
Scalable Computing: Practice and Experience
Volume 20, Number 2, pp. 433–456. http://www.scpe.org

DOI 10.12694/scpe.v20i2.1538
ISSN 1895-1767
c⃝ 2019 SCPE

DYNAMIC TASK SCHEDULING USING BALANCED VM ALLOCATION POLICY
FOR FOG COMPUTING PLATFORMS

SIMAR PREET SINGH∗, ANAND NAYYAR†, HARPREET KAUR‡, AND ASHU SINGLA§

Abstract. The fog computing models are getting popular as the demand and capacity of data processing is rising for the
various applications every year. The fog computing models incorporate the various task scheduling algorithms for the resource
selection among the given list of virtual machines (VMs). The task scheduling models are designed around the various task metrics,
which include the task length (time), energy, processing cost etc. for the various purposes. The cost oriented scheduling models are
primarily built for the customer’s perspectives, and saves them a handful amount of money by efficiently assigning the resources for
the tasks. In this paper, we have worked upon the multiple task scheduling models based upon the Local Regression (LR), Inter
Quartile Range (IQR), Local Regression Robust (LRR), Non-Power Aware (NPA), Median Absolute Deviation (MAD), Dynamic
Voltage and Frequency Scheduling (DVFS) and The Static Threshold (THR) methods using the ifogsim simulation designed with
the 50 nodes and 50 virtual machines, i.e. 1 virtual machine per node. All of the models have been implemented using the standard
input simulation parameters for the purpose of performance assessment in the various domains, specifically in the time domain
and effective consumption of energy. The results obtained from the experiments have shown the overall time of 86,400 seconds
during the simulation, where the DVFS has been recorded with the 52.98 kWh consumption of energy, which shows the efficient
processing in comparison to the 150.68 kWh of energy consumption in the NPA model. Also, there are no SLA violations recorded
during both of the simulation, because no VM migration model has been utilized among both of the implemented models, which
clearly shows that the VM migrations are the major cause of SLA violation cases. The LRR (2520 VMs) has been observed as best
contender on the basis of mean of number of VM migrations in comparison with LR (2555 VMs), THR (4769 VMs), MAD (5138
VMs) and IQR (5352 VMs).

Key words: VM allocation, VM selection, fog computing, task scheduling, ifogsim simulator.

AMS subject classifications. 68M14, 90B35

1. Introduction. In this era, the cloud computing applications are getting popular and more online
applications are opting for the cloud computing platforms to effectively execute, manage and optimize the
applications [1, 2]. The cloud computing environments provide the flexible application hosting plans, which are
primarily divided in three infrastructural variants: Software as a Service (SaaS), Platform as a Service (PaaS)
and Infrastructure as a Service (IaaS) [3, 4, 5, 6].

The SaaS plans offer the hosting of software or application without worrying about the platform and
infrastructure related operations, whereas PaaS plans enable the user to take full control over the operating
system environment, and can effectively optimize the application performance on the platform level [7, 8]. On
the other hand, the IaaS service includes the internal network of various systems (particularly VMs in this case)
altogether, which are used to run the applications with high user count. Cloud computing grids are owned by
the cloud operators, and is implemented in few grids across the world [3, 9, 10]. Because the cloud computing
infrastructure is quite expensive, it is always implemented in form of small number of grids across the globe and
provides a high-performance service with abundance of processing resources, i.e. CPU, RAM and storage. When
cloud computing is known for a processing powerhouse, it has one primary disadvantage, which is associated
with communication cost (i.e. the extra time delay to transfer the request and request-reply between the cloud
& end user) [11, 12, 13, 14].

As described the primary disadvantage of cloud computing in the form of communication cost is the pref-
erence of extending the cloud computing services on the edge (the computing on the edge). There are several
extensions of the cloud computing services, which forms fog computing, edge computing and content delivery
networks (CDNs) [15, 16, 17, 18, 19]. The CDNs offer frequent data caching services, which enables the rapid
delivery of frequently accessed data from the cloud resources. The frequently requested data is saved in the

∗Computer Science and Engineering Department, Thapar Institute of Engineering and Technology, Patiala, India – corresponding
author (dr.simarpreetsingh@gmail.com)

†Graduate School, Duy Tan University, Da Nang, Vietnam (anandnayyar@duytan.edu.vn)
‡Computer Science and Engineering Department, Chandigarh University, Mohali, Punjab, India (harpreet8307@gmail.com)
§Computer Science and Engineering Department, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab,

India (ashusinglaoct@gmail.com)

433



434 Simar Preet Singh, Anand Nayyar, Harpreet Kaur, Ashu Singla

caching memory on the internet service providers (ISP) network, which does not offer any additional service
[20, 21, 22]. For example, when you browse Facebook website on your PC or smart phone, most of the data
associated with your profile and friends is loaded from the local CDN offered by ISP. The edge computing, on
the other hand provides the distributed smart grid services, which enables the use of user end nodes to compute
the data [23, 24]. The Search for Extraterrestrial Intelligence (SETI) project uses distributed smart grid over
the internet by enabling the user nodes to process the satellite data in small chunks per node, and pretty well
describes the concept of edge computing. On the contrary, the fog computing is the semi-centralized processing
paradigm, which extends the cloud computing close to edge nodes [25, 26, 27]. The semi-centralized infrastruc-
ture is owned by cloud operators or its business associates to effectively offer the services with optimized and
reduced communication cost, as well as extends the overall processing power of the cloud computing. Unlike,
the edge computing and CDN, the fog computing offers the complete service package, which hosts the comput-
ing resources and offers computing, storage and event-based or need-based synchronization with primary cloud
using synchronous or asynchronous archetypes [28, 29, 30, 31, 32].

In this paper, the proposed model is design and developed to effectively schedule the user tasks on the fog
computing resources by combining the VM allocation and VM selection methods in the perfect arrangement.
Various methods associated with VM allocation & VM selection are evaluated and combined in suitable com-
bination to discover the best task scheduling combination for the effective and optimized user data processing.

The paper structure is as follows: This section (Sect. 1) discusses the introduction of cloud and fog
computing technologies. Next section (Sect. 2) covers the literature review. Section 3 explains the decision
parameters (Sect. 3.2) and the proposed algorithm (Sect. 3.3). Section 4 describes the results that are computed
using the proposed approach. Finally, Sect. 5 describes the conclusion and future directions.

2. Related Work. Zhuo Tang et al. [33] proposed DVFS enabled Energy Efficient Workflow Task Schedul-
ing algorithm (DEWTS). They used the scheduling order of all the tasks to obtain the makespan in their algo-
rithm. The authors used different algorithms for computation of deadlines. In overall process, their proposed
algorithm was able to reduce total power consumption by upto 46.5% for parallel applications. The authors
worked on randomly generated workflows in their research work.

Yuan Fang et al. [34] discussed Cyber-Physical Systems (CPS) and proposed Simple and Proximate Time
Model (SPTimo) framework. In addition to this, the authors also presented Mix Time Cost and Deadline
First (MTCDF) time task scheduling algorithm, which was based on computation model of SPTimo framework.
Their research provides an optimal scheduling solution in total time required and time cost parameters.

Zhao, Qing et al. [35] has implemented the energy-aware scheduling of the user tasks over the cloud
computing resources. This scheme generates the task binary tree based upon task correlation, which is used to
prioritize the user tasks. The authors proposed the Task Requirement Degree (TRD) based calculation method
for proficient scheduling, where it also considers the bandwidth to optimize the communication cost.

Nidhi Bansal et al. [36] designed the QoS enabled optimized cost-based scheduling methodology. The
authors have focused upon the cost of computing resources (virtual machines) to schedule the given pool of the
tasks over the cloud computing model. The cost optimization has been performed over the QoS-task driven
task scheduling mechanism, which did not encounter the cost optimization problem earlier. The authors have
shown that the earlier QoS-driven task scheduling based studies has been considered the makespan, latency and
load balancing. The QoS-based cost evaluation model evaluates the resource computing cost for the scheduling
along with the other parameters as in their secondary precedence.

Gaurang patel et al. [37] have worked upon enhancement in the existing algorithm of Min-Min (Minimum-
minimum methodology) for scheduling on cloud platform. The authors have proposed the use of active load
balancing in processing the tasks over the cloud environments. The authors have proposed the new method
for the efficient processing of tasks over the given cloud environment known as the Enhanced Load Balanced
Min-Min (ELBMM) algorithm. The authors have recovered the major drawback of the existing model of Min-
Min algorithm, where sometimes the makespan and current resource utilization is not properly considered and
the tasks is scheduled over the slow resource which causes the latency. In their research, they have effectively
overcome the problem concerned with the Min-Min algorithm. The authors have proved their model better
than the Min-Min and ELBMM model for the task scheduling. Also, the execution times has been reduced to
the optimum levels, and better than the existing model.



Dynamic Task Scheduling using Balanced VM Allocation Policy for Fog Computing Platforms 435

Weiwei Chen et al. [38] have proposed the imbalanced metrics for the optimization of task clustering on
scientific workflow data executions. The authors have examined the imbalanced nature of the task clustering
during the runtime evaluation for the purpose of task clustering in depth. The authors have proposed the
improvement to effectively evaluate the problem of runtime task imbalance. The authors have proposed an
horizontal and vertical method for the evaluation of series of task clustering for the widely used scientific
workflows. Their proposed model has utilized the in-depth metric values for the real time evaluation of their
research model.

Xu et al. [39] has worked towards the load balancing of the user tasks, which considers the task partitioning
on cloud. The load balancing methods are known to be effective for efficient user task processing on cloud
resources, because clouds generally receive high volumes of user data. Y. Tan et. al. [40] worked on a novel
scheduling technique for cloud models. The authors complimented the use of particle swarm optimization (PSO)
model to analyze the scheduling performance in the terms of delay and resource consumption. An optimized
weight based mutation criteria with adaptable indolence oriented methodology is deployed to optimize the
scheduling performance. Additionally, this scheme offers the load balancing schema to effectively schedule the
user tasks.

K. Li et al. [41] described the feasible resource expansion for centralized, de-centralized and semi-centralized
computing platforms, which also involve the parallel processing paradigm. The scheduling problem is described
as NP-hard problem, and suggested several feasible solutions to effectual scheduling of the allocated computing
resources. The authors proposed the swarm optimization (ACO oriented solution) to deploy the load balancing
as effective meta-heuristic scheduling elucidation for the cloud platforms by reducing the individual load and
effectively distributing the tasks of multiple users altogether.

X. Luo et al. [42] proposed an algorithm for resource scheduling under cloud computing environment.
It is different from the under conventional distributed computing domain because of the high scalability and
heterogeneity of computing resources in cloud computing domain. In this paper, based on dynamic load balance,
the authors has proposed a resource-scheduling algorithm. The different statistic transferring power and retard
between nodes in cloud as well statistic-processing power of nodes in cloud is considered in this algorithm. To
increase the efficiency of cloud computing and reduce the median response time of tasks, the algorithm selects
the best node to fulfill the task. The simulation results show that the algorithm reduces the average response
time of tasks.

N. Bessis et al. [43] discussed in their paper about the new technologies develop fast and their complexity
becomes a crucial concern. One proven way to deal with improved complexity was to engage a self-organizing
strategy. The many different strategies exists that deal with the load balancing problem but most of the
problem are task oriented and it is, therefore, hard to differentiate. So, the researchers of the paper developed
and implemented a generic architectural pattern, called self-initiative load balancing agents. It allocates the
exchange of different algorithms, both sightful and dense ones, through plugging. In placing at different levels,
different algorithms can be tested in combination. The objective was simplicity in the selection of optimal
algorithm for a definite problem. Self-initiative load balancing agent was the concern and domain independent,
and can be collected towards inconsistent network topologies.

A. Jain and R. Singh [44] described grid computing for classification of non-identical resources that are
cast off as virtual resource to a user and impart superior grid domain. Now-a-days, large amount of resource
management in peer-to-peer grid environment is used. Load balancing is crucial concern to balance the overall
load of the nodes. There are numbers of solutions to achieve load equality state. ACO is used to provide optimal
solution for solving a problem of load balancing. In the paper, the authors has proposed Master-Ant Colony
Optimization algorithm (M-ACO), and it is used in peer-to-peer environment. The proposed algorithm gives
better results in peer-to-peer environment. MATLAB simulation tool was used, which provides different kinds
of functions to bloom heuristic algorithms with new notions.

R. Chaukwale et al. [45] discussed the complication of efficiently scheduling jobs on several devices, it is
a vital consideration when operating the Job Shop Production (JSP) scheduling system. JSP was a NP hard
difficulty. The procedures that focus on fabricating an exact solution of the problem can evince insufficiency in
discovering an optimal solution of the problem to Job Shop Production system (JSP). Hence, in such conditions,
heuristic methods can be developed to discover a good solution of the problem within reasonable time period.



436 Simar Preet Singh, Anand Nayyar, Harpreet Kaur, Ashu Singla

In their paper, the authors studied the traditional ACO algorithm and has proposed a load balancing ACO
algorithm for JSP. The paper also presented the observed results. It was noticed that the proposed algorithm
showed better outcomes when compared to traditional ACO. Many researches [46, 47, 48, 49, 50, 51, 52, 53, 54,
55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 70, 71] discussed about scheduling and allocation
methods in fog and cloud environments.

After going through the related work, it was found that with the increase of Internet of Things (IoT) devices,
sensors, fog devices, actuators etc., lots of data is getting generated. This will lead to network congestion in
coming future. Thus, there is a huge need to schedule and allocate the tasks, that are dynamic in nature, in a
proper planned/optimal manner. This research work tries to simplifies the future arising problems in the area
of fog computing.

3. Methods and Materials. The fog scheduling solution proposed in this paper is implemented using
the ifogsim simulator considering the fog environment. Ifogsim simulator is based upon cloudsim platform
for cloud infrastructure simulations. The proposed scheme combines VM allocation & VM selection procedures
with performance optimization methods to boost the cloud’s capability for user task processing. An idle process
sequencing algorithm should be aimed at reducing the overall tasking overhead, tasking time (task completion
time) and communication overhead by the whole task considering the incoming and outgoing information. The
task management faces the major challenges from the bias-free dynamic resource allocation while keeping the
cloud performance to the maximum in terms of execution time and computational overheads. This scheme
offers the load balanced paradigm over user task stack, coupled with environmental parameter optimization,
and enhances the endurance and general capability of the cloud environment.

3.1. Proposed Approach. The link optimization algorithm is designed as an intelligent solution influ-
enced by behavior of the real Internet of Things (IoT) inter-nodal relations in scenario of increasing number of
IoT nodes. A collaboration of IoT nodes in finding the appropriate paths and doing other tasks has been prior-
itized to achieve the link behavior in cloud systems. The fog resources store the usability for path devising and
following while taking a movement from source node to the destination computing resource on cloud environ-
ment. With the raise in the number of requests on a singular path, the strength of connection increases on that
particular path. The requests of that group select the shortest path on the basis of this usability index. The IoT
connection request province optimization method has been applied for resolving the problem of rising number
of requests, with the target of discovering the shortest path. The algorithm fully depends upon the history of
usability index to take further judgments for optimal solutions for any of the computational requirement. The
use of artificial links for the state of development rule and for the selection of optimal resources beyond the grid
computation or the cloud environments has been proposed in the prospective work. The artificial links have
been used for the purpose of cloud computing scheduling and shortest path identification. The link province
system adopts the arbitrary-proportional rule, which is the state of transition rule used for link optimization
system and works on the basis of probability or a chance to choose the optimal resource out of k-resources for
task assignment in the cloud. The usability index of a resource depends upon the number of available resources,
processing cost and estimated time. The VM load has been selected as the prime factor out of all these three
factors; hence the computing decision is computed after verifying the cumulative and individual runtime VM
load. The usability indexes are regularly updated using particular cloud resources or VMs selected for the act of
scheduling. The shortest path is computed after analyzing the runtime parameters, which effectively analyzes
the load, availability, communication cost and processing delay of a virtual machine. The VM runtime param-
eters are procured and continuously updated, and helps the scheduling decision on the cloud systems. Fig. 3.1
describes the shortest path in distributed and/or segmented sub-paths, and explains the Eqs. 3.1 and 3.2.

ProbA =
(k +Ai)

n

(k +Ai)n + (k +Bi)n
, (ProbA + ProbB = 1)(3.1)

Ai+1 = Ai + δ, Bi+1 = Bi + (1− δ) (Ai +Bi = i),(3.2)

where δ describes a binary object and carries only 0 or 1 as value, which is computed over the runtime probability
values (described as ProbA & ProbA). The variable stacks A assigns the primary shortest path and B denotes
the optimized shortest path over A.



Dynamic Task Scheduling using Balanced VM Allocation Policy for Fog Computing Platforms 437

Fig. 3.1. Shortest path in distributed sub-paths

3.2. Decision Parameters. The VM load and failure rate has been assigned as the main parameters to
take the scheduling decisions. Both of the parameters has been used for the purpose of data scheduling over
the given cloud resources. The virtual machine load is the parameter which defines the overall utilization of the
resources of the given virtual machine. The VM load can be used to signify the runtime availability in order to
process the given task t on the given time t. The tasks running over the given VM, utilizes the certain amount
of resources. The total percentage of the resources being used during the time t is considered as the VM load.

When the virtual machines are ordered in the workload allocation pool for process sequencing in the given
cloud environment, the load monitoring on each virtual machine becomes very important step to correctly
perform the data scheduling tasks. The virtual machine load or overhead is calculated on the basis of different
parameters like CPU size, memory size etc. Each VM load must be calculated on the basis of its local parameters.
Any use of general parameter values can result the biased load over the given VMs. The CPU and memory
overhead or usage on the given VM considerably influences the performance of VMs in the process sequencing
practices. The workload on VM can be evaluated on the basis of formula represented in Eq. 3.3. To calculate
the total load over the virtual machine in the cloud environment is more than or equal to its capability, the Eq.
3.3 gives the result.

∑[v]

i
Loadi ×Xik � Capacity, ∀k, Pk ∈ P(3.3)

Finally, to justify the virtual machine load, Eq. 3.4 is used.

Xik = xik(3.4)

where Xik is considered as the components of assignment to the non-overloaded VMs. The overloading or
non-overloading defines the current state of the VM calculated after computing overall load and percentage of
resources and measuring them against the threshold level.

The failure rate is described in the form of percentage of scheduling failures in processing the assigned tasks
over the given VMs in the cloud environment. The failure rate signifies the trust of virtual machine. The VM
with the lowest failure rate can be considered as the highly trusted VM and vice-versa. The probability of
processing of the task can be increased by assigning the tasks over VMs with optimized & reduced failure rate
(FR). The FR can be computed by using the Eq. 3.5.

FR = (
Tp

Tt

) · 100(3.5)

where Tp is the sum of processed tasks and Tt is total amount of tasks assigned over the given VM.

3.3. Link Optimization Based Optimal VM Allocation (Link Optimization-OVA). In this work,
the optimal load sharing approach based on the link optimization has been introduced for the load offset
approach over the cloud environment in the case of data scheduling. The path A defines the first resource
and path B defines the second resource. The other resources can be assigned with the further alphabets with
the assumption that all of the resources or assets are logically able to executing all the processes in the cloud
environment. The resource selection must be done on the basis of availability of RAM and CPU processing



438 Simar Preet Singh, Anand Nayyar, Harpreet Kaur, Ashu Singla

powers, which must make the whole process efficient in terms of response time. The traditional methods are
known to allot the random resources for the given task, which effect the performance of cloud scheduling model
and hence slow down the query processing procedure resulting with higher response time. The link optimization
is the probability-based procedure to choose the appropriate resource in the available list of VMs. The proposed
model is aimed at lower task response time for maximizing the number of jobs processing in the span of one
second. The proposed model has been made capable of subdividing the task, which facilitates the quicker
process and processes the smaller tasks faster than the hefty ones to reduce the overall load and to increase
the number of successful requests processing every second. The subdivision of tasks is based on the length of
the task. A task is usually divided into ′t′ slots, where t is smallest time unit available for the task length
calculation in our proposed model. A task smaller than or equal to t will be processed in one round, where the
tasks larger than t can be scheduled in queue or on different VMs according to the load and time calculation for
the faster processing. The arbitrary proportional rule is applied to recognize the ratio of processes in processing
the given resource, and has been presented in the Eqs. 3.6 and 3.7.

P1 =
(R1 +K)k

(R1 +K)k + (R2 +K)h
,(3.6)

B1 = P1 · TRi,(3.7)

where A1 is the count of assigned tasks on the resource P1 & A, involves the resource probability, R1 denotes
the usability index based on the available ratio of RAM and CPU on VM under consideration, TRi depicts the
resource availability required to process task i. The k and h are the coefficients used for the choice of probability
among the available resources for sequencing of the processes among accessible resources. The value of k and
h is calculated on the basis of VM load and resource availability on all of the available VMs. The variation
in the values of k and h will define the variability on the basis of current processing load on different VMs,
which inspires the task assignment decision of the link optimization algorithm. The used rule for the probability
calculation has been represented in the Eq. 3.8.

Pj =
(Ri +K)k∑n

i=1((Ri +K)k)
,(3.8)

In the proposed work, the meta tasks are used for testing of the proposed model. The meta tasks does not
carry any dependency on other tasks in the processing queue, which means the response time will be calculated
for each individual task by evaluating the variation between finish time and start time. The waiting time is also
considered as the response time delay, which is caused due to the waiting period spent in the queue.

Figure 3.2 represents the basic flow of Algorithm 1.

4. Results and Discussion. In this research, there are total seven VM allocation and selection policies
are described. All seven models are programmed to utilize the different aspects into consideration in order
to take the final decision on VM allocation and VM selection for the completion of job assignments. The
VM allocation models used in this simulation are Local Regression (LR), Inter Quartile Range (IQR), Local
Regression Robust (LRR), Non-Power Aware (NPA), Median Absolute Deviation (MAD), Dynamic Voltage
and Frequency Scheduling (DVFS) and Static Threshold (THR) models. The following figures elaborates all of
the models implemented under this research paper.

Each of the VM allocation model is further amalgamated with the VM selection models. The NPA and
DVFS models are not primarily designed for specific VM selection or allocation policy. The NPA and DVFS
models are designed to select all of the available VMs, and allocate sub-tasks or tasks on the optimal resource
selected from the list.

Each of the VM allocation model (IQR, LR, LRR, MAD & THR) is combined with all VM selection
models including Minimum Migration Time (MMT), Maximum Correlation (MC), Random Selection (RS) and
Maximum Utilization (MU). All of the VM selection policies are described in the Fig. 4.1. There are total 22
combinations, which are produced using the combination of VM allocation and selection policies. The Fig. 4.1
shows all of the possible combinations of VM allocation and selection models.



Dynamic Task Scheduling using Balanced VM Allocation Policy for Fog Computing Platforms 439

Algorithm 1 Link Optimization - OVA Algorithm

1: Acquire the environmental parameters for task scheduling
2: Analyze & acquire the list of available VMs in the VM stack over cloud segment
3: Analyze & acquire the runtime performance of available VMs in the form of CPU, RAM, storage capacity,

power consumption, etc.
4: Represent the acquired parameter list obtained on Step 2 & 3;

VMl = V1, V2, V3, V4, ...Vn,(3.9)

where VM is the virtual machine list and V1 to Vn represents the virtual machine IDs
5: Obtain cumulative & independent list of resources in the form of computing capacity

VMr = VM1, V M2, V M3, ...V Mn,(3.10)

where VMr represents the resource capacity of each resource VM1 to VMn to represent the virtual machine
IDs

6: Begin the iterative structure to process tasks with every effective resource
a. Obtain & acquire the resource availability from every VM on availability stack

VME =

∫ N

i=1

VMi,(3.11)

where VME gives the resource availability after calculating the resource load using Eq. 3.12.

L =
V CPUu

V CPUT

,(3.12)

where L represents the overall resource load on the particular VM, whereas the V CPUu and V CPUT

gives the currently used resources and total resources available respectively.

Li = L1, L2, L3, ...Ln,(3.13)

where Li represents the list of resource load for all the VMs in simulation.
b. The fundamental utilization factor is computed for individual resource

7: Terminate the iterative structure initiated on step 5
8: Assign the task stack to runtime cloud environment

T = t1, t2, t3, ...tn,(3.14)

where T vector represents the task vector and t1 to tn represents the individual tasks
9: Determine the workflow’s task stack and compute the length of each independent task in the stack

tc(ti) = (ESTfinishtime − ESTstarttime),(3.15)

where tc and ti gives the overall time length for each of the task by subtracting the estimated start time
from estimated finish time

10: In case a task is dependent or multivariate, sub-divide it into sub-stacks involving minor tasks recognizable
with index i

11: Initialize the iterative structure to process each sub-task on sub-task stack indexed with index i

a. Obtain the resource availability factors for each VM on the VM list
b. Compute and validate the task duration (estimated) against the computational capacity (resource

availability) against each available VM



440 Simar Preet Singh, Anand Nayyar, Harpreet Kaur, Ashu Singla

c. Determine the current load of each VM on the list by analyzing the resource engagement

Aj = Pj · TRi,(3.16)

where Aj depicts the availability of the VMs
d. Observe and accumulate failure events of each VM on the list and prepare the FR value to evaluate

its endurance
e. Confiscate all the VMs on the list with FR below threshold to process current task of sub-task (t) to

prepare the allocated VM resource list (aVMrl)
f. Finally select the appropriate resource based upon best combination of time (estimated) and resource

engagement from aVMrl

IfTc(i) lnV C(j),(3.17)

VME(K) = V (Vc(i)),(3.18)

where VME(K) resource availability after calculating the resource load for particular machine with id
K, where K any can be any value from the given VM IDs. VM represents the virtual machine list and
Vc(i) gives the capacity of the VM with ID as i.

g. Revise resource allocation record accordingly and also update total load of allocated VM after task
assignment

h. Further, revise the utilization record enlisting resource availability

Ri = Rj + 1,(3.19)

where Ri is the usability and this equation shows the incremental usability index with the movement
of each VM.

i. Go the step 9(a) if not end of task list
12: Terminate the iterative structure and exit the program

The simulation results of all the unique combinations are acquired in the form of various performance
parameters. These performance parameters are included to analyze the performance on the basis of time, VM
migrations, Service Level Agreements (SLA) related parameters, Energy consumption, Host Shutdowns etc.
Detailed statistical analysis of host shutdowns, VM & host migrations, VM & host selections and overall time-
based analysis in the terms of mean and standard deviation is also computed. The Table 4.1 shows the detailed
list of performance parameters.

The simulation of all results, based on the parameters discussed in Table 4.1, are obtained and listed in
this section for each of the VM allocation and VM selection models. The only exceptions are Dynamic Voltage
Frequency Scaling (DVFS) and Non-Power Aware (NPA) models. For these two exceptions, total 15 parameters
are recorded in contrast to the 23 parameters for all other models.

The DVFS model has been described with the random nature, where all of the available VM are used in
the random order without any qualitative based allocation parameters. The Fig. 4.2 shows the results obtained
for the random DVFS.

In this sub-section, the VM allocation model of Inter Quartile Range (IQR) has been used along with
the Maximum correlation (MC) method. Fig. 4.3 the results obtained from this model for all of the enlisted
parameters.

In this sub-section, the VM allocation model of Inter Quartile Range (IQR) has been used along with the
Minimum Migration Time (MMT) method. Fig. 4.4 represents the results obtained from this model for all of
the enlisted parameters.

In this sub-section, the VM allocation model of Inter Quartile Range (IQR) has been used along with the
Maximum Utilization (MU) method. Fig. 4.5 shows the results obtained from this model for all of the enlisted



Dynamic Task Scheduling using Balanced VM Allocation Policy for Fog Computing Platforms 441

Optimized utilization 

of performance 

parameters

Acquire parameters 

for task scheduling

Acquire available 

VMs list

Acquire performance 

parameters (CPU, 

RAM, Storage, Power)

OVA Algorithm for Link 

Optimization

Fig. 3.2. Basic flow of Proposed Algorithm

Fig. 4.1. Possible combinations of VM allocation and VM selection models

parameters.

In this sub-section, the VM allocation model of Inter Quartile Range (IQR) has been used along with the
Random Selection (RS) method. The results shown in Fig. 4.6 is obtained from this model for all of the enlisted
parameters.

In this sub-section, the VM allocation model of Local Regression (LR) has been used along with the
Maximum Correlation (MC) method. Fig. 4.7 represents the results obtained from this model for all of the
enlisted parameters.

In this sub-section, the VM allocation model of Local Regression (LR) has been used along with the
Minimum Migration Time (MMT) method. The results represented in Fig. 4.8 are obtained from this model
for all of the enlisted parameters.



442 Simar Preet Singh, Anand Nayyar, Harpreet Kaur, Ashu Singla

Fig. 4.2. Results obtained for random DVFS

Fig. 4.3. Results obtained for Inter Quartile Range (IQR)

Fig. 4.4. Results obtained for Inter Quartile Range (IQR) with Minimum Migration Time (MMT) method



Dynamic Task Scheduling using Balanced VM Allocation Policy for Fog Computing Platforms 443

Table 4.1
List of performance parameters for the results evaluation

Parameter Name Units

Host Count Count (default 50)
VM Count Count (default 50)
Simulation Length (Total) Seconds (default 86400 seconds)
Consumed Energy Levels kWh (kilo Watt per hour)
Migration counts (VM) Count
Service Level Agreement (SLA) Percentage
SLA (Performance Degradation) Percentage
SLA (Per host Elapsed Time) Percentage
Total violations (SLA) Percentage
Average violations (SLA) Percentage
Host Shutdown Count Counts
Time before shutdown (Mean) Seconds
Time before shutdown (StDev) Seconds
VM Migration Delay (Mean) Seconds
VM Migration Delay (StDev) Seconds
VM Selection (Mean of execution delay) Seconds
VM Selection (StDev of execution delay) Seconds
Selection of Host (Mean of execution delay) Seconds
Selection of Host (StDev of execution delay) Seconds
VM Reallocation (Mean of execution delay) Seconds
VM Reallocation (StDev of execution delay) Seconds
Total Execution Delay (Mean) Seconds
Total Execution Delay (StDev) Seconds

Fig. 4.5. Results obtained for Inter Quartile Range (IQR) with Maximum Utilization (MU) method

In this sub-section, the VM allocation model of Local Regression (LR) has been used along with the
Maximum Utilization (MU) method. Fig. 4.9 shows the results obtained from this model for all of the enlisted
parameters.

In this sub-section, the VM allocation model of Local Regression (LR) has been used along with the Random
Selection (RS) method. Fig. 4.10 shows the results obtained from this model for all of the enlisted parameters.

In this sub-section, the VM allocation model of Local Regression Robust (LRR) has been used along with
the Maximum Correlation (MC) method. The results represented in Fig. 4.11 is obtained from this model for
all of the enlisted parameters.



444 Simar Preet Singh, Anand Nayyar, Harpreet Kaur, Ashu Singla

Fig. 4.6. Results obtained for Inter Quartile Range (IQR) with Random Selection (RS) method

Fig. 4.7. Results obtained for Local Regression (LR) with Maximum Correlation (MC) method

In this sub-section, the VM allocation model of Local Regression Robust (LRR) has been used along with
the Minimum Migration Time (MMT) method. Fig. 4.12 shows the results obtained from this model for all of
the enlisted parameters.

In this sub-section, the VM allocation model of Local Regression Robust (LRR) has been used along with
the Maximum Utilization (MU) method. The results obtained from this model for all of the enlisted parameters
is shown in Fig. 4.13.

In this sub-section, the VM allocation model of Local Regression Robust (LRR) has been used along with
the Random Selection (RS) method. The results obtained from this model for all of the enlisted parameters are
represented in Fig. 4.14.

In this sub-section, the VM allocation model of Median Absolute Deviation (MAD) has been used along
with the Maximum Correlation (MC) method. Fig. 4.15 represents the results obtained from this model for all
of the enlisted parameters.



Dynamic Task Scheduling using Balanced VM Allocation Policy for Fog Computing Platforms 445

Fig. 4.8. Results obtained for Local Regression (LR) with Minimum Migration Time (MMT) method

Fig. 4.9. Results obtained for Local Regression (LR) with Maximum Utilization (MU) method

In this sub-section, the VM allocation model of Median Absolute Deviation (MAD) has been used along
with the Minimum Migration Time (MMT) method. The results, shown in Fig. 4.16, are obtained from this
model for all of the enlisted parameters.

In this sub-section, the VM allocation model of Median Absolute Deviation (MAD) has been used along
with the Maximum Utilization (MU) method. Fig. 4.17 represents the results obtained from this model for all
of the enlisted parameters.

In this sub-section, the VM allocation model of Median Absolute Deviation (MAD) has been used along
with the Random Selection (RS) method. The results obtained from this model for all of the enlisted parameters
are shown in Fig. 4.18.

In this sub-section, the VM allocation model of Non-Power Aware has been used with no method for VM
selection. The VM selection policy is simple random method like DVFS, which is unlike the random selection
(RS) method for other VM allocation policies. Fig. 4.19 shows the results obtained from this model for all of



446 Simar Preet Singh, Anand Nayyar, Harpreet Kaur, Ashu Singla

Fig. 4.10. Results obtained for Local Regression (LR) with Random Selection (RS) method

Fig. 4.11. Results obtained for Local Regression Robust (LRR) with Maximum Correlation (MC) method

the enlisted parameters.

In this sub-section, the VM allocation model of Static Threshold (THR) has been used along with the
Maximum Correlation (MC) method. Fig. 4.20 shows the results obtained from this model for all of the
enlisted parameters.

In this sub-section, the VM allocation model of Static Threshold (THR) has been used along with the Min-
imum Migration Time (MMT) method. The results obtained from this model for all of the enlisted parameters
are shown in Fig. 4.21.

In this sub-section, the VM allocation model of Static Threshold (THR) has been used along with the
Maximum Utilization (MU) method. Fig. 4.22 shows the results obtained from this model for all of the enlisted
parameters.

In this sub-section, the VM allocation model of Static Threshold (THR) has been used along with the
Random Selection (RS) method. Fig. 4.23 represents the results obtained from this model for all of the enlisted



Dynamic Task Scheduling using Balanced VM Allocation Policy for Fog Computing Platforms 447

Fig. 4.12. Results obtained for Local Regression Robust (LRR) with Minimum Migration Time (MMT) method

Fig. 4.13. Results obtained for Local Regression Robust (LR) with Maximum Utilization (MU) method

parameters.
Table 4.2 shows the summary of the results for each experiment. This table represents the experiment name

and the result obtained by that particular experiment with respect to each parameter. This summary will help
us to evaluate and analyze the conducted experiments in much easier way.

All the experiments were conducted keeping the host count and VM count fixed (as 50) so as to compute
the results on the same platform. This helps us in comparison with the different algorithms. From this, it is
seen that experiment name: random npa consumes the highest energy levels than all the experiments.



448 Simar Preet Singh, Anand Nayyar, Harpreet Kaur, Ashu Singla

Fig. 4.14. Results obtained for Local Regression Robust (LRR) with Random Selection (RS) method

Fig. 4.15. Results obtained for Median Absolute Deviation (MAD) with Maximum Correlation (MC) method



Dynamic Task Scheduling using Balanced VM Allocation Policy for Fog Computing Platforms 449

Fig. 4.16. Results obtained for Median Absolute Deviation (MAD) with Minimum Migration Time (MMT) method

Fig. 4.17. Results obtained for Median Absolute Deviation (MAD) with Maximum Utilization (MU) method



450 Simar Preet Singh, Anand Nayyar, Harpreet Kaur, Ashu Singla

Fig. 4.18. Results obtained for Median Absolute Deviation (MAD) with Random Selection (RS) method

Fig. 4.19. Results obtained for Non-Power Aware (NPA)

Fig. 4.20. Results obtained for Static Threshold (THR) with Maximum Correlation (MC) method



Dynamic Task Scheduling using Balanced VM Allocation Policy for Fog Computing Platforms 451

Fig. 4.21. Results obtained for Static Threshold (THR) with Minimum Migration Time (MMT) method

Fig. 4.22. Results obtained for Static Threshold (THR) with Maximum Utilization (MU) method

Fig. 4.23. Results obtained for Static Threshold (THR) with Random Selection (RS) method



4
5
2

S
im

a
r
P
reet

S
in
g
h
,
A
n
a
n
d
N
a
y
y
a
r,

H
a
rp

reet
K
a
u
r,

A
sh
u
S
in
g
la

Table 4.2
Result Summary for Each Experiment

E
x
p
erim

en
t
N
a
m
e/

P
a
ra
m
eter

H
o
st

co
u
n
t

V
M

co
u
n
t

S
im

u
la
tio

n
L
en

g
th

C
o
n
su

m
ed

E
n
erg

y
L
ev

els

M
ig
ra
tio

n
co

u
n
ts

S
erv

ice
L
ev

el
A
g
reem

en
t

P
erfo

rm
a
n
ce

S
L
A

P
er

H
o
st

E
la
p
sed

T
im

e
S
L
A

T
o
ta
l
v
io
la
tio

n
s

A
v
era

g
e
v
io
la
tio

n
s

H
o
st

sh
u
td

o
w
n
co

u
n
t

T
im

e
b
efo

re
sh
u
td

o
w
n
M
ea

n

T
im

e
b
efo

re
sh
u
td

o
w
n
S
tD

ev

M
ea

n
V
M

M
ig
ra
tio

n
D
ela

y

S
tD

ev
V
M

M
ig
ra
tio

n
D
ela

y

M
ea

n
V
M

S
electio

n

S
tD

ev
V
M

S
electio

n

M
ea

n
H
o
st

S
electio

n

S
tD

ev
H
o
st

S
electio

n

V
M

R
ea

llo
ca

tio
n
M
ea

n

V
M

R
ea

llo
ca

tio
n
S
tD

ev

T
o
ta
l
E
x
ecu

tio
n
D
ela

y
M
ea

n

S
tD

ev
T
o
ta
l
E
x
ecu

tio
n
D
ela

y

random dvfs 50 50 86400 52.98 0 0 0 0 0 0 29 300.1 0 NaN NaN
random iqr mc 1.5 50 50 86400 46.86 5085 0.02113 0.26 8.14 1.13 10.81 1517 1002.3 1214.4 20.33 7.93 0.00663 0.09327 0.00102 0.00079 0.00317 0.00494 0.01952 0.09417
random iqr mmt 1.5 50 50 86400 47.85 5502 0.0177 0.23 7.82 1.05 10.44 1549 1004.52 1178.23 17.62 7.89 0.00017 0.00044 0.001 0.00144 0.00393 0.01149 0.01308 0.02002
random iqr mu 1.5 50 50 86400 49.32 5789 0.02148 0.26 8.24 0.98 10.71 1622 997.96 1119.87 20.38 8.02 0.00021 0.00049 0.00094 0.00053 0.00428 0.0042 0.01346 0.00926
random iqr rs 1.5 50 50 86400 47.43 5032 0.02059 0.25 8.32 1.05 10.42 1526 1009.4 1191.37 20.29 7.95 0.00019 0.00049 0.00098 0.0006 0.00277 0.00271 0.0111 0.01006
random lr mc 1.2 50 50 86400 34.35 2203 0.02124 0.14 15.63 3.17 12.45 685 1484.67 2719.41 20.35 7.95 0.00266 0.02902 0.00081 0.00197 0.00133 0.00235 0.01283 0.03109
random lr mmt 1.2 50 50 86400 35.37 2872 0.01912 0.13 14.31 3.16 12.89 806 1330.63 2212.7 16.6 7.7 0.00013 0.00039 0.00087 0.00355 0.00133 0.00208 0.00943 0.00991
random lr mu 1.2 50 50 86400 35.38 2808 0.02047 0.13 15.21 3.39 13.13 816 1293.22 2183.88 20.06 8.11 0.00018 0.00078 0.00105 0.00523 0.00155 0.00324 0.01002 0.01019
random lr rs 1.2 50 50 86400 34.33 2338 0.02269 0.14 16.17 3.16 12.78 692 1459.61 2639.05 20.37 7.94 0.00008 0.00049 0.00088 0.00375 0.00111 0.00256 0.01036 0.01202
random lrr mc 1.2 50 50 86400 34.35 2203 0.02124 0.14 15.63 3.17 12.45 685 1484.67 2719.41 20.35 7.95 0.00137 0.0063 0.00132 0.0072 0.00139 0.00254 0.01081 0.01231
random lrr mmt 1.2 50 50 86400 35.37 2872 0.01912 0.13 14.31 3.16 12.89 806 1330.63 2212.7 16.6 7.7 0.00024 0.00088 0.00112 0.00541 0.00205 0.00331 0.01088 0.0114
random lrr mu 1.2 50 50 86400 35.38 2808 0.02047 0.13 15.21 3.39 13.13 816 1293.22 2183.88 20.06 8.11 0.00022 0.00087 0.00099 0.00556 0.0022 0.00332 0.01037 0.00992
random lrr rs 1.2 50 50 86400 34.3 2196 0.0235 0.14 16.35 3.6 13.29 701 1451.49 2789.53 20.52 7.93 0.00008 0.00053 0.00099 0.00491 0.00133 0.00281 0.00981 0.01107
random mad mc 2.5 50 50 86400 44.99 4778 0.02504 0.26 9.81 1.53 10.96 1468 980.23 1213.2 20.35 7.95 0.00202 0.00782 0.00117 0.00247 0.00323 0.00397 0.01353 0.01212
random mad mmt 2.5 50 50 86400 45.61 5265 0.01967 0.23 8.61 1.31 10.91 1528 965.45 1253.17 17.17 7.77 0.0002 0.00081 0.00144 0.00498 0.00378 0.0036 0.01324 0.00997
random mad mu 2.5 50 50 86400 47.36 5628 0.02529 0.26 9.73 1.53 11.11 1632 944.32 1137.05 20.18 8.03 0.00025 0.0009 0.00117 0.00519 0.00471 0.00437 0.01504 0.0111
random mad rs 2.5 50 50 86400 44.95 4882 0.02485 0.26 9.66 1.69 11.16 1489 970.18 1185.94 20.29 7.98 0.00028 0.00097 0.00127 0.00538 0.00348 0.00418 0.01263 0.01028
random npa 50 50 86400 150.68 0 0 0 0 0 0 29 300.1 0 NaN NaN
random thr mc 0.8 50 50 86400 40.85 4392 0.03726 0.27 13.79 3.09 12.93 1389 924.72 1363.51 20.47 7.94 0.00152 0.00632 0.00047 0.00119 0.00201 0.0037 0.00868 0.01095
random thr mmt 0.8 50 50 86400 41.81 4839 0.03048 0.23 12.99 3.25 12.81 1424 929.7 1348.87 16.82 7.67 0.00011 0.0006 0.00038 0.0011 0.00249 0.00502 0.00839 0.00835
random thr mu 0.8 50 50 86400 44.08 5404 0.03546 0.28 12.69 2.73 12.73 1578 900.54 1253.98 20.23 8.09 0.00017 0.00075 0.00033 0.00103 0.00262 0.00388 0.00886 0.009
random thr rs 0.8 50 50 86400 41.12 4442 0.03592 0.27 13.16 3.03 13.18 1391 934.82 1404.86 20.52 7.96 0.00007 0.00044 0.00045 0.00106 0.00251 0.00535 0.00877 0.01113



Dynamic Task Scheduling using Balanced VM Allocation Policy for Fog Computing Platforms 453

Fig. 4.24. Consumed Energy Level per Experiment

Fig. 4.24 shows consumed energy levels along with their experiment names.
From the Table 4.2, migration counts can also be computed and it is seen that experiment name: ran-

dom iqr mu 1.5 involves maximum number of migration counts. Fig. 4.25 shows the migration counts for each
experiment.

5. Conclusion and Future Directions. The fog computing resource allocation methods proposed in
this paper combines the allocation and selection techniques altogether with optimal parameter stack to make
scheduling decisions. This paper primarily focused to reduce the task load by implementing the rapid task
processing, while also incorporating the sub-group oriented scheduling on available resources. This scheme is
believed to improve the user contentment by improving the cost to operation length ratio, which eventually
reduces the customer churn, and can effectively boost the operational revenue. The failure event tracking also
plays a vital role in scheduling operations by avoiding the computing resources with high failure probability. The
proposed model is learnt to reduce the queue size by effectively allocating the resources, which resulted in the
form of quicker completion of user workflows. The prospective method results are evaluated against the state
of the art scene with non-power aware based task scheduling mechanism. Out of the random VM allocation
and selection policy, the DVFS (52.98 kWh) scheme outperforms NPA (150.68 kWh) model for the cloud task
processing. Out of the particular VM allocation and selection models, which includes IQR, LR, LRR, MAD
& THR. The results have obtained and analyzed using the energy, SLA infringement and workflow execution
delay. The performance of the proposed schema has been analyzed in various experiments particularly designed
to analyze various aspects for workflow processing on given fog resources. The LRR (35.85 kWh) model has
been found most efficient on the basis of average energy consumption in comparison to the LR (34.86 kWh),
THR (41.97 kWh), MAD (45.73 kWh) and IQR (47.87 kWh). The LRR model has been also observed as the
leader when compared on the basis of number of VM migrations. The LRR (2520 VMs) has been observed as
best contender on the basis of mean of number of VM migrations in comparison with LR (2555 VMs), THR
(4769 VMs), MAD (5138 VMs) and IQR (5352 VMs).

In future, this work may not only confine to task allocation and task scheduling, but can be extended towards
various load balancing algorithms that compute the load that gets generated on each VM. Moreover, this work
of allocation and scheduling can be extended to the emerging technologies like bigdata to solve problems arising
due to huge data in daily routine. This work may also be extended towards machine learning and deep learning



454 Simar Preet Singh, Anand Nayyar, Harpreet Kaur, Ashu Singla

Fig. 4.25. Migration counts per Experiment

for pre-judgement of the upcoming difficulties and can set up a recovery/maintenance module accordingly.

REFERENCES

[1] W. A. Jansen, T. Grance, et al., Guidelines on security and privacy in public cloud computing (2011).
[2] Basic concept and terminology of cloud computing (Jan. 2015).
[3] E. A. Pansotra, E. S. P. Singh, Cloud security algorithms, International Journal of Security and Its Applications 9 (10)

(2015) 353–360 (2015).
[4] A. T. Velte, T. J. Velte, R. C. Elsenpeter, R. C. Elsenpeter, Cloud computing: a practical approach, McGraw-Hill

New York, 2010 (2010).
[5] S. P. Singh, A. Sharma, R. Kumar, Analysis of load balancing algorithms using cloud analyst, International Journal of Grid

and Distributed Computing 9 (9) (2016) 11–24 (2016).
[6] M. Rahman, S. Iqbal, J. Gao, Load balancer as a service in cloud computing, in: 2014 IEEE 8th International Symposium

on Service Oriented System Engineering, IEEE, 2014, pp. 204–211 (2014).
[7] Gartner highlights five attributes of cloud computing (Dec. 2013).
[8] A. Bala, I. Chana, Fault tolerance-challenges, techniques and implementation in cloud computing, International Journal of

Computer Science Issues (IJCSI) 9 (1) (2012) 288–293 (2012).
[9] Cloud computing: A delicate balance of risk and benefit (Feb. 2015).

[10] Prerakmody, Cloud computing (Jan. 2015).
[11] L. M. Vaquero, L. Rodero-Merino, J. Caceres, M. Lindner, A break in the clouds: towards a cloud definition, ACM

SIGCOMM Computer Communication Review 39 (1) (2008) 50–55 (2008).
[12] S. Patel, A. S. Singh, Fault tolerance mechanisms and its implementation in cloud computing–a review, International Journal

3 (12) (2013).
[13] A. M. Alakeel, et al., A guide to dynamic load balancing in distributed computer systems, International Journal of

Computer Science and Information Security 10 (6) (2010) 153–160 (2010).
[14] W. Zhao, P. Melliar-Smith, L. E. Moser, Fault tolerance middleware for cloud computing, in: 2010 IEEE 3rd International

Conference on Cloud Computing, IEEE, 2010, pp. 67–74 (2010).
[15] Q. Li, J. Zhao, Y. Gong, Q. Zhang, Energy-efficient computation offloading and resource allocation in fog computing for

internet of everything, China Communications 16 (3) (2019) 32–41 (2019).
[16] S. P. Singh, A. Nayyar, R. Kumar, A. Sharma, Fog computing: from architecture to edge computing and big data



Dynamic Task Scheduling using Balanced VM Allocation Policy for Fog Computing Platforms 455

processing, The Journal of Supercomputing (2018) 1–36 (2018).
[17] M. Dorigo, Optimization, learning and natural algorithms, PhD Thesis, Politecnico di Milano (1992).
[18] M. Aazam, K. A. Harras, S. Zeadally, Fog computing for 5g tactile industrial internet of things: Qoe-aware resource

allocation model, IEEE Transactions on Industrial Informatics (2019).
[19] Y. Jie, M. Li, C. Guo, L. Chen, Game-theoretic online resource allocation scheme on fog computing for mobile multimedia

users, China Communications 16 (3) (2019) 22–31 (2019).
[20] X. Li, J. Wan, H.-N. Dai, M. Imran, M. Xia, A. Celesti, A hybrid computing solution and resource scheduling strategy

for edge computing in smart manufacturing, IEEE Transactions on Industrial Informatics (2019).
[21] S. Dam, G. Mandal, K. Dasgupta, P. Dutta, An ant colony based load balancing strategy in cloud computing, in: Advanced

Computing, Networking and Informatics-Volume 2, Springer, 2014, pp. 403–413 (2014).
[22] A. Tasiopoulos, O. Ascigil, I. Psaras, S. Toumpis, G. Pavlou, Fogspot: Spot pricing for application provisioning in

edge/fog computing, IEEE Transactions on Services Computing (2019).
[23] A. Yousefpour, C. Fung, T. Nguyen, K. Kadiyala, F. Jalali, A. Niakanlahiji, J. Kong, J. P. Jue, All one needs to

know about fog computing and related edge computing paradigms: A complete survey, Journal of Systems Architecture
(2019).

[24] G. Yoon, D. Choi, J. Lee, H. Choi, Management of iot sensor data using a fog computing node, Journal of Sensors 2019
(2019).

[25] Z. Ning, J. Huang, X. Wang, Vehicular fog computing: Enabling real-time traffic management for smart cities, IEEE
Wireless Communications 26 (1) (2019) 87–93 (2019).

[26] S. K. Goyal, M. Singh, Adaptive and dynamic load balancing in grid using ant colony optimization, International Journal
of Engineering and Technology 4 (4) (2012) 167–174 (2012).

[27] B. Donassolo, I. Fajjari, A. Legrand, P. Mertikopoulos, Fog based framework for iot service provisioning, in: 2019 16th
IEEE Annual Consumer Communications & Networking Conference (CCNC), IEEE, 2019, pp. 1–6 (2019).

[28] S. K. Dhurandher, M. S. Obaidat, I. Woungang, P. Agarwal, A. Gupta, P. Gupta, A cluster-based load balancing
algorithm in cloud computing, in: 2014 IEEE International Conference on Communications (ICC), IEEE, 2014, pp.
2921–2925 (2014).

[29] V. S. Kushwah, S. K. Goyal, P. Narwariya, A survey on various fault tolerant approaches for cloud environment during
load balancing, Int J Comput Netw Wirel Mobile Commun 4 (6) (2014) 25–34 (2014).

[30] K. Nishant, P. Sharma, V. Krishna, C. Gupta, K. P. Singh, R. Rastogi, et al., Load balancing of nodes in cloud using
ant colony optimization, in: 2012 UKSim 14th International Conference on Computer Modelling and Simulation, IEEE,
2012, pp. 3–8 (2012).

[31] R. Mishra, A. Jaiswal, Ant colony optimization: A solution of load balancing in cloud, International Journal of Web &
Semantic Technology 3 (2) (2012) 33 (2012).

[32] K. Dasgupta, B. Mandal, P. Dutta, J. K. Mandal, S. Dam, A genetic algorithm (ga) based load balancing strategy for
cloud computing, Procedia Technology 10 (2013) 340–347 (2013).

[33] Z. Tang, L. Qi, Z. Cheng, K. Li, S. U. Khan, K. Li, An energy-efficient task scheduling algorithm in dvfs-enabled cloud
environment, Journal of Grid Computing 14 (1) (2016) 55–74 (2016).

[34] F. Yuan, S. E. OOI, L. Yuto, T. Yasuo, Time task scheduling for simple and proximate time model in cyber-physical
systems, in: Computational Science and Technology, Springer, 2019, pp. 185–194 (2019).

[35] Q. Zhao, C. Xiong, C. Yu, C. Zhang, X. Zhao, A new energy-aware task scheduling method for data-intensive applications
in the cloud, Journal of Network and Computer Applications 59 (2016) 14–27 (2016).

[36] N. Bansal, A. Maurya, T. Kumar, M. Singh, S. Bansal, Cost performance of qos driven task scheduling in cloud computing,
Procedia Computer Science 57 (2015) 126–130 (2015).

[37] G. Patel, R. Mehta, U. Bhoi, Enhanced load balanced min-min algorithm for static meta task scheduling in cloud computing,
Procedia Computer Science 57 (2015) 545–553 (2015).

[38] W. Lin, C. Liang, J. Z. Wang, R. Buyya, Bandwidth-aware divisible task scheduling for cloud computing, Software: Practice
and Experience 44 (2) (2014) 163–174 (2014).

[39] G. Xu, J. Pang, X. Fu, A load balancing model based on cloud partitioning for the public cloud, Tsinghua Science and
Technology 18 (1) (2013) 34–39 (2013).

[40] Z. Liu, X. Wang, A pso-based algorithm for load balancing in virtual machines of cloud computing environment, in: Inter-
national conference in swarm intelligence, Springer, 2012, pp. 142–147 (2012).

[41] K. Li, G. Xu, G. Zhao, Y. Dong, D. Wang, Cloud task scheduling based on load balancing ant colony optimization, in:
2011 Sixth Annual ChinaGrid Conference, IEEE, 2011, pp. 3–9 (2011).

[42] H. Chang, X. Tang, A load-balance based resource-scheduling algorithm under cloud computing environment, in: Interna-
tional Conference on Web-Based Learning, Springer, 2010, pp. 85–90 (2010).

[43] V. Šešum-Čavić, E. Kühn, Self-organized load balancing through swarm intelligence, in: Next Generation Data Technologies
for Collective Computational Intelligence, Springer, 2011, pp. 195–224 (2011).

[44] A. Jain, R. Singh, An innovative approach of ant colony optimization for load balancing in peer to peer grid environment,
in: 2014 International Conference on Issues and Challenges in Intelligent Computing Techniques (ICICT), IEEE, 2014,
pp. 1–5 (2014).

[45] R. Chaukwale, S. S. Kamath, A modified ant colony optimization algorithm with load balancing for job shop scheduling,
in: 2013 15th International Conference on Advanced Computing Technologies (ICACT), IEEE, 2013, pp. 1–5 (2013).

[46] S. Razzaq, A. Wahid, F. Khan, N. ul Amin, M. A. Shah, A. Akhunzada, I. Ali, Scheduling algorithms for high-performance
computing: An application perspective of fog computing, in: Recent Trends and Advances in Wireless and IoT-enabled
Networks, Springer, 2019, pp. 107–117 (2019).



456 Simar Preet Singh, Anand Nayyar, Harpreet Kaur, Ashu Singla

[47] J. Wang, D. Li, Task scheduling based on a hybrid heuristic algorithm for smart production line with fog computing, Sensors
19 (5) (2019) 1023 (2019).

[48] J. Luo, L. Yin, J. Hu, C. Wang, X. Liu, X. Fan, H. Luo, Container-based fog computing architecture and energy-balancing
scheduling algorithm for energy iot, Future Generation Computer Systems (2019).

[49] L. Gu, J. Cai, D. Zeng, Y. Zhang, H. Jin, W. Dai, Energy efficient task allocation and energy scheduling in green energy
powered edge computing, Future Generation Computer Systems 95 (2019) 89–99 (2019).

[50] C. Li, J. Tang, H. Tang, Y. Luo, Collaborative cache allocation and task scheduling for data-intensive applications in edge
computing environment, Future Generation Computer Systems 95 (2019) 249–264 (2019).

[51] C. Li, J. Bai, J. Tang, Joint optimization of data placement and scheduling for improving user experience in edge computing,
Journal of Parallel and Distributed Computing 125 (2019) 93–105 (2019).

[52] Y. Deng, Z. Chen, X. Yao, S. Hassan, J. Wu, Task scheduling for smart city applications based on multi-server mobile
edge computing, IEEE Access 7 (2019) 14410–14421 (2019).

[53] S. Javaid, N. Javaid, T. Saba, Z. Wadud, A. Rehman, A. Haseeb, Intelligent resource allocation in residential buildings
using consumer to fog to cloud based framework, Energies 12 (5) (2019) 815 (2019).

[54] L. Li, Q. Guan, L. Jin, M. Guo, Resource allocation and task offloading for heterogeneous real-time tasks with uncertain
duration time in a fog queueing system, IEEE Access 7 (2019) 9912–9925 (2019).

[55] R. Mahmud, R. Buyya, Modeling and simulation of fog and edge computing environments using ifogsim toolkit, Fog and
Edge Computing: Principles and Paradigms (2019) 433–465 (2019).

[56] B. Singh, O. Gupta, S. P. Singh, Performance evaluation of dns based load balancing techniques for web servers (2011).
[57] M. Liu, F. R. Yu, Y. Teng, V. C. Leung, M. Song, Distributed resource allocation in blockchain-based video streaming

systems with mobile edge computing, IEEE Transactions on Wireless Communications 18 (1) (2019) 695–708 (2019).
[58] P. T. I. M. C. COMPUTING, An efficient job sharing strategy for prioritized tasks in mobile cloud computing environment

using acs-js algorithm, Journal of Theoretical and Applied Information Technology 97 (4) (2019).
[59] L. Yang, B. Liu, J. Cao, Y. Sahni, Z. Wang, Joint computation partitioning and resource allocation for latency sensitive

applications in mobile edge clouds, IEEE Transactions on Services Computing (2019).
[60] S. Kim, Novel resource allocation algorithms for the social internet of things based fog computing paradigm, Wireless Com-

munications and Mobile Computing 2019 (2019).
[61] Z. Zhou, P. Liu, J. Feng, Y. Zhang, S. Mumtaz, J. Rodriguez, Computation resource allocation and task assignment

optimization in vehicular fog computing: A contract-matching approach, IEEE Transactions on Vehicular Technology
(2019).

[62] B. Mondal, K. Dasgupta, P. Dutta, Load balancing in cloud computing using stochastic hill climbing-a soft computing
approach, Procedia Technology 4 (2012) 783–789 (2012).

[63] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, R. Buyya, Cloudsim: a toolkit for modeling and simulation
of cloud computing environments and evaluation of resource provisioning algorithms, Software: Practice and experience
41 (1) (2011) 23–50 (2011).

[64] K. Braekers, R. F. Hartl, S. N. Parragh, F. Tricoire, A bi-objective home care scheduling problem: Analyzing the
trade-off between costs and client inconvenience, European Journal of Operational Research 248 (2) (2016) 428–443
(2016).

[65] A. Beloglazov, J. Abawajy, R. Buyya, Energy-aware resource allocation heuristics for efficient management of data centers
for cloud computing, Future generation computer systems 28 (5) (2012) 755–768 (2012).

[66] S. Zaman, D. Grosu, A combinatorial auction-based mechanism for dynamic vm provisioning and allocation in clouds, IEEE
Transactions on Cloud Computing 1 (2) (2013) 129–141 (2013).

[67] S. Zaman, D. Grosu, Combinatorial auction-based dynamic vm provisioning and allocation in clouds, in: 2011 IEEE Third
International Conference on Cloud Computing Technology and Science, IEEE, 2011, pp. 107–114 (2011).

[68] Z. Cao, S. Dong, Dynamic vm consolidation for energy-aware and sla violation reduction in cloud computing, in: 2012
13th International Conference on Parallel and Distributed Computing, Applications and Technologies, IEEE, 2012, pp.
363–369 (2012).

[69] K. Kumar, J. Feng, Y. Nimmagadda, Y.-H. Lu, Resource allocation for real-time tasks using cloud computing, in: 2011
Proceedings of 20th International Conference on Computer Communications and Networks (ICCCN), IEEE, 2011, pp.
1–7 (2011).

[70] A. Beloglazov, R. Buyya, Energy efficient allocation of virtual machines in cloud data centers, in: 2010 10th IEEE/ACM
International Conference on Cluster, Cloud and Grid Computing, IEEE, 2010, pp. 577–578 (2010).

[71] A. Beloglazov, R. Buyya, Managing overloaded hosts for dynamic consolidation of virtual machines in cloud data centers
under quality of service constraints, IEEE Transactions on Parallel and Distributed Systems 24 (7) (2013) 1366–1379
(2013).

Edited by: Pijush Kanti Dutta Pramanik
Received: Mar 18, 2019
Accepted: Apr 2, 2019


