considered full. Pfull shows the full status of
partition P.

Task Assignment

The proposed system is focused upon static VM allocation in a partitioned cloud environment or fog environ-
ment. Clients of cloud and fog system submit their requests to nodes. If the current node is having sufficient
resources to handle request, then it will process request itself. If no then a suitable node is searched in the
current partition. If none of the nodes has sufficient resources, then search is continued in other partitions. The
complete process is described below.

Whenever a task is submitted to a node Nj in a partition, initially the load state of same node R(n)j is
evaluated. If found that the current node is capable to accept more jobs (i.e. Nidle or Nnormal) with specified
resource requirements, the task is assigned to it. In addition, the load status of the partition and available
resources will be updated. If found that current node is not capable to accept task (i.e. Novld), then other
nodes in same partition are evaluated for their load state.

Following possible results can be there after this load state evaluation:
Case-1: If a single node Nj is found with idle or normal load state, assign the task to this node, update the
load status of partition S(p)i and node R(n)j .
Case-2: If multiple nodes can accept the task, create a list of all such capable nodes Ncapable.
Case-3: If no node in current partition is found with idle or normal load state, then let balancer handover
the request to the controller. Now controller will call the balancers of other partitions and will collect the load
status of all partitions by calling searchPartition () method.

Algorithm 1 Partition Selection

1: procedure PartitionSelection(taskId, taskLength, pesNumber, taskF ileSize, taskOutputSize,
utilizationModelCpu, utilizationModelRam, utilizationModelBw)

2: if partitionstate [partitionid] = idle or partitionstate [partitionid]= normal) then
3: selectedpartition← partitionid

4: if nodestate [nodeid] = idle or nodestate [nodeid] = normal then
5: selectednode← nodeid
6: else

7: for all nodeid ∈ partitionid do

8: if nodestate[nodeid]← high then

9: continue
10: else

11: selectednode← nodeid
12: end if

13: end for

14: end if

15: partitionstate[partitionid] ++
16: else

17: searchPartition (partitionstate [], nodestate [] , nodemem, nodecpu,memreq, cpureq)
18: end if

19: end procedure

Controller Module will traverse through all the remaining partitions by invoking their balancers. Wherever

Static Load Balancing Technique for Geographically Partitioned Public Cloud 309

it finds a partition with Pnormal or Pidle load state, it will add that partitions id in a list of capable partitions
Pcapable.

While traversing all the partitions three cases are possible:
Case-1: If found single partition then assign the task to the balancer Bi of that partition and update its load
status.
Case-2: If multiple partitions are capable to accept the task, create a list of all such capable partitions. Once
this list is complete, we can choose the best possible partition in the context of available resources through
searchPartitionnohigh ().
Case-3: If no partition is found with idle or normal load state, try to find individual nodes in overloaded
partitions Povld. Call searchPartitionhigh () method.

Algorithm 2 Determining Availability of Capable Nodes

procedure SearchPartition(partitionstate [] , nodeState [], nodemem, nodecpu, memreq, cpureq)
2: for all partitionid ∈ partitionlist[] do

if partitionstate[partitionid] = idle or partitionstate[partitionid] = normal then

4: selectedpartition← partitionid

if nodestate[nodeid] = idle or nodestate[nodeid] = normal then

6: capablei ← partitionid

i++
8: else

continue
10: end if

end if

12: if capablesize > 1 then

searchpartitionNoHigh ()
14: else

searchpartitionHigh ()
16: end if

end for

18: end procedure

Algorithm 3 Partition Selection if Available with Normal State

procedure partitionHigh(capable[], partitionstate [], nodestate [], nodemem [], nodecpu [], reqmem,
reqcpu)

for all partitionid ∈ capable[] do
3: if maxresource[i] < capacityatpartitionresource[i]() then

maxresource[i] = capacityatpartitionresource[i]()maxnoderesource[i] = capable[k]
end if

6: if maxresource[i+1] < capacityatpartitionresource[i+1]() then
maxresource[i+1] = capacityatpartitionresource[i+1]()
maxnoderesource[i+1] = capable[k]

9: end if

end for

end procedure

310 Mandeep Kaur, Rajni Mohana

Algorithm 4 Partition Selection if Not Available with Normal State

procedure partitionNoHigh(capable [], partitionstate [] , nodestate [], nodemem [], nodecpu [], reqmem,
reqcpu)

for all partitionid ∈ capable[] do
if maxmem < capacityatnodemem then

4: maxmem ← capacityatnodemem

maxnodemem ← capable[i]
end if

if maxcpu < capacityatnodecpu then

8: maxcpu ← capacityatnodecpu
maxnodecpu ← capable[i]

end if

allocation()
12: end for

end procedure

Algorithm 5 Calculation of Capacity of a Node

procedure capacityatnoderesource(partitionid, nodestate[] , noderesource[])
for all nodeid ∈ partitionid do

capacityresource[nodeid] = noderesource[nodeid]− nodestate[nodeid] ∗ consumption

end for

5: return capacityresource
end procedure

All the nodes are given an amount of various resources. Which node is in an idle, normal or overload state,
is entirely calculated based upon the available (free) amount of these resources. This amount is being said the
capacity of a node for that resource. To calculate the capacity of nodes the amount of resources under use is
deducted from total allocation of that resource in the node.

Algorithm 6 Calculation of Capacity of a Partition

procedure capacityatpartition(partitionid,nodestate[],noderesource[])
for all nodeid ∈ partitionid do

capacityresource[nodeid]← noderesource[nodeid]− nodestate[nodeid] ∗ consumption

end for

return capacityresource
6: end procedure

All the nodes are given an amount of distinct resources. Which partition is in an idle, normal, overload
state, is calculated based on the number of nodes in that partition, falling within a category based on a threshold
value for various load states. This load state is being considered as a capacity of a partition for that resource.
To calculate the capacity of partitions, capacity of resources at each node for each resource is used as an input.

Once partitions with maximum capacity of various resources i.e. Max(S(p)j)resourcex) have been calcu-
lated and inside those partition, nodes with maximum capacity i.e. Max(R(n)j)resourcex) have been identified,
we must select an appropriate node which can cater the requirement of all resources. For example, we can start
with the node, which has maximum available memory. We must check if this node has enough processing units
also. If yes, the task is allocated to this node. If no, then a node with maximum capacity of available CPU
resources will be chosen and will be checked to see if it has enough memory available. A node allocation is
possible only if it has sufficient instances of each resource available as per requirement of tasks. If no such node
is found, then the task allocation is delayed until some partition is not capable to cater all resources requirement;

Static Load Balancing Technique for Geographically Partitioned Public Cloud 311

Table 3.2
Time and Space Complexity of Algorithms and its Modules

Sr. No. Step Time Complexity Space Complexity

1.
Testing the current node for avail-
ability of resources

O (1) O (1)

2.
Testing other nodes in the current
partition

O(Count(Pcurrent(N))) O (1)

3. Testing other partitions

a) Each partition has same no. of
nodes

O(Count(P)*Count(N)) where N
represents the multiplication of
partition count and node count

O(Count(Pi(N))) where N repre-
sents no. of nodes in a partition un-
der consideration.

b) Partitions have different no. of
nodes

O(Sum(Count(Pi(N)))) where N
represents sum of all the nodes in
all partitions

O(Count(Pi(N))) where N repre-
sents no. of nodes in a partition un-
der consideration

4.
Testing among multiple capable par-
titions .

O(Count(Pcapable)) where N repre-
sents no. of partitions

O(Count(Pi(N))) where N repre-
sents no. of nodes in partition under
consideration

5.
Testing among multiple capable
nodes

O(Count(Pcapable(i)(N))) where N
represents no. of nodes in partition
under consideration

O(Count(Pi(N))) where N repre-
sents no. of nodes in partition under
consideration

allocation () function is called for this purpose.
Again in this situation, the decision is made based upon following criteria:
1. Find out the node with maximum availability of resourcex i.e. Max(R(n)j)resourcex)
2. Check if this node has sufficient availability of all other resources which can be calculated by comparing

the availability with the requirement. i.e.
Max(R(n)j)resourcex) >requirementresource(x+1,x+2,..,k)

3. If node Nj satisfies the above said criteria, then select this node and allocate the task. Else evaluate
the node Max(R(n)j)resourcex+1) and repeat these steps.

4. If none of the nodes satisfy above criteria, then balancer notifies the controller to search in other
partitions.

Algorithm 7 Node allocation to a task

procedure allocation(capacityatnodemem[],capacityatnodecpu[],reqmem,reqcpu,
maxpartitionmem,maxpartitioncpu)

if reqmem <= capacityatpartitionmem(minpartitionmem, capacityatnodemem then AND reqcpu <=
capacityatpartitioncpu(maxpartitionmemcapacityatnodecpu

selectedpartition← maxpartitionmem

else if reqmem <= capacityatpartitionmem(maxpartitioncpu, capacityatnodemem then AND reqcpu <=
capacityatpartitioncpu(maxpartitioncpucapacityatnodecpu

selectedpartition← maxpartitioncpu

else

7: statement: No allocation possible currently
end if

end procedure

Time and Space Complexity During the entire process, time and space complexity varies as per entities
under consideration. Initially, when the job was submitted at that time only one node availability status is
evaluated. Hence, the complexity at this step is O (1). In all the other cases complexity class O(N) is applicable
and value of N keeps on changing as per the case. Following is the summary of This entire process involves
following steps along with their corresponding complexities.

In Table 3.2, P stands for Partition and N stand for a Node. Overall timIn the above table, P stands for
Partition and N stand for a Node. Overall time and space complexity will be affected by the count of partitions

312 Mandeep Kaur, Rajni Mohana

Table 4.1
Implementation Setup Parameters

Sr. No. Parameter Name Parameter
1. No. of Partitions 2
2. No. of Brokers 2
3. No. of Datacenters 4 (2 Datacenters with each partition)
4. No. of Hosts 2 Hosts each Datacenter
5. No. of VMs 6 VMs in each Datacenter
6. No. of tasks 40 tasks with each broker

Fig. 4.1. Average Max Execution Time Comparison

and nodes in partitions. In all the cases linear alternatives are chosen to keep the complexities low.

4. Implementation and Results. This section shows the results of the evaluating the proposed algo-
rithm. The algorithm is implemented in CloudSim by following setup details. The implementation is done on
this small set of attributes for sampling purposes with certain assumptions.

For evaluating the performance of the proposed algorithm, the results have been compared with FCFS and
SJF algorithms within same setup. The experiment is conducted by executing each algorithm 5 times. The
VMs and tasks are heterogenous in their sizes. And the comparison results are shown below.

The results are compared for average of Finish time of tasks, waiting time of tasks and actual run time of
tasks. Further, for all these three evaluation parameters are measured for total, average and maximum time of
tasks. According to generated results proposed algorithm is producing better results when compared to FCFS
algorithm, but the performance of SJF algorithm is better in all the cases. Fig. 4.1 shows the comparison of
Maximum Execution time of a task during simulation. During most of the execution instances, it is found that
the results of the proposed algorithm are better in case of Maximum Actual Run time of tasks. In Fig. 4.2
comparison is made between average total waiting time, average total finish time and average maximum actual
time of all the tasks. It concludes that the proposed algorithm is capable to perform better than the FCFS
algorithm in the same setup. Fig. 4.3 compares the actual run time of the tasks. Like other cases, it too shows
that the proposed algorithm produces better results in comparison of FCFS but SJF algorithm is still better
than this.

Static Load Balancing Technique for Geographically Partitioned Public Cloud 313

Fig. 4.2. Average Time Comparison

Fig. 4.3. Total Time Comparison

From the experimental results above, it can be seen that in most of the cases the output from SJF algorithm
is better than proposed model. It looks impressive when talking about small scale local applications. But when
we are focusing upon public cloud, the number of submitted jobs can be huge and their length unpredictable.
In such environment, chances of resource starvation increase in manifolds. The consequences can be in terms
of delayed response, longer waiting time for larger jobs, violated SLAs and so many others. In short, SJF
algorithm focuses on jobs on the basis of a single parameter i.e. job length. This approach cannot be considered
very beneficial for huge systems such as public cloud.

314 Mandeep Kaur, Rajni Mohana

5. Conclusion. In the light of results produced till now the proposed algorithm works better in many
of the cases. Choosing virtual machines on the basis of minimum execution time is helpful in reducing the
waiting time of tasks. Also, adding one more load state will certainly reduce the number of unhandled tasks.
But further work can be done by finding techniques to improve the Makespan, Failure/non-served instances
of tasks and better ways to share the tasks load among available VMs. Better evaluation parameters can
be associated and results can be improved to out-perform more advanced and complicated algorithms. Better
techniques are required for heterogenous tasks and VMs which are a reason to add non-predictive load allocation
requirements. Introduction of fog stratum in this system can further share the load by shifting latency sensitive
jobs to the fog devices. Locally processing a share of jobs at fog layer will prove helpful in reducing bandwidth
congestion, traffic flow over the network and wide area network propagation delays. Fog layer also allows a user
to choose the optimal options in terms of compatibility, minimal geographical distance and decentralized/local
communication and processing. Combining public cloud partitioning and fog computing can produce much
more efficient results. Finally, partitioning technique can be very much useful to handle public clouds.

REFERENCES

[1] Ariel Orda Amir Nahir and Danny Raz. Replication-based load balancing. Transactions on Parallel and Distributed
Systems, pages 1–15, 2015.

[2] Danny Raz Amir Nahir, Ariel Orda. Replication-based load balancing. IEEE Transactions on Parallel and Distributed
Systems, 27:494–507, feb 2016.

[3] G. Suseendran Anand Nayyar, Vikram Puri. Logarithmic spiral based local search in artificial bee colony algorithm. Balas
V., Sharma N., Chakrabarti A. (eds) Data Management, Analytics and Innovation. Advances in Intelligent Systems and
Computing, 839:513–525, 2018.

[4] Rajeshwar Singh Anand Nayyar. Ant colony optimization computational swarm intelligence technique. 2016 3rd Inter-
national Conference on Computing for Sustainable Global Development (INDIACom), 2016.

[5] Rajkumar Buyya Anton Beloglazov, Jemal Abawajy. Energy-aware resource allocation heuristics for efficient manage-
ment of data centers for cloud computing. Elsevier, 5:20068 – 20082, 2017.

[6] Ruilong Deng, Rongxing Lu, Chengzhe Lai, Tom H. Luan, and Hao Liang. Optimal workload allocation in fog-cloud
computing toward balanced delay and power consumption. IEEE Internet of Things Journal, 3:1171–1181, 2016.

[7] Junjie Pang Gaochao Xu and Xiaodong Fu. A load balancing model based on cloud partitioning for the public cloud.
TSINGHUA SCIENCE AND TECHNOLOGY, pages 34–39, 2013.

[8] Kenji Yoshihira Hui Zhang, Guofei Jiang and Haifeng Chen. Proactive workload management in hybrid cloud comput-
ing+b17. IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 11:90–100, 2014.

[9] Gaolei Li, Jun Wu, Jianhua Li, Kuan Wang, and Tianpeng Ye. Service popularity-based smart resources partitioning
for fog computing-enabled industrial internet of things. IEEE Transactions on Industrial Informatics, pages 4702–4711,
2018.

[10] Gaolei Li, Jun Wu, Jianhua Li, Kuan Wang, and Tianpeng Ye. Service popularity-based smart resources partitioning
for fog computing-enabled industrial internet of things. IEEE Transactions on Industrial Informatics, pages 4702–4711,
2018.

[11] Gavriil Tzortzakis Michael Pantazoglou and Alex Delis. Decentralized and energy-efficient workload management in
enterprise clouds. IEEE TRANSACTIONS ON CLOUD COMPUTING, 10:1–14, 2017.

[12] Ahmed Hamza Nour Mostafa, Ismaeel Al Ridhawi. An intelligent dynamic replica selection model within grid systems.
Proceedings of the 8th IEEE GCC Conference and Exhibition, Muscat, Oman, pages 1 – 6, 2015.

[13] Aditya Brahmachari Pijush Kanti Dutta Pramanik, Saurabh Pal and Prasenjit Choudhury. Processing iot data:
From cloud to fogits time to be down to earth. ResearchGate, pages 124–148, 2018.

[14] Pankaj Sharma Priti Singh. Load degree calculation for the public cloud based on cloud partitioning model using turnaround
time. International Journal of Computer Science and Information Technologies, 2015.

[15] Deepak Puthal, Mohammad S. Obaidat, Priyadarsi Nanda, Mukesh Prasad, Saraju P. Mohanty, and Albert Y.
Zomaya. Secure and sustainable load balancing of edge data centers in fog computing. IEEE Communications Magazine,
56:60–65, 2018.

[16] Sudeep Tanwar Shriya Kaneriya, Anand Nayyar, Jai Prakash Verma, Sudhanshu Tyagi, Neeraj Kumar, M. S.
Obaidat, and Joel J P C Rodrigues. Data consumption-aware load forecasting scheme for smart grid systems. 2018
IEEE Globecom Workshops (GC Wkshps), 2019.

[17] Rimmy Yadav ; Avtar Singh Sidhu. Fault tolerant algorithm for replication management in distributed cloud system. 2015
IEEE 3rd International Conference on MOOCs, Innovation and Technology in Education (MITE), pages 78–83, 2015.

[18] Rajesh Kumar Simar Preet Singh, Anand Nayyar and Anju Sharma. Fog computing: from architecture to edge
computing and big data processing. The Journal of Supercomputing, pages 1–36, 2018.

[19] Simar Preet Singh, Anand Nayyar, and Rajesh Kumar Anju Sharma. Fog computing: from architecture to edge
computing and big data processing. The Journal of Supercomputing, pages 1–36, 2018.

[20] Anand Nayyar Sonal Sharma, Sandeep Kumar. Logarithmic spiral based local search in artificial bee colony algorithm.
Duong T., Vo NS. (eds) Industrial Networks and Intelligent Systems. INISCOM 2018, 257:15–27, 2019.

Static Load Balancing Technique for Geographically Partitioned Public Cloud 315

[21] Stavros Souravlas and Angelo Sifaleras. Trends in data replication strategies: a survey. International Journal of
Parallel, Emergent and Distributed Systems, pages 1 – 19, 2017.

[22] Angelo Sifaleras Stavros Souravlas. Binary-tree based estimation of file requests for efficient data replication. IEEE
Transactions on Parallel and Distributed Systems, 28:1839 – 1852, 2017.

[23] Antonio Scala Stefano Sebastio. A workload-based approach to partition the volunteer cloud. IEEE Conference on
Collaboration and Internet Computing, pages 2010–2018, 2015.

[24] Divya Mohandass Suguna R and Ranjani R. A novel approach for dynamic cloud partitioning and load balancing in cloud
computing environment. Journal of Theoretical and Applied Information Technology, 62:662–667, 2014.

[25] Chenhua Shi Xiuli He, Zhiyuan Ren and Jian Fang. A novel load balancing strategy of software-defined cloud/fog
networking in the internet of vehicles. China Communications, 13:140–149, 2016.

[26] Jui-Pin Yang. Elastic load balancing using self-adaptive replication management. IEEE Access, 5:7495–7504, 2017.
[27] Jui Pin Yang. On minimizing energy cost in internet-scale systems with dynamic data. IEEE Access, 5:20068 – 20082, 2017.
[28] Jui-Pin Yang. Intelligent offload detection for achieving approximately optimal load balancing. IEEE Access, 6:2169–3536,

2018.
[29] Hongmin Wang Yonglin Leng, Zhikui Chen and Fangming Zhong. A partitioning and index algorithm for rdf data.

IEEE Access, pages 29836 – 29845, 2018.
[30] Juan F. P’erez Zhan Qiu. Evaluating replication for parallel jobs:an efficient approach. IEEE TRANSACTIONS ON

PARALLEL AND DISTRIBUTED SYSTEMS), pages 2288–2302, 2016.

Edited by: Anand Nayyar
Received: Mar 9, 2019
Accepted: Apr 3, 2019

