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E-DPSIW-FCA: ENERGY AWARE FCA-BASED DATA PLACEMENT STRATEGY FOR
INTENSIVE WORKFLOW
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Abstract. Intensive Workflows are composed of large number of complex tasks and require a large amount of data located
in different Storage Computing Servers (SC). The data movement between SC causes high communication and data movement
cost. In this paper, a data placement strategy based on Formal Concept Analysis approach (E-DPSIW-FCA) is proposed aiming
to reduce the data movement, the consumed energy, and the workflow execution cost. FCA allows to group the maximum of data
and tasks in an hierarchical structure called lattice concepts. These concepts are mapped to the appropriate SC. The navigation
through the hierarchy of concepts is considered as a solution of the case when the data group size exceeds the SC storage capacity.
The simulations results show that E-DPSIW-FCA can achieve better results than the K-means [4] and genetic algorithm [14] based
approaches.
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1. Introduction. Workflows are composed of a sequence of operations and declared as a work of person or
a group [1]. They have been used in a number of scientific applications, which generate massive amount of data
every day, such as astronomy [2] and bioinformatics [3]. These workflows are potentially intensive and comprise
hundreds or thousands of complex tasks and big datasets which need to be stored and, make its processing very
complex [4]. For instance, the Cybershake workflow, which is used to calculate probabilistic seismic hazard
curves for several geographic sites in the southern California area, has an average execution time that can be
up to 8 hours and 51 minutes for running 2 083 325 tasks and generates a huge amount of datasets [5] [6].
So, in order to process and store these huge amounts of workflow data, Cloud providers are deploying large
number of Computing and Storage devices to address and satisfy the ever increasing user’s requirements for
more computing capacity, storage and memory. As well as that, they offer different Cloud storage resources
including Amazon Web Services (AWS) which offers various kinds of cloud storage systems [7]. For example,
Elastic Block Store (EBS) provides persistent block storage volumes for use with Amazon Elastic Compute
Cloud (Amazon EC2) instances whereas the data are delivered as data block [8]. Amazon Elastic Compute
Cloud (Amazon EC2) instances and the International Business Machines (IBM) offered a block storage with up
to 12 TB in capacities [9].

The execution of a workflow task requires a massive volume of datasets, which are physically distributed and
stored in multiple SC. Thus, data movement between SC will be inevitable and it would generate a significant
data movement cost due to the difference in the location between the data processing task and the necessary
dataset. Consequently, transfer large amounts of data between SC increases notably the consumed energy by
the networking devices, communication links, hence the increasing of the workflow execution cost. Further, pro-
cessing such a large size of moved data for executing workflows in the Cloud stands as a challenge [1]. According
to [10], a major portion of the consumed energy by the data center is utilized to maintain interconnection links
and network equipment operations. This consumed energy account for up to 50% of the total energy consump-
tion of a data center [11] and it is caused mainly by switches, Local Network Area infrastructure (or LAN),
routers, etc [12]. Reducing the energy consumption of a Data Center Networks (DCNs) is considered as an
essential step for advancing energy efficiency in Cloud Computing paradigm [11]. It is considered hence as a
challenge [1].

To address data placement problem, many works had been proposed such as [3] [4] [13] [25], etc. However,
to the best of our knowledge, most existing data placement studies have considered storing data in data centers
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without taken into account the granularity of data centers used resources, and the network aspect of a data
center infrastructure. More specifically, they did not cope with the consumed energy incurred by the networking
devices, the communication links and by the computing devices during the data placement and movement. Thus,
we are interested in proposing a strategy for data placement that considers the aspects cited previously. To
resolve this data placement problem, it is important to manage effectively these datasets in order to minimize
both the energy consumption and the total data movement cost efficiently during the workflow execution. This
can be achieved by placing and distributing intelligently these datasets in order to reduce the consumed energy
by computing, storage and communication devices as well as reducing the cost of using these devices.

In this paper, a novel Data Placement Strategy based on Formal Concept Analysis (E-DPSDIW-FCA)
is proposed. Indeed, contrarily to others studies, aiming to group the maximum of dependent datasets, our
approach operates at the granularity of a data center while considering its different levels of communication (
routers, switches, etc.), so that, to provide an efficient energy.

Overall, our main contributions are summarized as follows:
1. Applied the FCA approach in a new field which is massive data placement. Indeed, we used the FCA

approach to identify the tasks-datasets associations (Formal concepts) which indicate the dependency
among datasets and tasks,

2. Proposed a data placement algorithm to distribute and place original data and tasks based on their
dependencies in SC. For this end, as to save lattice computing time, firstly, we propose a K-means
based algorithm that allows dynamically clustering the input scientific workflows in order to identify
the most convenient algorithm to apply for the lattice concept computing. Second, we reduce the size
of the initial formal context. Additionally, an heuristic is defined by exploiting lattice concept level,
and this in order to avoid examining all concepts at the process of mapping datasets to SC.

3. Proposed a new data transfer cost model closely to real Cloud environment by using data slices.
4. Proposed a novel energy model to evaluate the energy consumption by communication, computing and

storage devices,
5. Formulated a mono-objective mathematical optimization model for workflow data placement taking into

account both the communication energy and the computing energy consumption, the data movement
and the quality metrics of server as explicit decision criteria, and

6. Implemented our algorithm and evaluate its performances with some scientific intensive workflows.
The remainder of this paper is organized as follows: in the section 2, we perform the system modeling and

the problem formulation. In section 3, we detail our proposed solution and justify our choice for FCA. Section 4
demonstrates the simulation results and the evaluation of our approach. Section 5 highlights the major related
works addressing the data placement problem and the existing energy models strategies. Finally, we conclude
our work and we give some perspectives.

2. System Modeling and Problem Formulation.

2.1. Workflow Modeling. A workflow W is modeled as: W = (T, Din,TS,DS). T = {ti|i = 1, ..., n}
represents the set of workflow tasks with n the number of tasks. Din= {dini |i = 1, ...,m} represents the amount
of original datasets to be processed by each workflow task ti and m is the number of datasets that are consumed
by such workflow task as input datasets. Each dataset dini has a size denoted as size(dini ). This size is defined
in some pre-determined unit such as mega-bytes, gigabytes or tera-bytes. Each task ti requires a set of data
denoted as Din(ti) from the set Din to satisfy its execution. TS : Din → T is a function dataset-task that returns
the set of workflow tasks that consume such datasets as their inputs. DS : T → Din is a function task-dataset
that returns the set of datasets that are consumed by such task as its inputs.

2.2. Cloud Computing Environment Modeling. A Cloud Computing environment is a 3-tuple: CC =
(DCN,SC, Scap) where
(i) DCN represents the datacenter network architecture, that consists of a set of Computing and Networking

devices. In addition, the computing devices are the servers (storage computing) denoted as SC and the
networking devices are the network switches and routers denoted as SWs.

(ii) SC = {sci|i = 1, ..., s} represents a set ′s′ of storage computing servers from the Cloud environment. As
mentioned above, SC may be virtual machines, dedicated storage sites, Amazon S3, Elastic Block Store,
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etc. Each sci has a storage capacity denoted as Cap(i).
The communication link among the SC is defined as the bandwidth demand or the traffic load between two

SC sci and scj . Besides, this communication link is expressed as: BW (sci, scj).
A computing server sci is defined by three quality metrics (Mi) used to evaluated its performance denoted

as: Mi = (Cstorage, Cprocessing, CDataTransfer) [63].
Actually, our goal lying behind evaluating the performance of server sci consists in reducing the data transfer

cost, the storage cost and the processing cost. Hence, the goal is to minimize the sum Qi:

(2.1) Qi = Cstorage + Cprocessing + CDataTransfer

where:
Cstorage = Tremain ×Din ×CostperStorage represents the cost of data storage where Tremain is the time that

the data Din is remaining in sci, D
in represents the stored data in sci and CostperStorage is the cost

of hosting time per second. For instance, the simple storage service Amazon S3 offers a range of storage
classes designed for different use cases. There are three highly durable storage classes including Amazon
S3 Standard for general-purpose storage of frequently accessed data, Amazon S3 Standard - Infrequent
Access for long-lived, but less frequently accessed data, and Amazon Glacier for long-term archive [34].
The storage pricing of Amazon S3 varies by region. For instance, in the standard storage in the region
of the US West (Northern California) for 50 TB/month, the price is $0.026 per GB. However, in South
America (Sao Paulo), the price is $0.0405 per GB [34].

Cprocessing = (Tproc+Twait)×CostperProcess indicates the cost of processing where Tproc is the time needed to
process a dataset of a task, Twait is the time waiting by a dataset to be processed and CostperProcess
is the cost of processing in million instructions per second (MIPS).

CDataTransfer is the cost of transferring data within region, across regions or over Internet. Consider sci
a storage computing server which communicates with server scj , data transfer is charged for every
gigabyte moved from sci to scj . Consider DT is the quantity of data to be transmitted between
the two servers in gigabytes. The amount of data transferred is divided into slices, and each slice is
defined by: (1) its size which is defined by an interval with max and min bounds, (2) its transfer cost
depending on its size. For instance, Microsoft Azure uses several data size intervals according to data
to be transferred, such as [5TB − 10TB], [50TB − 150TB], etc [58]. Hence, to be more closely to real
environment, we propose a new way to compute data transfer cost. Indeed, we define the data transfer
cost provided by a sci as a set S of n slices S = {si|i = 1, ..., n}. Indeed, each slice si is defined as a
triplet < smax

i , smin
i , pi >, with pi is the price of the slice

[

smax
i , smin

i

]

. To note, for the latest slice, we
have considered only smin

n . For example, a data size over 500 TB, Microsoft Azure considered only the
500 TB [58]. Thus, the monthly data transfer cost is calculated as follows:

(2.2) CDataTransfer(sci) =
n−1
∑

i=1

CostSlice(si) + (DT − smin
n )pi

where: CostSlice(si) represents the cost of data slice transfer from sci to any sc as indicated in the
Eq. 2.3:

(2.3) CostSlice(si(sci, scj)) =

{

(smax
i − smin

i ) ∗ pi if (DT
′

i > (smax
i − smin

i ))

otherwise , DT
′

i ∗ pi

where DT
′

i is the rest of data size for each used slice:

DT
′

i = DTi−1 − (smax
i−1 − smin

i−i ).

For instance, for the same data slice interval (5TB - 10TB), the prices of data transfer for the Central
US is $0.087 per GB, however, for the East Asia is evaluated as $0.12 per GB for Microsoft Azure [58].
pi depends also on the regions where the destination server is located. To note, a region is a geographic
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location in which public Cloud providers’ data centers reside [59]. For example, Amazon Web Services
(AWS) operates regions in the United States, South America, etc [59]. Indeed, there’s a cost of moving
data across servers within the same region, and a different (generally greater) cost for data transfer
across servers outside that region. Hence, according to the region, the cost is computed. First, if sci
and scj are within the same region. Then, the traffic will not be charged and pi is free. Second, if sci
and scj are not in the same region, then costs apply and all outbound traffic is charged. This cost is
denoted as PriceAcrossRegion. Finally, if the two servers communicate over Internet, so all internet
traffic from sci to scj is bound to costs denoted as PriceOverInternet, which are the most greater.
For instance, data going out of Azure data centers beloging to the interval (5GB - 10TB) to France
Central are charged to $0.084 per GB. Contrarily, for the same destination region and for the interval
(50GB- 150Tb), the cost is evaluated as $0.07 per GB [58]. (iii)Scap : SC → R+ is an available storage
resource capacity function. SS(sci) with sci ∈ SC determine the maximum available storage capacity
of sci in the CC environment. It may be measured in mega-bytes, giga-bytes or tera-bytes.

2.3. Data Center Network Architecture. In this scope, we have considered the three-tier Cisco data
center network architecture [35] to avoid the problem faced with the two tier one when scaling up the number
of servers, the network links in the core tier become over-subscribed. We have defined the link distance between
sci and scj as Physical Link Distance (PLD(sci, scj)). Further, in order to determinate the communication
cost, we assigned a weight for every (PLD). This link weight may be any practical measure such as link latency,
number of hops or number of switches, etc. In our experiments, the PLD is defined as the number of switches
on the routing path from source sci to destination scj denoted as NberSwitch and we have considered the fan-
out of the access switches (p0) as well as the fan-out of the aggregation ones (p1) [36]. It can be expressed as
follows [36]:

(2.4) NberSwitch(sci, scj) =























0, if i = j, and

1, if ⌊ i
p0
⌋ = ⌊ j

p0
⌋, and

3, if ⌊ i
p0
⌋ ̸= ⌊ j

p0
⌋ ∧ ⌊ i

p0p1
⌋ = ⌊ j

p0p1
⌋,

5, if ⌊ i
p0p1

⌋ ̸= ⌊ j
p0p1

⌋,

⌊x⌋ is called floor function that gives the largest integer less than or equal to x [37]. ∧ is a AND binary
operator. In some cases, the communication between SC induces to increase the energy consumption in the
communication elements (routers, switches, etc). Indeed, in a data center, the number of switches involved in
the execution of a task is proportional to the position of SC to run the task [38]. Consequently, while examining
the two active states and turned off of switch, the consumed energy by a network switch at times t, denoted as
EnergySwitch(t), is inspired from [38] and it is evaluated using the following formula:

(2.5) EnergySwitch(t) = α× [P base
Switch(t) + nactiveport(t)× P activeport

Switch (t)]

where α ∈ [0, 1]; if α = 0, it means that the switch is running, otherwise the switch is turned off. P base
Switch(t)

represents the power consumed by the fixed parts of the Switch chassis and linecard and it is expressed as
follows:

(2.6) P base
Switch(t) = P chassis

Switch (t) + P linecard
Switch (t)

nactiveport is the number of active ports at time t. P activeport
Switch (t) represents the power consumed by an active

port.

2.4. Problem Formulation. The large number of tasks in Intensive Workflow (IW ) needs sometimes
to process more than one dataset that may be stored in different SC. Moving these datasets increases the
workflow execution time while consuming a high energy. As a result, the data movement between SC becomes
a bottleneck that leads to limit the overall system performance [7] and increases the total cost of the system [39].
Figure 2.1 shows a sample scientific workflow instance that specifically describes our research questions. This
scientific workflow consists of four tasks {t1, t2, t3, t4}, five input datasets {d1, d2, d3, d4, d5} initially existed in
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Fig. 2.1. A Simple instance of a Workflow.

Fig. 2.2. A virtual machine configuration in the Cloud
with four virtual machines for workflow of Fig. 2.1.

the system. In this figure, the data flows from dataset d2 to t1 and t2 mean that d2 will be used by both t1
and t2 and d3 will be used by both t2 and t3. As shown in Fig.2.2, the task t1 as well as the datasets d1 and d2
are assigned to the virtual machine vm1. In same manner, the task t4 and the dataset d5 are assigned to vm3.
The tasks t2 and t3 and the dataset d3 are placed in vm4. Once the workflow tasks are executed, the task t2
needs to transfer the datasets d2 from vm1 to vm4 and d4 from vm1 to vm4 to insure its execution. This data
movement may increase the execution time and the energy consumption incurred during the communication
between VMs.

2.5. Objective function. The data placement problem consists to providing a mapping of these datasets
to SC that satisfies a set of objectives such as reducing the data transfer cost/time. Accordingly, given a
workflow W , we formulate our data placement using mono-objective optimization problem formulation that
aims to minimize the overall energy consumption and the cost of the workflow. The energy includes the
communication and computing energy consumption of used devices. The cost of the workflow includes its data
transfer cost, the data storage and the data processing cost. Hence, it is described by the Eq. 2.7:

(2.7)

min((
∑m

i=1

∑s

j=1 xij ∗ ω1 ∗Qj) + ω2 ∗ TDM(W )

+ω3 ∗WorkflowEnergy)
st.
∀i = 1..m, ∀j = 1..s, xij ∈ [0, 1].
∀j = 1..s,

∑m

i=1 size(i) 6 Cap(j)
∀i = 1..m,

∑s

j=1 xij = 1
∑

i ωi = 1
∀j = 1..s, ∀c = j..s− 1, ∀i = 1..m, size(i) < BW (j, c)

s and m represent the number of SC and the number Din respectively. xij is a boolean variable that indicates
which dataset i is assigned to which server j. It is equal to 1 if the dataset i is assigned to the scj and to 0
otherwise. We assume that each dataset can be assigned to only one scj as indicated by Eq. 2.7. BW is the
bandwidth demand or the traffic load between scj and scc. ω1, ω2 and ω3 are the weight values that indicate
the degree of importance of evaluated metrics of server which are described above, the total data movement and
the total workflow energy consumption defined below and the costs parameters in the fitness function (Eq. 2.7)
with their sum is equal to 1.

2.5.1. Total Data Movement for a given workflow W : TDM(W ). Consider the case where the
dataset dinm is stored in sci. However, the the task tx exists in scj . Actually, on assume that the dinm is required
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to be transferred from sci to scj in order to satisfy the execution of the task tx, hence, we define the Data
Movement denoted as DM as follows:

(2.8) DM(dinm, sci, scj) =

{

0, if sci and scjare in the same region

Size(dinm), if sci and scj are in different regions

Therefore, the total data movement TDM for a given workflow W is defined as the total data transferred while
executing the whole workflow tasks. It is calculated using the following formula:

(2.9) TDM(W ) =
n
∑

tx=1

∑

din
m∈DS(tx)

DM(dinm, sci, scj)

n represents the number of tasks. When the servers sci and scj are in different regions, requested data must
be transferred from sci to scj , so data traffic is generated accordingly.

2.5.2. Workflow Energy Consumption: WorkflowEnergy. Energy consumed during workflow execu-
tion includes both the energy consumed by network devices (CE) and computing and storage (CompE) devices,
otherwise:

(2.10) WorkflowEnergy = CE + CompE

Modeling the Workflow Communication Energy: CE. As the total amounts of workflow datasets
can be very large, it may severely increase the consumed energy by the network devices (switches) and by
the communication links. Thereby, communication energy depends on the total data being transferred, hence,
the total data movement was included in the cost modeling of workflow communication consumption Energy.
Recently, several works focused on controlling energy consumption of communication links in data center have
been proposed aiming to reduce energy such as [11] [55] [62], etc.

In our paper, we propose a communication energy model which has to:
(i) Focus on a three-tiered data center network hierarchy described in Sect. 2.3,
(ii) Take into account the networking devices that consume a significant portion of overall energy consumption

in data center in order to save energy,
(iii) Consider the consumed energy by the communication links, and
(iv) Operate at the granularity of the networking devices that may be either switch, router, etc.
For these reasons, our model is inspired from both works in [11] and [54] since the communication energy models
proposed in these works meet our requirements. In our model, we assume that each computing storage server
communicates with other servers through switches and a dedicated (contention free) reliable link that operates
at the transmission rate of R(i)(bits/s), i = 1, ..., s with s is the number of SC. Hence, our communication
energy model is expressed as follows:

(2.11) CE =

s−1
∑

i=1

s
∑

j=i+1

cost(sci, scj) ∗DM(dins , sci, scj) +

s
∑

c=1

εnet(c)

where cost(sci, scj) is the function computing the communication cost between any two SC. It is defined as the
product of the number of switches on the routing path from sci to scj as described in Eq. 2.4 and the consumed
energy by each switch as indicated by Eq. 2.5. Formally, it is expressed as:

(2.12) cost(sci, scj) = NberSwitch(sci, scj)× EnergySwitch(t)

εnet(j) is the consumed energy by the one-way transmission plus switching operation is described in the following
formula:

(2.13) εnet(j) = Pnet(j)×
size(dinj )

Rj
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D(j) =
size(din

j )

Rj
is the delay corresponding to the one-way transmission with size(dinj ) is the dataset size to be

moved to other SC and R(j) is the transmission rate. Pnet is the power consumed by the one-way transmission
plus switching operation which depends on the corresponding transmission rate R(j), the bandwidth BWj(Hz),
the noise spectral power density N0(j)(BW/Hz), (non negative) gain gj of the j

th link and the power consumed
by the jth end-to-end connection in the idle mode Pidle [29].

(2.14) Pnet(j) = ξj(2
R(j)
BWj − 1) + Pidle(j)

with ξj =
N0(j)×BWj

gj
, j = 1, ..., s

Modeling the Workflow Computation Energy: CompE. Several approaches have been proposed to
handle reducing computing energy consumption [11] [54] [56], etc. For the computation energy model, we have
applied the high level approach and it is inspired from [54] since their model is general and it avoids relying on
only processor element which increase the portability of the model and the simulation speed [57]. Hence, our
power consumption of a computing server or CPU is linearly related to the server’s utilization rate α and the
associated power consumption.

(2.15) CompE = (1− α) · PCPUidle
+ α · PCPUFull

where α ∈ [0, 1] represents the utilization rate of CPU, being α = 0, the machine is in an idle state and the
associated power consumption is PCPUidle

, whereas α = 1 the machine is in a full state and the associated power
consumption is PCPUfull

. For the idle state, the power consumption PCPUidle
is expressed as:

(2.16) PCPUidle
= A · C · fidle · v

2
idle

where Vidle and fidle denote respectively the voltage V and frequency f when the CPU is in idle state. The
power consumed by CPU in the full state PCPUfull

corresponds to:

(2.17) PCPUfull
= A · C · ffull · v

2
full

where Vfull and ffull are the voltage V and frequency f when the CPU is in full state.

3. Proposed solution: E-DPSIW-FCA. Our data placement strategy targets at finding a minimal
number of SC where the maximum of datasets and tasks are grouped based on their dependencies. It is
based essentially on the FCA approach. Note that reader can review the paper [15] to fully understand the
mathematical foundations of FCA approach. In the following, we will justify our choice for this approach.

3.1. Choice of the FCA approach. The choice of FCA approach is motivated by the following reasons:
(i)Apart from the mathematical foundation of the FCA approach, the notion of the concept represents faithfully
the notion of tasks grouped based on their common attributes. These attributes represent the common datasets
that tasks need for their execution, (ii)Because FCA results could be manipulated by some operators to navigate
in Galois-lattice structure, we need it to consider relationships among concepts, (iii)Its effectiveness to deal with
the problem faced during the placement of data when the group data size exceeds the storage capacity of SC,
that is considered as a compromise for prior data placement strategies. However, using the hierarchy between
the lattice concepts, this problem could be resolved by navigating among the different concepts. Furthermore,
to understand our solution, we need first to mention the necessary used definitions.

3.2. Definitions.
Extension, Intention and Size of a Concept ci: This definition was given in [15]. Consider C is a

set of p Lattice concepts. Each concept ci is defined by the couple: ci =< Ext, Int >; with Ext is called the
extension of the concept which is the tasks group. Int is called the intent of the same concept which represents
the input data. ci.Int refers to the set of data existed in the intent of the concept ci. The size of the concept
ci is defined as:

Size(ci) =
∑

din
i
∈|ci.Int|

Size(dini ), dini ∈ Din(3.1)
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Sparse Formal Context: The set of Tasks T and the set of original datasets Din are used in order to
generate the Formal Context. Indeed, a formal context that contains more number of Zero elements than non-
Zero elements is known as Sparse Formal Context. More specifically, to check whether a formal context which
has O as the number of objects (or entities), A as the number of attributes (or properties) is sparse, we need
to verify the total number of zero. If this count is more than (O ∗ A)/2, we consider this context as sparse,
otherwise, it is considered as dense context.

Level of concept (Level(ci)): In order to improve the solution execution time in [15], we propose to use
the level of a concept in a Galois-lattice. It’s is defined as the cardinality of its intention in our case. The level
of a concept ci is determined as:

Level(ci) = |ci.Int|(3.2)

It’s necessary to note that while navigating in the lattice from the top going bottom, the level of concepts
increases. The high level in a Galois-lattice is defined as the maximum cardinality of the all concepts intention.
In fact, a high level in a lattice of concepts is described as:

Highlevel = maxp
j=1(Level(cj))(3.3)

p is the concepts number in the Lattice. Note that the concepts located in the lattice middle have the highest
level.

Weight of a Concept (P (ci)): We improved the weight definition in [15] by considering in this scope
the granularity of the data center resources. Specifically, we have replaced the data center with the computing
storage server in the data placement. Besides, the weight P (ci) of a concept is denoted as follows:

(3.4) P (ci) =
|ci.Ext|

|T |
×

|ci.Int|

|Din|
×

MaxCap(sci)− Size(ci)

|MaxCap(sci)− Size(ci)|

The measure of the concept weight allows us to have the concepts that contain a maximum number of tasks
and datasets. The third factor is used to verify if the concept exceeds ci the maximum storage capacity of sci.

Minimum Data Coverage (MDC): Let C = {c1, c2..., cp} the set of p concepts. C is MDC if it covers
all datasets. Formally, we define MDC of C by:

(3.5) MDC(C) =

{

1, if
∪

1≤i≤p ci.Int = Din and
∩

1≤i≤p ci.Int = ⊘

0, otherwise

Candidacy of a Concept ci (Candidate(ci)): A concept ci is called candidate concept, if it has a maximum
weight and it covers the whole datasets. We define the candidacy of ci as follows:

(3.6) Candidacy(ci) =

{

1, if P (ci) is maximum and MDC(ci) = 1

0, otherwise

Feasibility of a Concept ci (Feasibility (ci )): A concept is feasible if the total size of its datasets is small
enough to be assigned to one storage computing server to be able to assign them. It is defined as follows:

(3.7) Feasibility(ci) =











1, if ∃sci where
∑

din
i
∈cci.Int

Size(dini ) 6 Cap(sci)

0, otherwise

Score of Dataset dini (Score (dini )): For each dataset dini ∈ Din, let SCdin
i

denotes the set of SC that

contained dini .Thus, the score of dataset dini is defined as:

(3.8) Score(dini ) = |{ti ∈ T such as Rti ∩ SCdin
i
= {dini }}|
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Rti is a partial order relation which gives all the datasets used by a task ti. Different from the solution in [15], the
datacenter in the feasibility formula ( 3.7) and the score definition ( 3.8) was replaced by the storage computing
server.

Tasks dependency dependencyT (ti, tj): dependency
T (ti, tj) represents the dependency between the tasks

ti and tj . To note, two tasks are dependent if they use the same datasets to satisfy their execution. Consequently,
the number of dependency between the tasks ti and tj is the number of data that are used by both ti and tj
which is defined as follows:

(3.9) dependencyT (ti, tj) = Count(Din(ti) ∩Din(tj))

where: Din(ti) ⊆ Din, Din(tj) ⊆ Din are the datasets that the tasks ti and tj respectively require to execution.
Count returns the number of data used by both the tasks ti and tj .

Quantity of transferred data: (QtDT(dincom, ci, cj)) Consider two concepts ci and cj , and dincom a
common original dataset used by the two concepts: dincom = {ci.Int}∩{cj .Int}. We have to verify the condition
of the minimum data coverage

∩

1≤i≤p ci.Int = ⊘ which represents the set of elements which are in ci or cj ,
or in both ci and cj . Then, we have to decide where to place the common dataset between the two concepts
ci and cj . Indeed, our choice is based essentially on finding the best placement which requires a minimum of:
(i)energy consumed during communication as described in Eq. 2.11, (ii)total data movement (Eq. 2.9) hopping
through network devices that will eventually reduces the network overhead. The quantity of transmitted data
between two concepts is described in the Algorithm 1 where sci, scj are the concepts’ computing storage servers
ci and cj . Count(ti) and Count(tj) are the number of tasks presents in the concepts ci and cj respectively that
require the common dataset dincom. DM(dincom, sci, scj) and CE are described above in (Eq. 2.8) and (Eq. 2.11).

Algorithm 1 Quantity of transferred Data function

1: function QtDT(dincom, ci, cj , sci, scj) ◃ dincom is placed in ci
2: if dincom ∈ {ci.Int} then
3: QtDT (dincom, ci, cj , sci, scj) =

∑

din
j
∈cj .Int

Size(dinj )− Size(dincom)) × (Count(tj))tj ∈ cj .Ext(tj) +

DM(dincom, sci, scj) + CE
4: end if
5: end function

Overall, we aim to place the independent data in a minimum number of SC, subsequently, in the lowest
level of communication in order to reduce the data movement between SC and minimizing the workflow com-
munication energy. Indeed, finding the appropriate storage computing server to place dincom among sci and scj
described by the Algorithm 2.

Algorithm 2 Appropriate Placement’s Algorithm

1: function Placement(QtDT (dincom, ci, cj , sci, scj), QtDT (dincom, cj , ci, sci, scj))
2: Output: Var AppropriateP lacement
3: if QtDT(dincom, ci, cj , sci, scj) < QtDT(dincom, cj , ci, sci, scj) then
4: AppropriateP lacement = sci
5: else
6: AppropriateP lacement = scj
7: end if
8: end function

3.3. Proposed Data Placement Solution. In our previous work, a data placement strategy to dataset-
datacenter mappings was proposed. It was just a start towards using FCA for the data placement problem.
Based on this work, we have further investigated the characteristics of FCA approach to improve our previous
work steps by: (i)classify input workflows and reduce formal context in order to save time when building the
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Fig. 3.1. Overview of our proposed solution E-DPSIW-FCA.

lattice, and (ii)exploit the lattice concepts level notion to define an heuristic in order to prevent analyzing all
the concepts during the candidate concepts selection. Fig. 3.1 presents the architecture of E-DPSIW-FCA:

3.3.1. Workflow Features Extraction. We have resorted to use an XML parser to parse the workflow
features, which is stored in XML format. Indeed, the XML parser extracted all workflows tasks, a set of input
datasets required for their execution and their sizes and also the dependencies between these tasks.

3.3.2. Pre-processing. We improved our previous work by adding this new step, which consists of two
phases:

Workflows Classification: In this stage, we classify the input workflows in order to identify the most
convenient techniques or algorithms to be used for the generation of Galois-lattice. Thus, we have to consider
the characteristics of the input workflows for the choice of these algorithms. Indeed, these characteristics include
the following metrics: the number of datasets, and the dependency between the tasks of the workflow [63]. Based
on data dependencies between the tasks, we defined a set of metrics to initially classify the input workflows
as workflows with high dependency and workflows with low dependency. Noteworthy that this classification
allow us identifying the dense formal context and this is in the case of high dependency workflows and the
sparse formal context in the case of ow dependency workflows. Further, based on the types of these formal
context, the lattice construction algorithms are recommended. For example, the Godin algorithm [43] has a
good performance with a sparse formal context. Note that we have used a clustering algorithm to be able to
automatically classify the input workflows.

High Dependency Workflows: This category of workflows includes multiple dependencies between their
tasks, since these tasks require for their execution the same datasets. These dependencies are reflected by
intensive data transfer between tasks. This type of workflows generates a significant execution time and high-
energy consumption.

Low Dependency Workflows: These workflows contain essentially a few number of dependent tasks
(See Def. 3.9). Thus, the amount of data communication between these tasks is quite small. This type of
workflows maximizes the parallelism of tasks execution which allows saving both the total execution time and
energy consumption. For instance, we consider the Eq. 3.10 to identify whether the input workflows with high
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dependency or with low dependency.

(3.10)

∑n−1
i=1

∑n

j=i+1 dependency
T (ti, tj)

n
≥ Limitdependency

where n is the overall number of tasks. dependencyT (ti, tj) is defined above (def. 3.9). Limitdependency is the
dependency threshold between tasks. In fact, beyond this threshold, one can consider the workflow with a high
dependence between tasks and below, the workflow is considered with a low dependence. Noteworthy that is
the formal context represents the data dependency relationships of a input workflow.

The performance of Lattice generation algorithms depends essentially on the formal context’s density. Thus,
a K-means based algorithm [62] that allows clustering the input workflows based on their feature (datasets,
tasks, tasks dependencies) is used. As described in [63], this algorithm allows us to identify the most convenient
algorithms to apply for the lattice concepts generation. K-means aims to partition an input set of N points
into K clusters by finding a partition such that the squared error between the empirical mean of a cluster and
the points in the cluster is minimized. The squared error metric and more details about the K-means algorithm
could be found in [62]. The main steps of K-means algorithm are as follows:

1. Select an initial partition with K clusters; repeat steps 2 and 3 until cluster membership stabilizes,
2. Generate a new partition by assigning each pattern to its closest cluster center, and
3. Compute new cluster centers.

This algorithm requires three user-specified parameters: number of clustersK, cluster initialization, and distance
metric. The number of clusters in this work is limited to two defining the type of the workflow dependency
(high, low). The definition of initial clusters is accomplished using the Eq. 3.10 determining a first classification
of the workflows. Then, we use the graph distance measure defined in [62] to evaluate the similarity degree
between the DAG graphs of the input workflows.

Reducing Formal Context. From the set of Tasks T and the set of original datasets Din extracted in
step 3.3.1, we generate the Formal Context FC = (T,Din, I). I is the binary relationship between T and
Din, it is set to 1 if task ti needs the dataset dini for its execution, 0 otherwise. Further, the Formal Context
indicates the dependency between tasks. Tow tasks ti and tj are dependent if only if they share one or more
datasets. This step is new compared to our previous solution. Since the concept of Formal context is the central
of FCA approach and its size has a significant influence on the structure of concept lattice as well as time and
space complexity [60] when building the lattice, hence, it is important to reduce this formal context. In general,
many techniques were proposed for this purpose. Thus, we have applied a simple way of reduction, which was
suggested by [42]. Its principle consists of the junction of lines and/or columns. Indeed, if for two objects g
and h are equal (g = h) then g and h can be replaced by one single object; dually, if for two attributes m and
n are equal (m = n), then m and n can be replaced by one single attribute [42].

3.3.3. Choice of the lattice Construction Algorithm. According to [61], the lattice construction
algorithms are recommended in terms of density/sparseness of underlying formal contexts as follows: (i)When
the formal context is small and sparse as denoted in 3.2 Godin [43] algorithm is a good choice in this case,
(ii)However, when contexts become denser, the algorithms such as Norris [44], NextClosure [45] and Close
by One [46] should be applied, and (iii)Though, in case of average density context, Bordat [47] algorithm
performs well.

3.3.4. Building of Galois-lattice. Our claim is to group the maximum of datasets and tasks together
based on their dependencies. This group is called Formal Concept referred to FCA. Moreover, in order to
represent all the formal concepts and their relationships, we build the Galois-lattice from the reduced context
FC = (T,Din, I) and depending on the generation algorithm chosen in the above step. Then, we proceed to
the reduction of the initial generated Galois-lattice in order to find the minimum number of concepts that have
grouped a maximum datasets and tasks and eliminate the unnecessary and redundant concepts without loss of
the information. In our solution, we eliminate all concepts having a single intention (or null) since the tasks
belonging to these concepts require only one dataset to be processed. The recovery of this dataset is possible
from other lattice concepts.
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3.3.5. Choice of Candidate Concepts based on Concept Level. It refers to extract from the Galois-
lattice, all the candidate concepts that, together, have a maximum weight and can cover the entire set of
attributes (Din). Nevertheless, we have proposed in this paper a new heuristic, which exploit the notion of level
defined in 3.2 in order to avoid examining all of them. Actually, we will firstly organize all the concepts by level
in the Lattice and then choose the concepts existed in the middle since they have the highest weight and cover
all the data. After selecting concepts and before affecting them into appropriates SC, we have to verify if two
candidate concepts, which are kept, have a common dataset. If it is the case, we will choose the placement of
the common dataset in one storage computing server of the candidate concepts by comparing the quantity of
transferred datasets in the two cases according to the algorithms1 and 2.

3.3.6. Mapping Datasets to Storage Computing Servers. In this paper we will take into account
the granularity of the utilized resources in the data center and its different communication levels during the
placement of IW data. Its basic is to assign the datasets of each concept candidate cci (See Eq. 3.6) and
feasible (See Eq. 3.7) to the appropriate sci to prove that the difference between its storage capacity and the
size of the concept cci is the minimum among every sci ∈ SC. If any concept among the candidate concepts
isn’t more feasible with what is left as free SC, we will proceed to assigning its sub-concepts denoted as
SubC(cci) = {scp1, scp2, ..., scps}. We treat this sub-concepts in the following manner: we select the small size
dataset as the first sub-concept to be placed later in the appropriate sci in order to avoid the transfer of larger
datasets. Then, we put the rest of datasets in a second sub-concept. In this data assigning step, we proceed
to the elimination of already assigned data from others sub-concepts in order to prevent their redundancy.
The stop condition is that all the datasets of cci are placed (cci.Int = ⊘) and ∀cci ∈ SubC(cci), we have
scpi.Int = ⊘. Finally, the result of this step is the list m of SC where the datasets are allocated.

3.3.7. Data Replication. The data replication technique is considered in our approach as a solution to
ensure the minimization of the average cost of all tasks. This technique was detailed in our previous work [15].
Briefly, it is based on two steps which are: i) Identification of data to replicate based on the score of each dataset
Score(dini ) (Eq. 3.8), and ii) Replication of important datasets.

3.4. E-DPSIW-FCA algorithm. The E-DPSIW-FCA algorithm is outlined in Algorithm 4. The algo-
rithm 4 describes the proposed strategy. In the first step, we start by classify the input workflows by applying the
K-means algorithm (KmeansCluster). Then, we generate the formal context FContext from the workflow tasks
and datasets using generateFormalCxt function. We apply the algorithm suggested in [42] for the reduction of
the generated Formal FContext using reduceFCxtbyGanter(FContext) to have our ReducedFCxt. We generate
the Lattice Galois from ReducedFCxt by applying the appropriate classification algorithm as described above
by the use of generateLattice function. This generated lattice, in turn, will be simplified using simplifyLattice
function. We retain then the candidate concepts from this simplified lattice by the use of selectCpCand func-
tion. In the next step, for each candidate concept, we verify its feasibility using feasible function. If the concept
is feasible, we first apply the function findAppropriateServer to find the most appropriate storage computing
server where we store this datasets concept using the function affecte. Then, we add this server to the best
servers list. If the concept isn’t feasible, we find its sub-concepts using findSubCpts function and then we update
the list of candidate concepts with the function update(CandidateConcepts, SubConcepts to perfom the same
treatment again. In the last step, for each storage computing server sci ∈ Placement, we verify if its datasets
need to be replicated using the function score. If it is the case, the replication is done by the use of replicate
function. WF.Din stands for the data Din of the input workflows WF .

4. Experiment Simulation. In our experiments, we run a set of scientific workflows as the sample
tests from [48] notably earthquake science (CyberShake) [49], astronomy (Montage) [50] and biological genetics
(Epigenomics) [51]. They were chosen because they represent a wide range of application domains and they
have distinct structures and differ greatly in the number and size of datasets. For example, Montage is I/O
intensive, CyberShake is memory intensive, and Epigenomics is CPU intensive. The Montage project is an
astronomy application that delivers science-grade mosaics of the sky [50]. The CyberShake is used to calculate
Probabilistic Seismic Hazard curves for several geographic sites in the Southern California area [52]. Epigenomics
maps short DNA segments collected with high-throughput gene sequencing machines to a previously structured
reference genome [51]. We have used the execution traces of the tested workflows in [48], which are stored in
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Algorithm 4 E-DPSIW-FCA Algorithm

Input: WF ◃ The input Workflow
setofServers = sc1, sc2, ..., scn ◃ List of SC
CandidateConcepts = ⊘ ◃ List of candidate concepts
SubConcepts = ⊘ ◃ List of sub-concepts
FContext = ⊘ ◃ Formal context to generate
ReducedFCxt = ⊘ ◃ Reduced Formal context
lattice = ⊘ ◃ Galois-lattice to build
simplifiedLattice = ⊘ ◃ Galois-lattice simplified

Output: Var Placement ◃ List of couple < sci, dj >
1: int capacity = 0;
2: intworkflow − type = KmeansCluster(WF );
3: FContext = generateFormalCxt(intworkflow − type.T, intworkflow − type.Din);
4: ReducedFCxt = reduceFCxtbyGanter(FContext);
5: lattice = generateLattice(ReducedFCxt);
6: simplifiedLattice = simplifyLattice(Lattice);
7: CandidateConcepts = selectCpCand(simplifiedLattice);
8: for candidate ∈ CandidateConcepts do
9: if feasible(candidate) then

10: scj = findAppropriateServer(sci, setofServers);
11: capacity = Cap(scj)
12: capacity = (min(Cap(sci), size(candidate)) ◃ ∀i = 1..n.
13: affecte(candidate, scj)
14: add(scj , P lacement)
15: scj .Cap = scj .Cap− Size(candidate)
16: else
17: SubConcepts = findSubCpts(candidate)
18: update(CandidateConcepts, SubConcepts);
19: for sci ∈ Placement do
20: for di ∈ sci.WF.Din do
21: if score(dini ) then
22: replicate(dini )
23: end if
24: end for
25: end for
26: end if
27: end for

XML-formatted files while providing information about these workflows, such as datasets size and dependencies,
tasks flow, etc.

4.1. Simulation Setting. Our simulation environment was developed using CloudSimPlus toolkit an
extension of CloudSim [53], which provides a platform of Cloud Computing infrastructures. The same workflows
and CC environments are simulated on other contrast experiments described in the Sect. 5 which are the BDAP
in [14] and the K-means strategy [4]. According to [14], the parameters of BDAP approach based GA are
set as follows: the population size is 20, the maximum number of iterations is 20, the crossover probability is
0.8, the mutation probability is 0.5. In our experiments, we assume that the weight values that indicate the
degree of importance of the quality metrics are equals. Our solution E-DPSIW-FCA, K-means and BDAP were
implemented and evaluated for the three test workflows according to the following criteria: 1)Execution time of
workflow tasks, 2)Workflow Communication energy cost that is defined in Sect. 2.11, 3)Total data movement
defined in Sect.2.9, and 4)Workflow Computing energy which is already defined in Sect. 2.15. We did our
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(a) 30 and 50 tasks.

(b) 100, 200 and 300 tasks.

Fig. 4.1. Total execution time by varying the number of Tasks.

experiments for two different scenarios: firstly with varying the number of tasks and secondly with varying the
number of VMs aiming to observe the effect of these variation on our performance indicators.

4.1.1. Scenario 1: Varying the number of Tasks. In this scenario, we have considered firstly four size
number of VMs: 5, 10, 15 and 20 for the E-DPSIW-FCA, BDAP and K-means approaches. In this test, we
select for each tested workflow a number of tasks in the range [30, 50]. Then, we test for E-DPSDIW-FCA and
K-means, since the processing time of the genetic algorithm (BDAP) approach is higher and it trends to take
longer to converge upon a solution. The number of VMs is in the range [40, 60, 80, 100, 120, 140, 160, 180, 200]
with number of tasks set at 100, 200, 300 tasks. Note that each task can be executed on any virtual machine.
With reference to Fig. 4.2, it can be seen that our solution has managed to reduce the total data movement
between VMs compared to BDAP and K-means algorithms. This reduction is more valuable for the memory
intensive workflows (Cybershake) and less remarkable in the case of CPU intensive workflows (Epigenomics)
since its amount of data communication is quite small. Figure 4.3 confirms the ability of our strategy to reduce
heavily the energy consumed during the communication between SC. Comparing the experiment results of
K-means, BDAP and our strategy, in Fig. 4.4, in terms of Computing Energy Consumption, it would be found
that the performance of our approach is the better.
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(a) 30 and 50 tasks.

(b) 100, 200 and 300 tasks.

Fig. 4.2. Total Data movement by varying the number of Tasks.

4.1.2. Scenario 2: Varying the number of VMs. In this scenario, we did our experiments for the
E-DPSIW-FCA and K-means with fixing the number of tasks to 300 and the number of VMs was set to [100,
200, 300, 400, 500, 600, 700, 800, 900, 1000]. It is worth noting that BDAP trends to take longer time to
converge upon a solution and it blocks at 100 tasks, so it was excluded. Figure. 4.5 reveals well that as the
number of VMs increases, FCA-based-Approach, K-means, and BDAP strategies’ respective execution time
prove to record a noticeable increase as compared to our approach. Further, it is clearly seen that our strategy
reduces heavily the execution time for Epigenomics better than Cybershake, since Epigenomics maximizes the
parallelism of tasks while saving time. Additionally, our approach performs well the execution time compared
to our previous work FCA-based-Approach, especially in the case of Cybershake rather than Epigenomics.

Figure 4.6 exhibits the total data movement’ tendencies recorded. In fact, our approach reduces the amount
of data movement compared to other strategies. This result has its justification, since our approach avoids the
movement of larger data and it provides multiple data placement choices, thereby, decreasing the amount of
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(a) 30 and 50 tasks.

(b) 100, 200 and 300 tasks.

Fig. 4.3. Total Workflow Communication energy by varying the number of Tasks.

data transfer consequently. However, K-means considers data dependencies too much, which leads to larger data
movement. Figure 4.7 indicates the additional energy consumption values incurred from the communication
between VMs. As data movement between VMs leads to a communication energy consumption, based on this,
it can be seen that our approach reduces the communication energy noticeably to BDAP and K-means. Worth
citing that data movement reduction and the communication energy consumption decrease is more valuable for
the memory intensive workflows (Cybershake and Montage) and less remarkable in the case of CPU intensive
workflows(Epigenomics), since its amount of data communication is quite small. Similarly, as shown in Fig. 4.8,
our approach reduces the computing consumption compared to other strategies.

5. Related Works. Being a critical challenging issue, data placement of IW has always attracted the
attention of researchers. Several data placement strategies have been proposed in this issue and tend to be
categorized under data dependency and graph-based methods.

Data dependency approaches have attempted to solve the data placement problem via application of
the heuristic algorithms such as the Genetic Algorithm (GA), the Practical Swarm Optimization technique
(PSO), the Ant Colony Optimization (ACO) and the hierarchical partition algorithms (based on Bond Energy
Algorithm (BEA)) to group data based on their dependencies in a bid to reduce the total data movements
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(a) 30 and 50 tasks.

(b) 100, 200 and 300 tasks.

Fig. 4.4. Total Workflow Computing energy by varying the number of Tasks.

throughout the workflow execution processes, such as [14] [17] [20], etc.

Graph-based approaches used, the data placement problem by modeling as a hypergraph or graph such
as in [21], [22], [23] and [31]. Furthermore, we have identified a set of criteria in order to perform a comparison
study (Table 5.1) of the data placement strategies above-mentioned which are:

(i) objective - which optimization criteria are exploited,
(ii) technique used - which concept is used to indicate the type of algorithm or method employed,
(iii) modelization- how authors model the data placement problem (graph, matrix),
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Fig. 4.5. Total Execution Time by varying the number of VMs.

Fig. 4.6. Total Data movement by varying the number of VMs.

(iv) type of datasets- datatsets can be original (Inp), intermediate data Int), produced by running workflow,
or fixed data Fix, stored in specific data centers according to their size or their management needs,
flexible data Flex, that the system can flexibly decide where to store them,

(v) data center infrastructure- what is the granularity of the resources considered (virtual machines, servers,
etc.),
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Fig. 4.7. Total Workflow Communication energy for ”Cybershake” and ”Epigenomics” workflows by varying the number of
VMs.

Fig. 4.8. Workflow Computing energy for ”Cybershake” and ”Epigenomics” workflows by varying the number of VMs.

(vi) network infrastructure- which network devices are supported (switches, routers, etc.).

From Table 5.1, we can make the following observations:

(i) Most approaches (72.72%) focus mainly in reducing data movement. Nevertheless, non-one of the above-
mentioned approaches do consider the energy consumption of network devices and communication links
during the workflow execution.

(ii) The vast majority of the presented works did not provide information about the network infrastructure
(68.18%). However, only (4.54%) operates at the lowest level of network data center and consider its
communication levels during data placement.

(iii) 22.72% of works did not provide information about data center infrastructure. Contrarily, few approaches
(13.63%) ( [14], [26] and [27]) considered the granularity of the data center resources, and solve the
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Table 5.1

Comparative Table of Existing Data Placement Strategies

Ap- Objective Technique Modelization Datasets Data Center Network
proach Applied Type InfrastructureInfrastructure
[14] data movement GA Matrix Inp, Int VMs -

communication cost Fixd
[16] number of data transfers GA Matrix Inp, Int Data center -
[17] execution time GA Matrix Inp Data center Bandwidth

data transfer time
[18] data transmissions GA Graph Inp, Int Data center Bandwidth

data transfer time
[19] data transfer number Hierarchical Matrix Inp, Fix, Flex Data center -

partionning Clustering
Algorithm + PSO

[20] amount of transferred data PSO + BEA Matrix Inp, Fix, Int Data center -
[21] data movements number PSO based on GA Graph Inp, Int Data center -
[22] data transfer cost Discrete PSO (DPSO) Graph Inp, Int Data center Bandwidth

Fix, Flex
[23] transmission time PSO + GA Graph Inp, Int Data center Bandwidth
[24] data security ACO - Inp, Data -

data transfer time Int, Fix, Flex center
[4] data movement K-means + Recursive Matrix Inp, Int Data center -

partitioning Fix, Flex
[25] total data scheduling - Matrix Inp, Int Data center -
[26] data movement BEA Matrix Inp VMs -
[27] data movement heuristic - Inp, Fix Servers Bandwidth

time consumption tree-to-tree
[27] overall data subgradient optimization - Inp Data center Bandwidth

access cost heuristics algorithm
[29] execution time, data movement BEA Matrix Inp Data center -
[30] Data transfer time heuristic GA Matrix Inp Data center -
[31] average query span HPA Hypergraph - Data center -
[32] Total amount of file transfers HPA Hypergraph Inp Data center -
[33] data movement Data Correlation + BEA Matrix Inp Data center -
[3] average query spans FCA Formal Context Inp Data center -

Execution time

data placement problem at the VM level.

Overall, to remedy these shortcomings cited above, we propose in this scope an extension of our previous
work [12] that makes allowances for:

(i) The placement of datasets into SC while considering the energy consumption in computing, storage and
communication devices.

(ii) Taking into account the architecture and the characteristics of the physical network interconnecting SC.
(iii) The communication between SC, while examining all the communication levels of data center architecture.

6. Conclusion. In this paper, a data placement strategy based on the FCA approach (E-DPSIW-FCA)
is proposed to operate within the context of data intensive workflows. E-DPSIW-FCA minimized the total
workflow communication and computing energy consumption and the total data movement between SC during
the execution of the workflow tasks. Our experiments based on three types of scientific workflows showed that
our strategy outperformed other strategies on reducing greatly the data movement and both computing and
communication energy consumption as well as the data transfer cost. In our solution, we have considered the
data placement for executing a single workflow. However, in the real world, multiple workflows can be executed
concurrently. Thus, as future work, we plan to extend our strategy to consider the data placement of multiple
workflows simultaneously, which is recognized today as an important challenging issue.



E-DPSIW-FCA: Energy aware FCA-based Data Placement Strategy for Intensive Workflow 561

REFERENCES

[1] E. Deelman and A. Chervenak, Data Management Challenges of Data-Intensive Scientific Workflows. Eighth IEEE Inter-
national Symposium on Cluster Computing and the Grid (CCGRID), pp. 687-692, 2008.

[2] Sh. Zhang, Ch. Zhu, J. K. O. Sin and P. K. T. Mok, A Novel Ultrathin Elevated Channel Low-temperature PolySi TFT.
IEEE Electron Device Letters, 20, vol. 20, no. 11, pp. 569-571, 1999.

[3] K. Bousselmi, Z. Brahmi and M.M. Gammoudi, QoS-aware scheduling of Workflows in Cloud Computing environments.
2016 IEEE 30th International Conference on Advanced Information Networking and Applications (AINA), pp. 737-745,
2016.

[4] D. Yuan, Y. Yang, X. Liu and J. Chen, A Data Placement Strategy in Scientific Cloud Workflows, Future Generation
Computer Systems, 26, 1200-1214.

[5] https://scec.usc.edu/CyberShake/. [Jan. 14, 2019].
[6] https://pegasus.isi.edu/. [Fev. 11, 2019].
[7] https://cloud.netapp.com/blog/ebs-efs-amazons3-best-cloud-storage-system/. [Sep. 27, 2018].
[8] https://aws.amazon.com/ebs/. [Oct. 15, 2018].
[9] https://www.ibm.com/cloud-computing/bluemix/fr/block-storage/. [Oct. 24, 2018].

[10] J. M. Pierson, Large-scale Distributed Systems and Energy Efficiency. A Holistic View. John Wiley and Sons, 2015.
[11] T. Li, W. Yang and A. Y. Zomaya, An energy-efficient virtual machine placement and route scheduling scheme in data

center networks. Future Generation Computer Systems, 77, 1-11, 2017.
[12] N. Cordeschi, M. Shojafar and E. Baccarelli, Energy-saving self-configuring networked data centers. Computer Networks,

57, 3479-3491, 2013.
[13] Q. Li, K. Wang, S. Wei, L. Xu and M. Gao, A data placement strategy based on clustering and consistent hashing algorithm

in Cloud Computing. 9th International Conference on Communications and Networking, pp. 478-483, 2014.
[14] M. Ebrahimi, A. Mohan, A. Kashlev and S. Lu, BDAP. A Big Data Placement Strategy for Cloud-Based Scientific

Workflows. IEEE First International Conference on Big Data Computing Service and Applications, pp. 105-114, 2015.
[15] Z. Brahmi, S. Mili and R. Derouiche, Data Placement Strategy for Massive Data Applications base on FCA Approach.

IEEE/ACS 13th International Conference of Computer Systems and Applications (AICCSA), pp. 1-8, 2016.
[16] Q. Xu, Z. Xu and T. Wang, A Data-Placement Strategy Based on Genetic Algorithm in Cloud Computing. International

Journal of Intelligence Science, 05, 145-157, 2015.
[17] J. Taheri and A.Y. Zomaya, Genetic algorithm in finding Pareto frontier of optimizing data transfer versus job execution

in grids. IEEE 26th International Parallel and Distributed Processing Symposium Workshops and PhD Forum, pp.
2130-2139, 2012.

[18] L. Cui, J. Zhang, L. Yue, Y. Shi and al. A Genetic Algorithm Based Data Replica Placement Strategy for Scientific
Applications in Clouds. IEEE Transactions on Services Computing, 11, 727-739, 2018.

[19] Z. Er-Dun, Q. Yong-Qiang, X. Xing-Xing and C. Yi, A Data Placement Strategy Based on Genetic Algorithm for Scientific
Workflows. Eighth International Conference on Computational Intelligence and Security, pp. 146-149, 2012.

[20] Q. Zhao, C. Xiong, K. Zhang, Y. Yue and J. Yang, A Data Placement Algorithm for Data Intensive Application in Cloud.
International Journal of Grid and Distributed Computing, 9, 145-156, 2016.

[21] Z. Xiang, T. Liu, B. Lin and al.AData Placement Strategy for ScientificWorkflow in Hybrid Cloud. IEEE 11th International
Conference on Cloud Computing, pp. 556-563, 2018.

[22] X. Li, L. Zhang, Y. Wu, and al. A Novel Workow-Level Data Placement Strategy for Data-Sharing Scientic Cloud Workows.
IEEE Transactions on Services Computing, 1-1, 2016.

[23] B. Lin, F. Zhu, J. Chen, X. Chen, N. N. Xiong and L. J. Mauri, A Time-driven Data Placement Strategy for a Scientific
Workflow Combining Edge Computing and Cloud Computing. CoRR, 2019.

[24] W. Lei, S. Peng, W. Du, W. Wang, and G. S. Zeng, Security-aware intermediate data placement strategy in scientific
cloud workflows. Knowledge and Information Systems, 41, 423-447, 2014.

[25] T. Wang, S. Yao, Z. Xu and S. Jia, DCCP: an effective data placement strategy for data-intensive computations in
distributed cloud computing systems. Journal of Supercomputing, 72, 2537-2564, 2016.

[26] L. Liu, J. Song, H. Wang, and P. Lv, BRPS: A Big Data Placement Strategy for Data Intensive Applications. IEEE 16th
International Conference on Data Mining Workshops (ICDMW), pp.813-820, 2016.

[27] Q. Zhao, C. Xiong, and P. Wang, Heuristic Data Placement for Data Intensive Applications in Heterogeneous Cloud.
Journal of Electrical and Computer Engineering, 2016, 8, 2016.

[28] J. Zhang, J. Chen, J. Luo, and A. Song , Efficient location-aware data placement for data-intensive applications in geo-
distributed scientific data centers. Tsinghua Science and Technology, 21, 47181, 2016.

[29] H. Kim, Y. and Kim, An adaptive data placement strategy in scientific workflows over cloud computing environments. NOMS
2018 - 2018 IEEE/IFIP Network Operations and Management Symposium, pp. 1-5, 2018.

[30] X. Qiang, Xu. Zhengquan and W. Tao A Data-Placement Strategy Based on Genetic Algorithm in Cloud Computing.
International Journal of Intelligence Science. 05, 145-157, 2015.

[31] A. K. Kayyoor, A. Deshpande and S. Khuller, Data placement and replica selection for improving co-location in distributed
environments. 1302-4168, 2013.
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