
Scalable Computing: Practice and Experience

Volume 20, Number 2, pp. 335–347. http://www.scpe.org

DOI 10.12694/scpe.v20i2.1526
ISSN 1895-1767
c⃝ 2019 SCPE

PLACEMENT STRATEGY FOR INTERCOMMUNICATING TASKS OF AN ELASTIC

REQUEST IN FOG-CLOUD ENVIRONMENT

R. SRIDHARAN∗
AND S. DOMNIC †

Abstract. Cloud computing hosts large number of modern day applications using the virtualization concept. However, end-to-
end network latencies are detrimental to the performance of IoT (Internet of Things) applications like video surveillance and health
monitoring. Although edge/fog computing alleviates the latency concerns to some extent, it is still not suitable for applications
having intercommunicating tasks. Further, these applications can be elastic in nature and demand more tasks during their life-time.
To address this gap, in this paper a network aware co-allocation strategy for the tasks of an individual applications is proposed. After
modelling the problem using bin packing approach with additional constraints, the authors propose a novel heuristic IcAPER,(Inter-
communication Aware Placement for Elastic Requests) algorithm. The proposed algorithm uses the network neighborhood machine
for placement, once current resource is fully utilized by the application. Using CloudsimPlus simulator the performance IcAPER
algorithm is compared with First Come First Serve (FCFS), Random and First Fit Decreasing (FFD) algorithms for the parameters
(a) resource utilization (b) resource fragmentation and (c) Number of requests having intercommunicating tasks placed on to same
PM. Extensive simulation results shows IcAPER maps 34% more tasks on to the same PM and also increase the resource utilization
by 13% while decreasing the resource fragmentation by 37.8% when compared to other algorithms in our consideration.

Key words: Fog computing, Cloud computing, Elasticity, VM placement, Intercommunicating task, Network latency, Au-
toscaling

AMS subject classifications. 68M14, 68M20

1. Introduction. Due to proliferation of Internet-of-Things (IoT), lot of smart devices utilize information
from sensors attached to them and applications of IoT devices have become more personalized, automatized,
and intelligent. These devices can adapt to their surroundings, and communicate with other devices to create
new forms of smart, intelligent, and autonomous services. Generally smart devices have inadequate computation
power, storage and bandwidth. Therefore, new forms of services are backed by cloud resources as cloud provides
virtualized elastic resource at low cost using pay-per-use model in their huge computing and storage resources.

However applications, such as video surveillance, real time gaming, real time streaming and augmented
reality are too sensitive towards reliability and latency. Since cloud data centers are located near the core
network, the information transmitted from/to the end devices of these applications from/to cloud leads to
unacceptable latency besides the problems like location-awareness and geo-distribution of IoT applications.

Fog computing paradigm ensures low-latency, high-bandwidth and location-awareness to the IoT applica-
tions.This paradigm pushes the elastic resources of cloud namely, computing and storage to the network edges,
i.e. near to the data generation point. As and when resources of fog servers are exhausted, naturally compu-
tation and storage are pushed back to cloud resource. Combined resources of fog-cloud environment is referred
as fog Cloud Datacenter (fogCDC) in this paper. Fog computing comprises of micro-clouds (fog nodes) that
are placed at the edge of data originator.These micro-clouds have the mechanism for processing the data before
going on to the network. Hence, fog computing structure is useful in big IoT data analytics [1]. High level
overview of fog platforms and architecture is presented in [2] along with implementation of Virtual Machines
migration in fog computing. Since fog computing cooperates with cloud computing for its resource demand,
together with IoT edge devices, a three layered service delivery model as shown in Fig. 1.1, is adopted for fog
computing. Both cloudlet [3,4] that was built before the emergence of fog computing, but inherently coincides
with fog and ParaDrop [5] that uses gateway (WiFi access point or home set-top box) for fog implementation,
essentially highlight the role of virtualization in a fog architecture. It is to be noted that cloudlet is nothing but
a task that is mapped on to an auto-destroyable VM, once the task completes its execution. Hence task and VM
are interchangeably used in this paper. Group of VMs launched in the distributed fog-cloud servers working
together for a specific surveillance task is demonstrated in [6]. Currently majority of the IoT systems and soft-
ware are built on top of open Web-based technologies [7]. Authors of [8], review the current efforts in realizing

∗National Institute of Technology Trichy, Tiruchirapalli- 620 015. Tamil Nadu, India. (sridharter@gmail.com).
†National Institute of Technology Trichy, Tiruchirapalli- 620 015. Tamil Nadu, India (domnic@nitt.edu).

335

336 R. Sridharan, S. Dominc S

Fig. 1.1. Three layered architecture of Fog Computing

Fig. 1.2. Placement of sample Tasks using Load balancing FCFS

big IoT data analytics on fog networking. Therefore, we can easily conclude that majority of application types
can use VM based Fog-cloud environment for their processing.

Some of the VMs of these application need inter-communication. For example VMs hosting database task
and hosting application task need inter communication in a three-tier web applications. Similarly VMs that
hosts object tracker task in a video surveillance system that uses multiple cameras covering multiple areas, need
inter-task communication. As these applications request sporadic resources, they depend heavily on elastic
capability of the fog-cloud paradigm. Elasticity can be classified as two types: horizontal and vertical. In
horizontal elasticity, dynamically the number of VMs are adjusted, whereas the resources (CPU, storage and
Memory) of a VM are dynamically adjusted in vertical elasticity [9]. In such a scenario mapping of tasks to the
suitable Physical Machine (PM)1, called Virtual Machine Placement (VMP), is a challenging cloud problem.

To summarize, a cloud request can be classified as those having inter-communicating VMs and those not
having inter-communicating VMs, which can be further classified as needing elasticity and not. Authors, confines
this work to find suitable placement for application tasks that need inter-communication and horizontal elasticity
as well, hereafter called as simply elastic request. Other requests are referred as non-elastic requests, which
may or may not have inter-communicating VMs. Applications having inter-communicating VMs, gives better
performance, when they are placed together on to the same PM [10] as there will not be any network latency
between these VMs. But general VM placement schemes fail to recognize this and place the VMs on to PMs in
an arbitrary manner.

Consider an example of five requests that are currently(time t0) executing in a datacenter. Let the first

1PM denotes fog server as well as the servers of cloud Datacenter

Placement Strategy for Intercommunicating Tasks of an Elastic Request in Fog-Cloud Environment 337

(ncT1) and third (ncT2) requests, having one tasks each, does not require inter-communication. Let the second
request having two task (cT1 and cT2)needs inter-communication. Assume that the fourth (ncT3 and fifth
(cT3) are newly (time t1) arrived requests. While the forth request is non-intercommunicating type, the fifth
request is an additional task of second request that needs inter communication with (cT1 and cT2). Further,
these tasks follow the communication pattern represented by arrows, as shown in Fig. 1.2(a). Assuming that
we have two PMs to place these tasks. Using the widely used VM placement algorithm First Come First Serve
(FCFS) along with load balancing, placements of tasks at t0 resembles to that of Fig. 1.2(b). Placement of tasks
at t1 is shown Fig. 1.2(c). If all the tasks are placed onto single PM itself, the other PM could be switched off to
reduce the overall power consumption. Else placing all the inter-communicating tasks (cT1, cT2 and cT3) on to
the same physical machine reduces the power consumption used for communication, as network latency among
these tasks is nil. Since fog computing uses the cloud resources once their resources are fully utilized, placements
for inter-communication task of a single request can happen both at fog resources and cloud resources as well.
Particularly, when elastic requirements of this request have to be addressed, placements using both fog and
cloud resources in unavoidable.

Motivated by this observation, in this paper, after formulating Inter-communication Aware Task Placement
of Elastic Request (IcAPER) problem, we describe in detail, the proposed IcAPER algorithm that improves the
resource management of fogCDC. Performance of individual fog applications is also bound to improve using this
algorithm, as it implements co-allocation for tasks of these applications. Co-allocation is also adhered in cloud
resources once fog server is fully utilized. This is achieved by maintaining the identity of tasks with reference
to its application across fogCDC. In summary, contributions of this paper are as follows:

• A mathematical modeling of Inter-communication Aware Task Placement of an Elastic Request (IcA-
PER) problem. This model considers requests of individual IoT application having one or more tasks
along with its communication pattern and elastic needs during their lifetime for placement instead of
individual tasks, a widely followed practice is presented.
• Guided by IcAPER model, IcAPER algorithm that minimize the network latency and improves the
datacenter efficiency is proposed.
• Effectiveness of the proposed algorithm is demonstrated in a simulation environment via (a) reduced VM
migrations, (b) resource fragmentation, (c) improved resource utilization and (d) Number of requests
having intercommunicating tasks placed on to same PM.

Rest of this paper is organized as follows. Section 2 reviews the available literature related to the problem.
While Section 3 describes the problem formulation and its modeling, Section 4 describes details the proposed
IcAPER algorithm along with illustration of IcAPER placement for the sample task described in Fig. 1.2(a).
Section 5 presents the implementation and analysis of IcAPER and Section 6 concludes this work.

2. Related Works. Fog computing, relatively a new distributed computing paradigm, extends the cloud
service to the edge of the network [11]. Fog device, any element in the network capable of hosting application
modules, include resource-rich servers and resource-poor devices such as gateways, mobile, smart vehicles,
smart cameras etc. As both fog resource and cloud resources can host VMs, this work reviews the general VM
placement, a multi-parameter optimization problem in this section. Simulation environments [12,13,14] have
been used in evaluating the solutions for this problem .

Multi-dimensional bin-packing problem is used to model the VMP, where PMs are considered as bins and
VMs are considered as items, with the goal of finding minimum number of bins to hold all the items. Since bin-
packing is a NP-hard problem, heuristic based approximation algorithms are proposed for VMP. First Fit (FF)
algorithm [15], a greedy method is the most popular algorithm used for solving bin-packing problem. FF keeps
filling the current bin until the PM could not hold the new VM. Even though this approach is time-effective, it
usually occupies more PM, than that of an optimal solution. Modified version of FF is proposed by Panigrahy
et al. [16] where VMs are sorted in decreasing order before applying FF on the sorted items. This is called
First Fit Decreasing (FFD) algorithm which ensures that large items are placed first.

Authors of [17] proposed a dynamic mapping between new VMs and the PMs using probability theory,
and demonstrate that the energy consumption of DC is minimal. While authors of [18] proposed the VMP
solution for a balanced PMs interms of load in a DC, others [19, 20] tried to minimize the power consumption of
DC by employing consolidation techniques to ensure that active PMs are always minimal by maximizing their

338 R. Sridharan, S. Dominc S

utilization. Mahfuzur et al., [21], proposed static initial VM placement where, VMs are co-placed based on
their resource requirement compatibility. In this approach, PMs and VMs are differentiated as resource critical
and non-critical based on their historical usage. But they have not considered the elastic requirements of an
application hosted by these VMs. To minimize the power consumption, a decentralized decision based VMP
is proposed by Feller et al., [22], in which, a peer-peer (P2P) communication model is proposed among PMs.
Deploying this communication model, periodic consolidations of VMs are accomplished by using cost-aware Ant
Colony Optimization (ACO) techniques. Cui et al., [23] brought out the importance of policy and network
awareness before considering VM migrations. The authors demonstrated an efficient VM management scheme
which reduces the communication cost while considering PMs to migrate the VMs.

Further, some contributions have explored two-stage approach as well for VMP problem. Beloglazove et al.,
[24] proposed two stages for the VMP: (i) initial placement of VMs and (ii) optimizing the current placement.
In this, using CPU utilization of the VMs, a Modified Best Fit Decreasing (MBFD) algorithm is used for initial
placement and the second phase is triggered whenever an overloaded or an under-loaded PM is detected as a
result of a well-defined CPU threshold. Without considering elasticity, Zheng et al., [25] subdivided the VMP
as two sub-problems. A Best Fit (BF) algorithm, used for incremental placements acts as first step followed
by another step in which, periodical trigger of VM consolidation focusing on reducing power consumption and
minimization of resource wastage.

An interesting two-phase online VMP is proposed by Shi et al., [26] where PMs and VM requests are
represented as vectors. During the first phase, based on cosine similarity of the vectors, PM types are assigned to
VM requests and based on resource request, VMs are categorized for each PM type. Using utilization thresholds
of PMs, reconfiguration of VMs is triggered in the second phase. Like [24] here also authors have not taken
into account elasticity at all. Another two phase approached for VMP proposed by Fabio et al., [27] considers
complex IaaS environment including elasticity but did not consider the intercommunication patterns while
placing the additional VM of an elastic requests. Mishra et al., [28] proposed algorithm to map the task onto VM
and the VMs to PM. This algorithm minimizes the makespan and task rejection rate while reducing the energy
consumption by reducing the active number PMs. The reviewed works, except [21,27,10,23] solve VMP problem
as simple placement strategy using the current PM resource utilization for new VM placement, consolidation
and energy consumption. Authors [21,27] include the elasticity in their works but not intercommunication
whereas, authors of [10, 23] include network awareness but not elasticity.

As explained in Section 1, tasks placement accomplished after considering both the network awareness
and intercommunicating needs of the tasks, together with the knowledge of prior placement of tasks from this
application is bound to increase the application performance. Hence, this work propose to use prior tasks
placement knowledge of an intercommunicating elastic application, for the placement of its additional tasks,
while ensuring reduced overhead of fogCDC and also increased application performance.

3. Problem Statement and Proposed Model. This section explain the problem that is addressed
through this work and its mathematical programming model followed tasks placements using IcAPER for the
sample tasks described in Section 1.

3.1. Problem statement. The focus of this work is to improve task placement of an elastic IoT application
requests for overall betterment of fogCDC management. By and large, and also by design, only volume of data
generated by an IoT application can change over period of time and hence need more processing power to
arrive timely decisions, which can be addressed by elasticity of fogCDC. These tasks requests can be classified
into three types, namely (a) new VM requests, (b) migrating VMs requests and (c) incremental VM requests.
Requests wanting elasticity service are expected to give the minimum number of VMs (VMmin) that needs to
be running permanently during the lifetime of those applications. They are also expected to give maximum
number of VMs (VMmax) that can be allocated at any given point of time to cater to the application fleets. In
effect, the number of VMs dedicated to these applications at any time shall be between VMmin and VMmax.
This requirement is in consistent with popular cloud service providers like Google and Amazon. In addition
users are also expected specify need of intercommunication to their tasks. Since, application logic remains same
for the life-time of an IoT applications, using the historical data, the service providers can also easily identify
inter-communication needs of these tasks.

Therefore, we can assign application driven unique identifier for these tasks. Using this identifier we can

Placement Strategy for Intercommunicating Tasks of an Elastic Request in Fog-Cloud Environment 339

easily influence the task scheduler for a desired resource mapping for these tasks. Efficiently placed VMmin and
incremental VMs of these requests can give various benefits to both user and fog-cloud service provider. These
incremental VM requests, when solved as a fixed placement problem result in cascading benefits. Firstly, inter
VM communication latency is reduced as network is not involved, which is bound to increase the application
performance. Secondly, placing VMmin VMs together reduces the potential migrations during cloud server
consolidation. This reduced migration and network latency leads to minimal power consumption in fogCDC.
Thirdly, as individual PMs are balanced with the placement of VMs, serving both communication depend
applications and applications made up of non-communicating tasks, SLA violations are bound to be minimal
with respect to inter-communicating tasks.

3.2. Proposed Model. The proposed work consider the communication pattern of the tasks of a request
and also the elastic needs of requests as additional constraints for the general VMP problem (GVMP), to
formulate the IcAPER problem. IcAPER can be viewed as a bin packing problem where PMs are treated as
bins and VMs are treated as items. This is an optimization problem in which number of PMs (bins) used to
place the VMs (items) are to be minimized. This work segregate the requests into three types: (a) requests for
placing group of tasks having inter-communication along with elastic needs (recomu), (b)without elasticity but
needs inter-communication (rcomu) and (c)all other requests (r).

To formalize the problem we make the following assumptions:
• Let r1, r2, rαbe the requests defined by a four-tuple rk= {u, V Mtype, V Mmin, V Mmax}, 1 ≤ k ≤ α

where VMmin and VMmax are number of VMs, VMtype = {micro, small,medium, large, xlarge} and
u= {recomu, rcomu, r}.
• p = {p1, p2, pn} and v = {v1, v2, vm} as the identifier of PMs and VMs respectively
• Both PMs and VMs are constrained with D-dimensional resource vectors R (number of CPUs, memory
size, storage space, bandwidth speed etc.).
• n represents total number of PMs, m represents total number of requests and N represents VMmin,
Then from the above assumptions we have,

rk =

VMmin
∑

i=1

vi (3.1)

Hence,

m =
α
∑

k=1

rk (3.2)

Let us introduce a function φ to indicate the placement schema φ(rk) = p if VMs of rk th request are
placed on the pth PM. The objective of GVMP is, given a request sequence S, and PMs p, 1 ≤ p ≤ n

with capacity C, find a placement function φ such that

minimize

n
∑

i=1

pi (3.3)

subject to the following two constraints.
• Resource constraints: During the placement of VMs belonging to rk requests, the PMs identified to
host these VMs are subject to primary resource constraints:

∀1 ≤ p ≤ n, 1 ≤ d ≤ D

m
∑

rk=1

rk
∑

v=1

Xvp ∗R
d
v ≤ C (3.4)

where Rd
v(1 ≤ d ≤ D) is the resource demand of vth VM and

Xvp =

{

1,

0, otherwise

340 R. Sridharan, S. Dominc S

• Placement constraints: Each VM of user request r has to be placed to run on a single PM

∀1 ≤ p ≤ n,

m
∑

rk=1

rk
∑

v=1

Xvp = 1 (3.5)

Each item has resource vector Ri = {R1
i , R

2
i , .R

d
i } and each dimension l ∈ [1, .., d], denotes resource

demand size Rl
i which is normalized 0..1 and capacity of each PM is also normalized to 1, then we have

Xvp ∈ {0, 1} and n ∈ {0, 1} (3.6)

Next IcAPER is formulated by adding three more constraints, as described below.
• Same-PM constraint: In any request having inter-communication tasks (recomu), let VMs v1 and v2
have co-allocation requirement and are required to be co-allocated onto same PM p ∈ [1n] then we can
combine VM v1 and v2 to one group and form a new VM vnew. For each resource dimension d, the size
of the group VM is denoted by sum of VM v1 and v2.

i.e.Rd
vnew

= Rd
v1

+Rd
v2

(3.7)

Hence the following constraint is added to GVMP:

∀p ∈ [1n], {∀v1, v2 ∈ [1..V Mmin]} ∈ rk &

rk ∈ {r
e
comu, rcomu}, Xv1p = Xv2p (3.8)

• Fixed-PM constraint: Let us define matrix Aij , where i, j ∈ {1m}, to denote the request relation
among individual tasks. As explained in previous section, we also set the individual element of this ma-
trix with rk, the application driven request identifier, to which the current tasks belongs.This identifier
is uniquely identifiable across fogCDC. Assume that r

′

k denotes the elastic requirements of request rk,
then for each tasks of an inter-communication needed elastic task group, we add the following fixed-PM
constraint:

∀rk ∈ recomu, ∀1 ≤ k ≤ α, xvp = r
′

k = rk (3.9)

Comment: All the above explained constraints are suitable for cloud resources only. This is because, in
normal circumstances, there will be only a single resource rich fog server will be available per area to which
all IoT applications send the data. Fog architecture depends solely on cloud resource for computation-heavy
tasks. Hence the objective Eq. 3.3 with constraints of cf. Eqs. 3.4, 3.5, and 3.8 are to be solved for an effec-
tive initial VMP of an individual request while the objective cf. Eq. 3.3 with constraints of Eqs. 3.4 and 3.5
and Eqs. 3.4 and 3.9 to be satisfied during the additional VM requests of an intercommunicating elastic request.

Claim: IcAPER is NP-Complete.
Proof: As per constraint Eq. 3.8, resource demand vectors of all the tasks specified by VMmin recomu

and rcomu are combined to form a new VM having higher resource demand vector. Characteristics of VM, an
equivalent to item in a bin-packing problem are not altered by adhering to this constraint. As stated in Eq. 3.6
we can equate the normalized IcAPER problem to that of normalized GVMP by dividing VM sizes with the
corresponding resource capacities of PMs. Hence similar to GVMP, IcAPER is also NP-Complete.

Since minimization problem of IcAPER is NP-Complete, we cannot get the optimal placement solutions in
polynomial time unless P=NP [29]. Hence we propose a algorithmic based solution in this paper.

4. Proposed IcAPER Algorithm. In this section, we present a VMP scheme guided by IcAPER problem
modelling based on request type recomu, rcomu and r rather than VMtype for optimal operations of fogDC. This
scheme recognizes inter-communication needs of the requests for tasks placements. Initial placement focuses on
placing the tasks of individual requests efficiently so that future migrations are minimal. This also ensures that
the network overheads and overheads incurred for identifying suitable VMs and PMs that are candidates for these
migrations, are also reduced. Subsequently, placement of elastic needs of requests having inter-communication
are confined to the individual PM resulting in better application performance due to nil network latency. To
develop such an algorithm, we make some simplifying assumptions as follows:

Placement Strategy for Intercommunicating Tasks of an Elastic Request in Fog-Cloud Environment 341

Fig. 4.1. Flow chart of the proposed Algorithm

• fogCDC has enough capacity to serve all the requests.
• VM request can be initiated by user or cloud service. In case of elasticity, cloud service monitor shall
initiate the event associated with increase and or decrease of VMs.
• Without loss of generality, we assume that by minimizing cross-traffics, overall IoT application perfor-
mance will be improved.

In this paper, VM placement patterns are formulated in two steps. During the first step initial VMP
is achieved subject to constraints Eqs. 3.4, 3.5, 3.8 and Eq. 3.9. Fixed placement pattern that includes
network neighborhood machines, is adopted for the additional VMs of request type recomu as the final step. We
symbolize Ct for total (original) capacity and Cu for current utilization of active PM which is in consideration
for placement, while resource demand of VM that needs to be placed, is defined by Cr. Note that all these
parameters are defined in terms of resource vectors (number of CPUs, memory size, storage space, bandwidth
speed etc.).

The Inter-communication Aware placement for tasks of an Elastic Request (IcAPER) algorithm, after
extracting the VM details from the individual request, assemble the VMs according to various constraints listed
in Section 3, and sends them to Allocate function along with candidate PM. Allocate function performs the
actual allocation of VMs to given PM. Upon non-availability of enough resources in the PM, it initiates new
PM and places the VMs. Flow chat of IcAPER algorithm and Allocate sub-function is presented in Fig. 4.1(a).
The detailed description of the same follows.

4.1. IcAPER Algorithm Description. As a first step IcAPER algorithm collects individual requests,
both from cloud service and users onto a batch B. Additional VM of elastic requests emanating from cloud
services are also queued to the same batch. Note that each request is defined by four-tuple {u, V Mtype, V Mmin,

V Mmax}. Components of this four-tuple are already explained in Section 3. However if the request is emanated
from cloud service, then combination of information indicating whether the request is to scale-up or scale-down
the VM, and a unique request identifier through which the four-tuples can be extracted, defines the request.

At fixed time interval, the m requests are differentiated as fresh and additional request. After extracting
VM details from VMtype of each request in m, they are segregated as recomu,rcomu and r. In adherence to

342 R. Sridharan, S. Dominc S

Algorithm 1 IcAPER Algorithm

Require : request, active number of PM n

Result : tasks placement * Refer Sect. 3 for description of symbols *\
1 fetch user requests m
2 while m != NULL do

3 rk ← m.k

4 for k = 1 to α

5 Cr = X.Rd

6 if rk for deletion
7 process scale-down of VM
8 else if rk for addition
9 Allocate (X, rk, p

′

n) * adherence to fixed-PM constraint *\
10 else if u ∈ recomu or u ∈ rcomu

11 X ← VMmin.R
d
v(VMtype) * adherence to same-PM constraint*\

12 Cu = Allocate(X,u, Pn)
13 else if u ∈ r

14 X ← N.Rd
v(VMtype)

15 Cu = Allocate(X,u, Pn)
16 end for

17 Ca ← (Ct − Cu)
18 end while

same-PM constraint of the proposed IcAPER, the demand resource vectors of all the tasks, given by N , of new
recomu request and new rcomu are combined individually to form a new task and considered as single placement
[line 10]. If the request is for scale-up or scale-down of VM from an existing recomu type requests, then PM
details are extracted from the request identifier and processed accordingly [lines 5-9]so as to adhere to fixed-Pm
constraints. After the formulation of VMs, sub-function Allocate is called with the candidate PM [lines 12,15].
Before addressing the next request available capacity of the PM is re-calculated. [line 17]. Description of the
Allocate function is presented next.

Algorithm 2 Allocate Sub-function

Input : X (VM to be placed), request rk, pn (PM to be used for mapping)
return : utilization of PM * Refer Sect. 3 for description of symbols *\
1 extract u from rk
2 Ca ← (Ct − Cu) and Cr = X.Rd

3 if u ∈ recommu and X is an additional VM
4 if Ca > Cr) map X onto pn
5 else if (pn∃X

′

.Rd ∈ rcomm ≥ Cr)
6 migrate X

′

from pn using FirstFit
7 map X onto pn
8 else map X onto network neighborhood machine by repeating step 4-8
9 else if (Ca > Cr) map X onto pn
10 else map X onto new PM
11 return Cu

4.1.1. Allocate function description. For Allocate function, request type along with the VM to be
placed and candidate PM are given as input. After calculating available Ca and extracting resource demand
vector Cr of current VM in consideration for placement [line 3] function proceeds to map the VM onto candidate
PM given as the input. If the request is for an additional VM of recomu, on availability of enough capacity, the
request Cr is directly mapped on to the PM [line 5] else, migrate suitable VM or combination of VMs belonging to

Placement Strategy for Intercommunicating Tasks of an Elastic Request in Fog-Cloud Environment 343

Fig. 4.2. Placement of sample Tasks using IcAPER

Table 5.1

Host configuration used in simulation

Core RAM VMM Storage MIPS

16 64 GB Xen 1 TB 100,000

r from that PM using First Fit algorithm and map the additional VM [lines 6-8]. Upon unsuccessful placement
suitable PM from the network neighborhood is identified and repeats steps 6-8 until successful placement
happens. If the request is new one (recomu,r

e
comu and r), then on availability of enough resources, we directly

map the VM onto the given PM, failing which new PM is initiated and mapping of VM is done[lines 10-11].
Finally the current utilization of the PM used for the latest placement process is returned to the Algorithm 1.

4.2. Cost Analysis of IcAPER Algorithm. Number of VM requests m in the batch queue will be a
modest constant. For example, if scan interval of a batch is 5 minutes and on an average 50 VM requests get
queued up, then Algorithm 1 needs to scan [lines 3-16] these 50 requests only and hence the cost is O(m). Cost
of sorting the segregated batch B is O(m log m) [line 17, 18]. Since eList and neList lists are of size O(m/2),
the following loop[lines 19 - 28] will also execute O(m) times, implying that Allocate, will also be called O(m)
times. The inner loop having break [line 26] will execute once sufficient non-elastic VMs are placed matching to
that of an elastic VM. As the number of VMs in a PM is bounded by a constant, the cost of inner loop is O(1).
Last loop [line 29-31] that places the leftover VMs also has a cost of O(m). Let n be the number of candidate
PM in Allocate sub-function, then packing the VMs onto PM, results in cost of O(n). Hence O(m log m) +
O(n) is the total cost of IcAPER, which is asymptotic to FFD and FCFS algorithms.

4.3. IcAPER for sample VMs. Let us look at the changes that the balanced FCFS VM placement
scheme described in cf. Sect. 1, for the sample VMs as depicted in Fig. 1.2 (a) goes through during initial
VMP (T0) and subsequently T1, according to IcAPER. IcAPER scheme for these VMs is depicted in Fig. 4.2.
As per IcAPER, at time T0 the initial requests of elastic user are placed together on to the same PM as shown
in Fig. 4.2(a), whereas at time T1, the VM placements resembles to Fig. 4.2(b), in which ncT1 is migrated
to second PM so that additional request cT2 can be placed on to the first PM itself. This clearly reduces the
cross PM communications and hence the network traffic resulting in conservation of energy. Here the trade
off is between the cost incurred to migrate ncT1 and expected application performance. We will explain the
experimental setup and the analysis of results in the subsequent sections.

5. Implementation. Efficiency of any VMP algorithm, needs to be evaluated in a large-scale cloud plat-
form. However, it is difficult to conduct the repeatable VMP experiments in a real production cloud platform.
Hence, the proposed IcAPER algorithm is simulated using CloudSimPlus [30] simulator. The algorithms were
implemented as an extension to SimpleVmAllocationPolicy, which determines how VMs are assigned to the
host.

Since our focus in this work is to improve VMP that is common to both fog and cloud resources, we carried
out the experiments using CloudSimPlus simulator having Xen as the virtual machine monitor (hypervisor). The
proposed, Inter-communication Aware Elastic Request Placement (IcAPER) algorithm, written in Java, is tested
on a Dell workstation with Intel Xeon 3.30Ghz and 16Gb memory, having x64 architecture. The simulation is
performed over a datacenter made up of twenty homogeneous physical machines whose configuration is presented
in Table 5.1. VM configuration of popular service provider Amazon EC2 [31] is adopted and the same is shown

344 R. Sridharan, S. Dominc S

Table 5.2

Virtual Machine configuration used in simulation

resource Micro Small Medium Large Xlarge

vCPU 1 1 2 2 4
RAM (GB) 1 2 4 8 16

Table 5.3

Characteristics of requests in a batch

Characteristic Number
Number of Request 40
Requests type r

e

comu
12

Requests type rcomu 10
Requests type r 18

New VM requests by type r
e

comu
22

New VM requests by type rcomu 32
New VM requests by type r 45
Requests for additional VM 7
Requests for delete VM 3

in Table 5.2.

Since we are addressing the application elasticity along with inter-communication of its tasks in this work,
for each experiment, we created three bunches of randomly generated requests in the ratio of 2:1:1 for time slot
T1, T2 and T3.The total resource requirement of these requests is approximately equal to the capacity of our
datacenter. Note that each request is represented by a four-tuple as explained in Section 3. Characteristic of
requests for single experiment is presented in Table 5.3. Column 8 is valid only for the request belonging to time
T1 onwards whereas, column 9 is valid for the request belonging to time T2 onwards only. As explained in Section
1, each VM is attached with a cloudlet whose input file size is 1000 bytes. We have compared the proposed
IcAPER algorithm with FCFS, Random and FFD algorithms for an experiment. To avoid transient anomalies we
conducted ten such experiments and collected the statistics for evaluation parameters: (a) resource utilization,
(b) resource fragmentation, (c) reduced VM migrations and (d) Number of requests having intercommunicating
tasks placed on to same PM.

The results presented in Figs. 5.1 – 5.4 demonstrate that IcAPER algorithm is preferred one when compared
with other algorithms which are considered for the comparison. From Fig. 5.1, we can find out that resource
utilization by IcAPER increase when more requests are served than other algorithms. When individual PMs
may have enough resources in one dimension (CPU, memory etc.) but not in all dimensions and hence requests
cannot be placed on to it, resulting in resource fragmentation. The increase in resource fragmentation, over a
period of time, implies scope for improvement in fogCDC management. As shown in Fig. 5.2 IcAPER algorithm
perform best when compared with other algorithms. This work proposes to host all the tasks of recomu and rcomu

type requests, along with its additional(elastic) tasks on the same PM. When compared all the algorithm for
this parameter, as depicted in Fig. 5.3, IcAPER outperforms all other algorithms.

Next evaluation parameter is potential migration needed in all algorithms that are in our consideration to
ensure nil network latency. It is to be noted that as by design, IcAPER has to place maximum possible tasks on
the same PM at T1. However, from T2 onwards all algorithm makes placement decision based on the availability
of resource on PM and individual algorithmic constraints. For example, IcAPER forces the migration of tasks
belongs to rcomu and r type request, so that co-allocation constraint for elastic needs of recomu type requests
can be adhered. As shown in Figure 5.4 IcAPER consistently outperforms other algorithms over multiple time
slot. It is also to be noted that the application performance and cost of migration are directly proportional to
the number of additional tasks requested by elastic request when fogCDC is deployed with IcAPER algorithm.

6. Conclusions. In this paper, after formulating Inter-communication Aware Elastic Request Placement
(IcAPER) problem, pertaining to a fog-cloud environment, authors propose an efficient IcAPER algorithm to
improve the resource utilization of fog-cloud datacenter. IcAPER considers individual request encompassing one
or more VMs as a whole for placement along, with the life-time of the request rather than individual VMs. This

Placement Strategy for Intercommunicating Tasks of an Elastic Request in Fog-Cloud Environment 345

Fig. 5.1. Physical Machine Utilization

Fig. 5.2. Physical Machine Fragmentation

Fig. 5.3. Number requests needing intercommunicating tasks mapped to same PM

proposed algorithm places all the tasks of requests needing intercommunication and elasticity, on to same PM
and/or on to network neighborhood PMs by implementing same-PM, fixed-PM and balanced-PM constraints
for task placements. These constraints are adhered by maintaining the identity of tasks with reference to its
application across fogCDC resulting in improved performance of fog application.

Performance of IcAPER is compared with FFD, FCFS and Random, well-known placement algorithms for
metrics resource utilization, resource fragmentation, migrations needed to maintain minimal network latency
and number of requests having intercommunicating tasks placed on to same PM for evaluation. Based on
average taken out of ten experiments, the simulation results shows proposed technique is attractive compared

346 R. Sridharan, S. Dominc S

Fig. 5.4. Potential Migration needed to minimize the latency

to other algorithms that are in authors consideration. Studying the performance impact of IcAPER algorithm
to a real time video surveillance application using distributed camera will be of future interest. Pan-tilt-zoom
(PTZ) parameters of multiple cameras requires low-latency communication between the cameras for which we
can use the fog resources. Whereas, for processing the captured video frames and for long-term processing
(analysis) of control strategy to obtain the optimal PTZ parameter cloud resource can be used.

REFERENCES

[1] S.Sing, A.Nayyar, R. Kumar, and A.Sharma, Fog computing: from architecture to edge computing and big data processing
, in The Journal of Supercomputing, 2018, PP. 1-36

[2] S. Yi, Z. Hao, Z. Qin, and Q. Li, Fog computing: Platform and applications, in Third IEEE Workshop on Hot Topics in Web
Systems and Technologies (HotWeb). IEEE, 2015, pp. 7378

[3] M. Satyanarayanan, Z. Chen, K. Ha, W. Hu, W. Richter, and P. Pillai, Cloudlets: at the leading edge of mobile-cloud
convergence, in IEEE International Conference on Mobile Computing, Applications and Services (MobiCASE), 2014.

[4] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies , The case for vm-based cloudlets in mobile computing , in
Pervasive Computing, 2009.

[5] D. F. Willis, A. Dasgupta, and S. Banerjee, Paradrop: a multi-tenant platform for dynamically installed third party
services on home gateways, in ACM SIGCOMM workshop on Distributed cloud computing, 2014.

[6] J. Wang, J. Pan, and Flavio Esposito,Elastic Urban Video Surveillance System Using Edge Computing, In Proceedings of
SmartIoT17, 2017. https://doi.org/10.1145/3132479.3132490.

[7] N. Mkitalo, F. Nocera, M. Mongiello, and S. Bistarelli, Architecting the Web of Things for the fog computing era, doi:
10.1049/iet-sen.2017.0350

[8] M. Anawar, S. Wang, M. Zia, A. Jadoon, U. Akram,and S. Raza, Fog Computing: An Overview of Big IoT Data Analytics,
2018. ID 7157192 https://doi.org/10.1155/2018/7157192.

[9] . Wang, H. Chen, and X. Chen, An availability-aware virtual machine placement approach for dynamic scaling of cloud
applications, in Proc. IEEE Ninth Inter. Conf. Ubiquitous Intelligence & Computing and Autonomic & Trusted Computing
(UIC/ATC), pp.509-516, 2012.

[10] X. Meng, V. Pappas, L. Zhang, Improving the scalability of data center networks with traffic-aware virtual machine place-
ment, in Proc IEEE INFOCOM2010, pp. 1-9, 2010.

[11] F. Bonomi, R. Milito, P. Natarajan, J. Zhu. 2014,Fog computing: a platform for internet of things and analytics, In: Big
Data and Internet of Things: A Roadmap for Smart Environments Springer; 169-186.

[12] M. R. Garrey, R. L. Graham, and D. S. Johnson, Resource constrained scheduling as generalized bin packing, J. Combi-
natorial Theory, Series A, vol. 21, no. 3, pp.257-298, 1976.

[13] R. Buyya, S. K. Gar, and R. N. Calheiros, SLA-oriented resource provisioning for cloud computing: Challenges, architec-
ture and solutions, in Proc. Inter. Conf. Cloud. Ser. Comput., pp. 1-10, 2011.

[14] A. Bhadani and S. Chaudhary, Performance evaluation of web servers using central load balancing policy over virtual
machines on cloud, in Proc. Third Annual ACM Conference, ACM, 2010, Article no.16.

[15] V. V. Vazirani, Approximation algorithms, Springer, 2001.
[16] R. Panigrahy, K. Talware, Lincoln Uyeda, and U. Wideder, Heuristics for Vector Bin Packing, Microsoft Research,

2011.
[17] X. Zheng and Y. Cai, Dynamic virtual machine placement for cloud computing environments, in 2014 43rd International

Conference on Parallel Processing Workshops, Sept 2014, pp. 121128.
[18] A. Singh, M. Korupolu, and D. Mohapatra, Server-storage virtualization: Integration and load balancing in data centers,

in Proceedings of the 2008 ACM/IEEE Conference on Supercomputing, ser. SC 08. Piscataway, NJ, USA: IEEE Press,
2008, pp. 53:153:12. [Online]. Available: http://dl.acm.org/ citation.cfm?id= 1413370.1413424

Placement Strategy for Intercommunicating Tasks of an Elastic Request in Fog-Cloud Environment 347

[19] G. Khanna, K. Beaty, G. Kar, and A. Kochut, Application performance management in virtualized server environments,
in Network Operations and Management Symposium, 2006. NOMS 2006. 10th IEEE/IFIP, April 2006, pp. 373381. [Online].
Available: http://dx.doi.org/10.1109/ NOMS.2006.1687567

[20] B. Speitkamp and M. Bichler, A mathematical programming approach for server consolidation problems in virtualized data
centers, Services Computing, IEEE Transactions on, vol. 3, no. 4, pp. 266278, Oct 2010.

[21] M. Rahman and P. Graham, Compatibility-based static VM placement minimizing interference, J. Netw. and Comp.
Appl.,vol. 84, pp. 68-81, 2017.

[22] E. Feller, C. Morin, A. Esnault, A case for fully decentralized dynamic vm consolidation in clouds, in: Cloud Computing
Technology and Science (Cloud Com), 2012 IEEE 4th International Conference on, IEEE, 2012, pp. 2633.

[23] L. Cui, F. Tso, P. Pezaros, W. Jia, and W. Zhao, PLAN: Joint policy- and network-aware VM management for cloud
data centers, in IEEE Trans. Parallel and Distributed Systems, vol. 28, no. 4, pp. 1163-1175, 2017.

[24] A. Beloglazov, J. Abawajy, R. Buyya, Energy-aware resource allocation heuristics for efficient management of data centers
for cloud computing, Future Generation Computer Systems 28 (5) (2012) 755768.

[25] Q. Zheng, R. Li, X. Li, N. Shah, J. Zhang, F. Tian, K.-M. Chao, J. Li, Virtual machine consolidated placement based on
multi-objective biogeography-based optimization, inFuture Generation Computer Systems 54 (2016) 95122.

[26] J. Shi, F. Dong, J. Zhang, J. Luo, D. Ding, Two-phase online virtual machine placement in heterogeneous cloud data
center, in: Systems, Man, and Cybernetics (SMC), 2015 IEEE International Conference on, IEEE, 2015, pp. 13691374.

[27] F. Lpez-Pires, B. Barn, L. Bentez, S. Zalimben, and A. Amarilla, Virtual machine placement for elastic infrastructures
in overbooked cloud computing datacenters under uncertainty, Future Gen. Comp. Sys., Vol. 79, Part 3, pp. 830-848, Feb
2018.

[28] S.K.Mishra, P. Deepka, B. Sahoo, P.P. Jayaraman, S. jung, A.Y. Zomaya, R. Ranjan, Energy-efficient
VM-Placement in Cloud Data Center,Sustainable Computing : Informatics and Systems, (2018) https::/
doi.org/10.1016/j.suscom.2018.01.002.

[29] B. Heidelberg, Bin-packing, in Combinatorial Optimization, ser. Algorithms and Combinatorics 21. Springer, 2006, vol.
21, pp. 426-441.

[30] http:// www.cloudsimplus.org
[31] https://aws.amazon.com/ec2/instance-types/

Edited by: Anand Nayyar
Received: Mar 15, 2019
Accepted: Apr 4, 2019

