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Abstract. The plethora of sensors deployed in Internet of Things (IoT) environments generate unprecedented volumes of
data, thereby creating a data deluge. Data collected from these sensors can be used to comprehend, examine and control intricate
environments around us, facilitating greater intelligence, smarter decision-making, and better performance. The key challenge here
is how to mine out proficient information from such immense data. Copious solutions have been put forth to obtain valuable
inferences and insights, however, these solutions are still in their developing stages. Moreover, conventional procedures do not
address the surging analytical demands of IoT systems. Motivated to resolve this concern, this work investigates the key enablers
for performing desired data analytics in IoT applications. A comprehensive survey on the identified key enablers including their
role in IoT data analytics, use-cases in which they have been applied and the performance results of the use-cases is presented.
Furthermore, open research challenges and future research opportunities are also discussed. This article can be used as a basis to
foster advanced research in the arena of IoT data analytics.
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1. Introduction. IoT is regarded as the vital research paradigm in the current epoch. It has dramatically
revolutionized every facet of our lives. This technology is characterized by enormous amounts of smart devices
that cooperate seamlessly with each other by means of a global network infrastructure, thereby facilitating
a wide number of pervasive and ubiquitous applications spanning diverse fields [1]. It is an ecosystem of
smart devices, i.e., devices that possess sensing and processing efficacies and can comprehend and respond to
their surroundings via sensors and actuators. The blend of diverse technological advancements like near field
communication, Radio Frequency Identification (RFID), real-time localization, embedded systems, and the
networking expedite the conversion of day to day entities into smart entities [2]. These entities are incorporated
impeccably into a web like framework so that they can communicate with one another and with other cyber
agents so as to accomplish goal-oriented tasks [3]. IoT enables sensors and objects to interact coherently within
smart environs and facilitates information transfer in a suitable manner. The continuum of devices in IoT are
connected via several diverse access networks and communication solutions equipped with technologies such as
RFID, Wireless Sensor Network (WSN), Bluetooth, Wi-Fi, ZigBee, GSM etc. [4]. Over 30 billion [5] devices
ranging from smart phones, to vehicles are prophesied to be linked to the Internet by 2020. The large number of
sensors deployed in IoT environments continuously generate unprecedented volumes of structured, unstructured
and semi-structured data (Big Data), that cant be handled by conventional processing, storage and analytical
systems [6]. Data generated from IoT is different from traditional data in following ways [7]: (i) data is generated
continuously at high speed, (ii) Apart from structured data, data may be of semi-structured or unstructured
nature as well, (iii) data sources are diverse and fully distributed, and (iv) integration of multi-modal data
becomes complex.

The fundamental objective of IoT is to augment the standard of living. Nevertheless, this vision is based
on being able to efficiently process, analyze, and comprehend the data generated by IoT devices [8]. Hence,
analyzing IoT data in order to divulge trends, concealed patterns, hidden correlations, inferences, and action-
able insights is crucial for dispensing elite services to IoT users. In this regard, investigating the technological
advancements that can assist in analyzing unstructured and semi-structured data apart from structured data, in-
tegrating the data from heterogeneous data sources, performing real-time analytics in delay critical applications
as well as in optimizing the process of data analytics becomes indispensable.

1.1. Related Surveys. To the best of our knowledge, this work is the first of this kind that investigates
the key enablers for IoT data analytics and surveys their role in the IoT use-cases. There are few research works
in the literature that have surveyed data analytics in IoT applications, however, the focus of those research
works is different from the prime concern of this article. The main focus of this article is on the key enablers for
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IoT data analytics, the use-cases in which they have been applied, their purpose in those use-cases, the datasets
that have been used, and the performance results of the use-cases.

In [9], Siow et al. have reviewed the applications of IoT data analytics across different domains. Moreover,
the article proposes taxonomy for IoT data analytics in order to guide future research in the field. The focus
of the paper is the enabling infrastructure for IoT data analytics that includes data generation, data collection,
data aggregation and integration, storage technologies etc. However, the article lacks the detailed survey on the
enablers like data mining techniques, machine learning techniques, dimensionality reduction techniques, time
series forecasting, etc.

The work in [10] by Ahmed et al. investigated the latest developments in big data analytics for IoT
applications. Moreover, the opportunities created from the amalgam of big data analytics and IoT were also
identified. Several research challenges in IoT data analytics were also discussed. However, the article lacks the
comprehensive survey of the IoT use cases and the analytics techniques used.

1.2. Contribution and Structure of Paper. This work provides a delineation of the present state-of-
the-art in the realm of data analytics in IoT. More precisely, it:

• investigates the key enablers for IoT data analytics
• surveys the role of identified key enablers in IoT data analytics
• identifies the challenges that the research community still has to face in this arena.

The rest of the paper is structured as follows. In Section 2 an introduction of IoT data analytics is provided.
Section 3 presents the purpose of data analytics in IoT applications. Section 4 discusses the key enablers for
IoT data analytics in detail. Furthermore, the role of the key enablers in IoT data analytics is surveyed in this
section. Section 5 highlights the challenges faced by IoT data analytics. Moreover, future research opportunities
in the arena of IoT data analytics are also provided in this section. Section 6 presents the concluding remarks.

2. IoT Data Analytics. With the brisk advancements in sensing, communicating, analytic and actuating
technologies, the vision of intelligent recognition, real-time observation, monitoring, and management is turning
into reality [11,12]. The surfeit of sensors deployed in IoT environments generate masses of structured, unstruc-
tured and semi-structured data, including health care data, logistic data, astronomical data, environmental
data, etc. [13]. Data collected from these sensors can be utilized to comprehend, examine and control intricate
environments around us, facilitating greater intelligence, smarter decision making, and better performance. The
enormous amounts of heterogeneous and diverse data generated by millions of IoT devices (monitoring certain
phenomenon) make traditional information processing solutions obsolete. This is because traditional informa-
tion processing systems cannot handle such volume of data [14]. IoT data analytics refers to the analysis of
every fragment of data generated from IoT devices at right time in order to extract intelligent insights [15]. It is
receiving a wide range of attention from researchers and practitioners, as extracting intelligent insights from IoT
data is a tricky task and demands a great deal of attention. The question of how to collect, aggregate, and an-
alyze the data generated from IoT environs has become an important impediment that requires urgent solution
[16, 17]. Data Mining and Machine learning may help in creating smarter IoT by extracting unseen patterns,
hidden correlations, trends, inferences, and actionable insights, facilitating greater intelligence, smarter decision
making, enhancing performance, automation, productivity, and accuracy. However, the unprecedented rise in
the magnitude and intricacy of data pose novel challenges to these domains [18, 19]. Moreover, it is crucial to
formulate appropriate techniques for dealing with noisy, inaccurate, uncertain and real-time data. Furthermore,
in several settings, it is indispensable to merge historical data with the current sensor data so as to draw out
effective insights [20].

Most of the IoT devices continuously emanate massive volumes of time series data and such data are
ephemeral in nature, thereby demanding real-time action. Consequently, apart from Big IoT data analytics,
IoT demands one more category of data analytics, i.e., real-time analytics, to support time stringent appli-
cations. Examples include self-driving cars, elder posture recognition, surveillance systems etc. Hence, the
aforementioned applications demand fast data analytics with minimal delay. In such applications, transferring
data to cloud for analysis is not feasible. The finest remedy for such time stringent IoT applications is to
bring analytics closer to IoT data source in order to remove needless delays. However, bringing analytics closer
to IoT data source puts forth a new set of challenges, including limitation of power, storage and computing
resources [21].
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Fig. 3.1. Purpose of Data Analytics in IoT applications

IoT data analytics can be categorized into three groups, descriptive analytics, predictive analytics and
prescriptive analytics [10]. Descriptive analytics delineates what has occurred and what is going on. It assists
in perceiving novel business challenges and opportunities by utilizing data aggregation and data mining tech-
niques. Descriptive analytics use-cases include energy consumption [22], urban designing [23], etc. Predictive
analytics describes what will happen and why. It envisages future conditions and states precisely with the aid
of statistical models and prediction techniques. Predictive analytics use-cases include disease prediction [24],
predicting energy usage [25], machine failure prediction [26], anomaly prediction [27], etc. Prescriptive analytics
characterizes what to do and why it needs to be done. It employs decision support systems to explore diverse
possibilities and provides recommendations for decision-making using optimization and simulation algorithms.
Prescriptive analytics use-cases include failure risk management in industrial IoT [28], clinical process design
and optimization in healthcare [29], etc.

3. Purpose of Data Analytics in IoT Applications. IoT has brought colossal value to our lives by
facilitating the growth of a myriad of business-specific and user-oriented applications in different sectors. These
applications have triumphed in providing massive benefits to the users. Data analytics has a remarkable part
in the development and success of IoT applications. It is used to extract meaningful inferences from IoT data
and these inferences are generally in the form of intelligent control decisions, patterns, and statistics that assist
IoT applications in powerful decision-making. Hence, utilization of data analytics in IoT applications bring
immense benefits including better services, improved productivity, automation, and smarter decision-making.
Fig 3.1 presents the purpose of data analytics in IoT applications. Following presents a brief discussion on the
IoT applications and the role played by data analytics in these applications.
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3.1. Smart Home. A smart home is an important development of IoT in which the dwellings are embodied
with intelligence to provide smart services like user comfort, healthcare, security, remote monitoring and control
of devices, energy conservation, etc. [30]. Smart homes provide a better standard of living by incorporating
automation in the device access, control, and monitoring. The purpose of data analytics in smart home is
to render intelligence in order to produce an interactive environment by utilizing foundational services like
physiological and psychological state detection, image recognition, voice recognition etc. Analytics of smart
home data help in tracking daily activities of the inhabitants, monitoring elderly behavior, optimization of
energy consumption, ensuring security, health monitoring, etc.

3.2. Smart Healthcare. Increase in the number of long-term illness cases and regularly aging population
is putting a consequential burden on nowadays healthcare organizations. Consequently, there is a dire need to
alleviate the stress on healthcare organizations whilst continuing to dispense exorbitant healthcare services to
patients. IoT has been recognized as a prospective panacea to reduce the stress on healthcare organizations,
thereby transforming healthcare into smart healthcare [31]. The purpose of data analytics in smart healthcare
is to provide intelligence in order to ensure remote health monitoring, assist in early disease diagnostics, make
novel findings in disease trends, etc. by utilizing foundational services like physiological and psychological state
detection, image recognition, voice recognition, etc.

3.3. Smart Industry. with the brisk advancement in communication, computing and manufacturing tech-
nologies, production in industrial organizations is being shifted from digital to intelligent [32]. Smart Industry
is a smart manufacturing system which integrates production and services together to meet the industrial re-
quirements. The data generated from smart industry typically consist of data pertinent to machine logs and
manufacturing processes. Analytics of such data results in services like condition monitoring of machines,
fault detection and analysis, machine health management, production optimization, flexible manufacturing, etc.
[32,33].

3.4. Smart Transportation. This system aims to exploit sturdy and leading sensing, computational
and communication technologies in order to facilitate smart recognition, tracking, and monitoring of vehicles
[4]. These technologies will capacitate vehicle-to-vehicle communication in a meticulous way without human
arbitration. Moreover, incorporating IoT in transportation systems will provide smart services like traffic
congestion management, route optimization, safe driving, etc. Furthermore, real-time information about the
availability of parking slots, weather condition, road condition, engine health, equipment maintenance will also
be provided [34].

3.5. Smart Grid. Smart Grid is another consequential advancement of IoT for administering and dis-
seminating electricity between suppliers and consumers in order to ameliorate efficiency, safety, reliability with
real-time tracking and control [4]. Integrating IoT with electrical systems will facilitate services like optimization
of power system performance, fault detection and analysis, security, reduction in operational and maintenance
costs [35]. Sensors deployed in smart Grid continuously emanate data pertinent to control loops and security
and the data generated demands fast analytics in order to optimize power consumption, predict future power
supply needs, detect anomalies, etc.

3.6. Smart Agriculture. Factors like increasing population and dwindling of cultivable land as a result
of urbanization, demand extraction of the most out of available resources. Smart agriculture is a novel approach
of accomplishing farming tasks by mitigating human endeavor and by efficient utilization of farming resources.
Smart agriculture employs advanced sensing, communication, computing and actuating technologies in order
to facilitate services like climate control based on harvesting requisites, growth in productivity, automatic
irrigation system monitoring, crop disease detection and prevention, soil monitoring, livestock monitoring, etc.
[36]. Sensors deployed in Smart agriculture generate data pertinent to moisture content of soil, diameter of
the trunk of plants, climatic conditions, humidity conditions, etc. and the generated data demand real-time
analytics in order to facilitate aforementioned services.

3.7. Smart Government. Governments can attain a number of benefits from the amalgam of IoT and
data analytics. Almost, all the tasks pertaining to government administration demand accurate analysis and
prediction. Incorporating IoT and data analytics in the government functionalities will lead to better quality
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Fig. 4.1. Key Enablers for IoT data analytics

services, efficient decision-making, cost optimization, efficient policies and schemes, increase political trust,
environmental monitoring, prediction and assessment of natural disasters, assessment of public demands, etc.
[37].

3.8. Smart Education. IoT and data analytics contribute to the competence of education systems to
a greater extent by enabling services like efficient online learning, teaching-learning optimization, classroom
occupancy monitoring, content recommendation, learner behavior monitoring etc [38,39]. Moreover, Integrating
IoT with education systems helps in motivating students, identifying weak and struggling students, learners
progress assessment, and hence makes learning process efficient.

4. Key Enablers for IoT Data Analytics. From the discussion on IoT data analytics presented in
section 2, it is apparent that recognizing and extracting the hidden information from IoT data is a pressing
chore that surpasses the potential of conventional information processing and analyzing strategies. However,
recent advancements in computational intelligence, data mining, and machine learning approaches are paving
way for requisite data analytics in IoT. Fig 4.1 presents the key enablers for IoT data analytics. In the following
subsections, we present an elucidation of these techniques in the realm of data analytics.

4.1. Data Mining Techniques. Data mining is utilized to discover concealed patterns and information
from the data generated by IoT devices. The main objective of the data mining procedure is to reveal implicit
knowledge from the data and mutate it into a valuable shape. Data mining techniques are of three types:
classification, clustering and association rule mining.

Classification is a supervised learning procedure that uses a set of labeled data for training purposes to
categorize data items into pre-defined classes [4]. The prime goal of utilizing classification in IoT is to predict a
class for every instance of input data (unlabelled data). The set of labeled data is utilized for training to build
the classification model while as unlabelled data is classified by the classification model. The objective of classi-
fication is to develop a classifier that learns the distribution of patterns in the set of labeled data. Classification
has been used in numerous IoT use-cases including real-time ECG monitoring [40], twitter sentiment analysis
[41], ebola virus outbreak control [42], real-time monitoring of breast cancer patients [43], automatic people
counter in stores [44], real-time fall detection system for elderly people [45], defect detection in machines [46],
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cardiac arrest prediction [47], video surveillance [48], rice disease monitor and control [49], real-time condition
monitoring of electric machines [50], etc.

Clustering is an unsupervised learning procedure that groups data items with similar characteristics together
into the same cluster [18]. In other words, data items in the same cluster have identical traits and data items in
different clusters have highly disparate traits. Examples of IoT use-cases that utilized clustering include activity
recognition [51], heart disease survival prediction [52], electricity load prediction [53], behaviour visualization
of Sybil attacker [54], Type 2 diabetes monitoring [55], wormhole attack detection [56], weather data analysis
[57], safe driving [58], gesture recognition [59], etc.

Association rule mining includes recognition of frequently occurring attribute-value relationships. It assists
in the creation of more qualitative information for effective decision-making [18]. Association rule mining focuses
on discovering all the frequently occurring associations from a set of data items. It has been used in diverse
IoT use-cases including data mining in medical applications [60], human activity recognition [61], extraction of
usage patterns of devices [62], etc.

Table 4.1 presents the purpose of data mining in the IoT use-cases mentioned in this sub-section.

4.2. Machine Learning Techniques. Machine learning offers the ability to systems to automatically
learn and improve from experience without demanding the obligation of adhering to static program directions.
Machines learning approaches craft an effective correlation among input data instances and the output actions
and are competent of accomplishing forecasting and decision-making tasks in IoT applications [20]. These
approaches are generally divided into three categories: supervised, unsupervised and reinforcement learning.

Supervised learning techniques model dependencies and associations between the target prediction outcome
and the input attributes so that outputs for upcoming data instances are forecasted depending on the associations
it learned from the dataset [63,64]. Techniques in this category include Linear Regression, Decision tree,
Random Forests, Naive Bayes, K-Nearest Neighbour (KNN), Support Vector Machine (SVM) and Artificial
Neural Network (ANN).

Regression is a supervised learning algorithm that is used to forecast a real-valued output from the cor-
relations learned from the training data. Linear regression presumes a linear correlation between the input
predictors and the target output. Example of IoT use-case that utilized linear regression is energy consumption
prediction in digital manufacturing systems [65].

Decision tree follows a greedy strategy to classify data items by arranging them based on attribute values.
Example of IoT use case that utilized decision tree is activity and movement recognition [66].

Random Forest is a supervised learning technique in which a myriad of decision trees are trained on different
subsets of training set chosen randomly. Example of IoT use-case that utilized random forest is diagnosis and
prediction of diseases [67].

Naive Bayes is a supervised learning technique for performing multi-class classification. It uses Bayes
theorem for determining the probability of a class given a data item. Example of IoT use-case that utilized
naive bayes is device problem detection [68].

KNN is a supervised learning technique in which outputs for new data instances are predicted by exploring K
identical data instances in the dataset and taking the mode of their output values as the predicted output for the
new data instance. Example of IoT use-case that utilized KNN is appliance recognition in power management
systems [69].

SVM, a supervised learning technique is based on the concept of augmenting the margin, i.e., each of the
two sides of a hyperplane that splits the linearly separable input variable space into two classes. Example of
IoT use-case that implemented SVM is indoor acoustic surveillance [70].

Artificial Neuron is the elementary computational unit in an ANN. It accepts one or more inputs and
performs their weighted sum, which is then passed as an input to a non-linear function called as activation
function. Example of IoT use-case that implemented ANN is intelligent intrusion detection [71].

Unsupervised learning applies techniques on the input data instances to mine useful information, detect
patterns and group the data instances so that valuable insights are obtained [63,72]. These techniques include
K-Means Clustering, Apriori and FP Growth.

K-Means clustering is an unsupervised learning technique that is utilized in scenarios with unlabeled data.
The objective of this algorithm is to group data items into a K number of clusters. Example of IoT use-case
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Table 4.1

Purpose of Data Mining in IoT use-cases.

Work IoT Use-Case Data Mining
Method

Purpose of Data Mining Dataset Performance
Results

[40] Real-time ECG mon-
itoring

Classification To classify ECG data into different car-
diovascular conditions

Data obtained from
ECG sensor

-

[41] Twitter sentiment
analysis

Classification To categorize tweets into two classes,
positive and negative

Gold standard dataset
from SemEval 2017

Accuracy:
99.2 percent

[42] Ebola virus outbreak
control

Classification To assess the intensity of infection in a
user based on the symptoms

EVD database Accuracy:
94 percent

[43] Real-time monitoring
of breast cancer pa-
tients

Classification To categorize breast cancer into two
classes, benign and malignant

Breast cancer dataset
from UCI repository

Accuracy:
95.6 percent

[44] Automatic people
counter in stores

Classification To categorize people into adults and
children based on their height

- Accuracy:
91 percent

[45] Real-time fall detec-
tion system for el-
derly people

Classification To classify images into two types; stand-
ing state and falling state

Dataset consisting of
fall/non fall events

Accuracy:
95.5 percent

[46] Defect detection in
machines

Classification To categorize products into defected and
non-defected classes

- -

[47] Cardiac arrest predic-
tion

Classification To classify ECG signal patterns into two
types; normal and abnormal

Data collected from sub-
jects with different age
groups and heights

-

[48] Video surveillance Classification To categorize traffic into five classes:
non-critical traffic, little critical traffic,
rather critical traffic, critical traffic, very
critical traffic

Network traffic Accuracy:
77 percent

[49] Rice disease monitor
and control

Classification To classify rice diseases into four cate-
gories; rice bacterial blight, rice blast,
rice brown spot and rice sheath rot

Images of infected rice
leaves

Accuracy:
89.23 percent

[50] Real-time condition
monitoring of electric
machines

Classification To formulate condition monitoring deci-
sions for electric machines based on the
vibration patterns of the shaft

Data is gathered from
the vibration analysis of
the shaft

-

[51] Activity recognition Clustering To categorize the activity patterns of the
user into different clusters

Data from Washington
State University (WSU)
CASAS smart home
project

Accuracy:
88 percent

[52] Heart disease survival
prediction

Clustering To group data items into two clusters
based on the attribute value similarity

Heart Disease Dataset -

[53] Electricity load pre-
diction

Clustering To categorize the massive dataset into
small clusters

Electric load data from
power industry

MAPE:
3.0554

[54] Behavior visualiza-
tion of Sybil attacker
in IoT

Clustering To group compromised identities and de-
ploy the sybil node for corresponding
identities without violating the set of ad-
jacent nodes

Network Traffic Coverage:
48.7 percent

[55] Type-2 diabetes mon-
itoring

Clustering To categorize data into different clusters Data of individuals with
Type-2 Diabetes

-

[56] Wormhole attack de-
tection in IoT

Clustering To divide the nodes into various clusters
based on their location from the root
node

Data from RPL network
in IoT

Accuracy:
93 percent

[57] Analysis of weather
data and sensor fault
detection

Clustering To categorize the regions with different
weather data characteristics

Linked Sensor Data
and Linked Observation
Data

-

[58] Safe driving Clustering To identify accident-prone areas Data collected using ac-
celerometer, and GPS
sensor

-

[59] Gesture recognition Clustering To detect the presence of an event - Accuracy:
100 percent

[60] Data Mining in med-
ical applications

Association
Rule Mining

To find similar items in the dataset Medical Data Number of
scans: 122

[61] Human activity
recognition

Association
Rule Mining

To mine frequent patterns Data collected using
wearable sensors

Accuracy:
95.16 percent

[62] Extraction of usage
patterns of IoT de-
vices

Association
Rule Mining

To extract device co-usage patterns Data gathered from 201
residential broadband
subscribers of a large
European ISP

Confidence:
0.78
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Table 4.2

Purpose of Machine Learning in IoT use-cases.

Work IoT Use-Case Machine Learn-
ing Technique

Purpose of Machine Learning
techniques

Dataset Performance
Results

[65] Predicting energy
consumption of dig-
ital manufacturing
systems

Linear Regres-
sion

To Predict the power consump-
tion

Data obtained from
SLS manufacturing
system (EOS P700)

Accuracy:
96.1 percent

[66] Activity and move-
ment recognition

Decision Tree To recognize the activities and
movements of the patient

Data obtained from
smart phone

Accuracy:
76.83 percent

[67] Diagnosis and predic-
tion of diseases

Random Forests To predict the risk of chronic
heart disease for the stroke af-
fected patients

Data obtained from
patients body

Accuracy:
93 percent

[68] Device problem de-
tection

Naive Bayes To predict the problem in a de-
vice

- -

[69] Appliance recog-
nition in Power
Management systems

K Nearest
Neighbour

To recognize an appliance Appliance signature
database

Accuracy:
92.73 percent

[70] Indoor acoustic
surveillance

Support Vector
Machine

To identify high stress speech
signals

Surveillance of Wa-
terloo International
Airport

Accuracy:
89.67 percent

[71] Intelligent intrusion
detection

Artificial Neural
Network

To identify benign and mali-
cious network traffic

Malicious shellcode
data

Accuracy:
98 percent

[73] Optimization of real-
time traffic network
assignment

K-Means Clus-
ter

To cluster the similar data
points

GIS data -

[74] Human sequential
Movement Prediction

Apriori To predict the human move-
ment sequence patterns

Data collected using
GPS device

F-measure:
0.687

[75] Early detection of
liver cancer

FP Growth To discover patterns from liver
cancer dataset for early detec-
tion

Data obtained
from the British
Columbia Cancer
(BC) Agency

-

[77] Predictive analytics Q-learning To forward a query to a proper
query processor

- -

that implemented K-Means clustering is optimization of real-time traffic network assignment [73].

Apriori is an extensively used algorithm for association rule mining. It is used for recognizing frequently
occurring attribute-value relationships in the dataset. Example of IoT use-case that utilized apriori is human
sequential movement prediction [74].

Another procedure for association rule mining is FP Growth. Apriori utilizes a breadth-first search approach
to determine the set of frequently occurring data items and hence is quite expensive in terms of memory usage.
While as FP Growth algorithm utilizes a depth-first search approach. Example of IoT use-case that utilized FP
Growth is early diagnosis of liver cancer [75], etc.

Reinforcement learning algorithms learn incessantly from the experience of the environment in an iterative
manner until they inspect the full range of feasible states [63, 76] e.g., Q-Learning.

Q-learning is a reinforcement learning algorithm that is based on value instead of policy. It is an easy method
for agents to comprehend how to proceed efficiently in controlled environments. It operates by continuously
advancing its evaluation measures of the quality of specific actions at specific states. Example of IoT use-case
that utilized reinforcement learning is predictive analytics in smart cities [77].

Table 4.2 presents the purpose of machine learning in the IoT use-cases mentioned in this sub-section.

4.3. Advanced Machine Learning Techniques. Apart from traditional machine learning approaches,
various advanced learning approaches like deep learning, incremental learning, and transfer learning are also used
to dig out valuable knowledge from IoT data. Deep learning is appropriate for modeling complex behaviours of
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diverse data sets and transfer learning is mostly useful for scenarios with limited data sets while as incremental
learning means real-time learning. It is appropriate for the scenarios where data arrive over time in a sequential
fashion.

Deep learning is a representation learning approach that utilizes a hierarchical learning process to mine rep-
resentations from data by making use of several hidden layers with non-linear transformations [78]. It offers an
exemplary solution for various classification and recognition tasks as it encapsulates various levels of abstraction.
It is appropriate for modeling complex behaviours of diverse datasets. Deep learning consists of diverse archi-
tectures including Restricted Boltzmann Machine (RBM), Deep Belief Network (DBN), Convolutional Neural
Network (CNN), Recurrent Neural Network (RNN), Long Short Term Memory (LSTM), Auto-Encoder (AE)
etc. RBM and DBN capture high-level representations of input data in an unsupervised manner. CNN works
exceptionally well with image data. RNN and LSTM are utilized for time series forecasting. AEs are utilized
for dimensionality reduction of high dimensional data. Deep learning models have been utilized in numerous
IoT use-cases including transportation analysis [79], localization [80], air quality prediction [81], human activity
detection [82], malware detection [83], traffic sign detection [84], crop recognition [85], fault diagnosis [86], plant
classification [87], pose detection [88], etc.

Incremental learning means real-time learning. It is appropriate for the scenarios where data arrive over
time in a sequential fashion [20, 89]. By means of their sequential treatment, these learning settings offer an
elegant inferencing scheme for processing big data. To make upcoming learning and data analytics effective and
beneficial, data-rigorous use cases demand that the learning algorithms should have the ability of performing
incremental learning so that knowledge base is built over time [90]. Examples of IoT use-cases that utilized
incremental learning include fire detection [91], self learning [92], outlier detection [93], etc.

Transfer learning is mostly useful for scenarios with limited datasets. It is a machine learning approach in
which the learning parameters of a modeled predictive task are exploited to improve generalization in a different
but related problem with limited data [94, 95, 96]. Transfer learning ensures better performance by saving time
while modeling a predictive problem. Given the massive resource requirements of deep learning models on large
and challenging datasets, transfer learning is admired in deep learning. Transfer learning involves the following
steps:

1. Select a related source task: A related predictive modeling problem with ample amount of data is
chosen.

2. Develop a model for the chosen source task.
3. The model developed for the source task is then used as a starting point for developing a model on the

actual task.
4. Tune model.

Examples of IoT use-cases that harnessed transfer learning include human activity recognition [97], micro-
scopic image classification [98], acceleration of neural network model execution [99], etc.

Table 4.3 presents the purpose of advanced machine learning techniques in the IoT use-cases mentioned in
this sub-section.

4.4. Dimensionality Reduction Techniques. Data pre-processing is a vital step for effectual machine
learning and data mining. Most machine learning, time series forecasting, and data mining techniques may
not be effective for high dimensional data. Dimensionality means the number of attributes in the input data
instances of a dataset. When the number of attributes in the input data instances is very huge as opposed to
the number of instances in the dataset, certain algorithms struggle to train effective and efficient models. This
anomaly is known as the Curse of Dimensionality [100]. To combat this curse of Dimensionality phenomenon,
data downsizing techniques have been designed. These techniques are broadly classified into two types: Feature
Selection and Feature Extraction.

Feature extraction techniques create a new, smaller set of features that are able to capture most of the
useful information [101]. These techniques consist of Principal Component Analysis (PCA), Linear Discriminant
Analysis (LDA), and AEs.

PCA generates linear combination of the original attributes. The new attributes formed are arranged
according to their explained variance. Examples of IoT use-cases that utilized PCA include include soil moisture
retrieval [102], face recognition [103], intrusion detection [104], structural health monitoring [105], network
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Table 4.3

Purpose of Advanced Machine Learning in IoT use-cases.

Work IoT Use-Case Advanced
Learning Tech-
nique

Purpose of Advanced Machine
Learning Techniques

Dataset Performance
Results

[79] Transportation anal-
ysis

Deep Learning/
RBM and RNN

To forecast congestion of traffic GPS data Accuracy:
88 percent

[80] Localization Deep Learning To predict indoor positioning
based on indoor fingerprinting

CSI values gathered
from three antennas

Mean Error:
0.9425

[81] Air quality prediction Deep Learning/
LSTM

To predict air quality Pollution dataset
from City Pulse EU
FP7 Project

Precision:
98 percent

[82] Human activity de-
tection

Deep Learn-
ing/ CNN and
LSTM

To predict activities based on
data from multimodal wear-
able sensors

Opportunity
dataset

F1 score:
95.8 percent

[83] Malware Detection Deep Learning/
DBN

To detect android malwares in
smart phone

Android applica-
tions

Accuracy:
96 percent

[84] Traffic sign detection Deep Learning/
CNN

To detect traffic signs - -

[85] Crop recognition Deep Learning/
CNN

To distinguish summer crop
types

Data collected from
Landsat-8 and
Sentinel-1A RS
satellites in Ukraine

Accuracy:
85 percent

[86] Fault diagnosis Deep Learning/
AE

To learn the useful fault fea-
tures and carry out fault diag-
nosis

CWRU bearing
data

Accuracy:
94.11 percent

[87] Plant Classification Deep Learning/
CNN

To classify images of plants
based on their types

Data collected from
TARBIL project in
Turkey

Accuracy:
97.47 percent

[88] Pose detection Deep Learning To detect human poses Image Parse dataset Percentage of
correct parts:
69 percent

[91] Fire detection Incremental
Learning

To become accustomed to the
timely changes in the data

Dataset from the
Metropolitan Fire
Brigade from a
state in Australia

-

[92] Self-learning Incremental
Learning

To enable self learning in IoT
environments

- -

[93] Outlier detection Incremental
Learning

To detect outliers - -

[97] Human Activity
recognition

Transfer Learn-
ing

To utilize a pre-trained Au-
toencoder based activity
model for unseen human activ-
ity recognition with unlabeled
data

Data collected from
accelerometer sen-
sor

Accuracy:
98 percent

[98] Microscopic image
classification

Transfer Learn-
ing

To utilize features extracted
from pre-trained Convolu-
tional Neural Network models

2D-Hela and PAP-
smear datasets

Accuracy (2D-
Hela):
92.57 percent
Accuracy
(PAP-smear):
92.63 percent

[99] Acceleration of neu-
ral network model ex-
ecution

Transfer Learn-
ing

To make the deployment of
Deep learning architectures
possible on edge devices

- -
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anomaly detection [106], machine health management [107], etc.

LDA also generates linear combinations of original attributes. However, contrary to PCA, LDA doesn’t
maximize the explained variance. Rather, it augments the separability between classes. Examples of IoT
use-cases that implemented LDA include ECG classification [108], event prediction [109], irrigation system
surveillance [110], online activity recognition [111], intrusion detection [112], etc.

AEs are neural networks that are trained to regenerate their original inputs. The idea is to structure the
hidden layer to have lesser neurons than the input/output layers. With the result, the hidden layer learns to
build a smaller representation of the input. Examples of IoT use-cases that utilized AEs include human activity
recognition [113], privacy preservation in sensor data analytics [114], prediction performance improvement in
sensor and wearable systems [115], botnet traffic detection [116], fault diagnosis [117], etc.

Feature selection techniques filter irrelevant or redundant features from the dataset. These techniques
include Genetic Algorithms. Genetic Algorithm accomplishes supervised feature selection. It efficiently selects
features from high dimensional data sets where exhaustive search is not feasible. Examples of IoT use-cases that
have utilized genetic algorithm include intrusion detection [118], medical image feature extraction and selection
[119], pattern recognition [120], building energy optimization [121], gait analysis [122], etc.

Table 4.4 presents the purpose of dimensionality reduction techniques in IoT use-cases mentioned in this
sub-section.

4.5. Time Series Forecasting. Most of the data produced by IoT devices are time-indexed [123]. And
analyzing such data to extract relevant features, predict future instances, and to explore the relationship between
multiple data streams is the main aim of time series modeling [124,125]. Time series data exhibit the property
of autocorrelation i.e., the current value in the time series is correlated with the past values. In linear models,
the current value depends linearly on the past observations while as in nonlinear models, the current value
is a nonlinear function of past values. If the properties of a stochastic process fluctuate with time, it is
hard to forecast the future values from its observed time series, this phenomenon is known as non-stationarity.
Time series modeling techniques include Auto-Regressive Integrated Moving Average (ARIMA), Hidden Markov
Model (HMM) and Recurrent Neural Network (RNN).

ARIMA is an extension of Auto-Regressive Moving Average [126]. Both of these techniques are used to
forecast future instances in the series. However, ARMA cannot be applied in scenarios where data exhibit
non-stationarity. In order to combat this problem, ARIMA was proposed. Since ARIMA is inherently linear,
it is not able to model complex data patterns as opposed to approaches like HMM and RNN. ARIMA has
been applied in various IoT use-cases including failure prediction in machines [127], weather forecasting [128],
occupancy prediction in smart buildings [129], load prediction [130], building energy consumption forecasting
[131], etc.

HMM is eminent for its competence in modeling short-term dependencies between adjoining observations.
However, it is not suitable for scenarios with long-term dependencies [132]. Examples of IoT use-cases that have
employed HMM include anomaly detection [133], physical activity recognition [134], traffic control management
[135], health monitoring [136], prediction of user mobility [137], detection of sitting posture activities [138], etc.

RNN and its variants are highly effective in modeling sequences with complex structures because of the
following reasons:

• They can extract patterns in time series data with long time lags.
• They are Robust to noise and can perform prediction in the presence of missing values.
• They are inherently non-linear which makes them suitable for modeling complex data patterns.
• They provide support for multi-variate and multi-step forecasting.

RNN suffers from vanishing/exploding gradient problem [139] due to which its performance gets degraded
significantly while modeling long input sequences. To overcome this problem Long Short-TermMemory (LSTM),
a variant of RNN was designed, that works exceptionally well for long input sequences. Examples of IoT use-cases
that have used RNN include activity recognition based on multi-sensor data [140], network traffic classification
[141], real-time deterministic control [142], weather forecasting [143], etc.

Table 4.5 provides the purpose of time series forecasting techniques in the IoT use-cases mentioned in this
sub-section.
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Table 4.4

Purpose of Dimensionality Reduction in IoT use-cases.

Work IoT Use-Case Dimensionality
Reduction Tech-
nique

Purpose of Dimensionality
Reduction Techniques

Dataset Performance Results

[102] Soil moisture re-
trieval

Principal Com-
ponent Analysis

To reduce the number of di-
mensions in the feature set

Data collected from UWB
radar sensor (P410)

Accuracy:
95.96 percent

[103] Face recognition Principal Com-
ponent Analysis

To diminish the dimension of
face feature so as to improve
the computational efficiency

Cohn-Kanade face
database

Accuracy:
95 percent

[104] Intrusion detection Principal Com-
ponent Analysis

To decrease the number of
features so as to decrease the
processing time

Mobile network traffic
data

F-measure weighted
average: 0.834

[105] Structural health
monitoring

Principal Com-
ponent Analysis

To get rid of environment in-
terferences from the sensor
data

Data is gathered from sen-
sors attached to architec-
tural structure

Accuracy:
94 percent

[106] Network anomaly
detection

Principal Com-
ponent Analysis

To alleviate the dimensional-
ity of the dataset

- -

[107] Machine health
management

Principal Com-
ponent Analysis

To convert high-dimensional
data to low-dimensional
space

- -

[108] ECG classification Linear Discrimi-
nant Analysis

To decrease the number of
features in the ECG signal

- -

[109] Event prediction Linear Discrimi-
nant Analysis

To reduce the number of fea-
tures in the dataset for im-
proving the event prediction
performance of SVM

Data obtained from IoT
devices

Precision:
87.17 percent

[110] Irrigation system
surveillance

Linear Discrimi-
nant Analysis

To retrieve the colour of
plants and soil images

Data collected from sen-
sors deployed in agricul-
tural fields

-

[111] Online Activity
recognition

Linear Discrimi-
nant Analysis

Feature Extraction WSU Cairo ADL dataset Accuracy:
98.36 percent

[112] Intrusion detection Linear Discrimi-
nant Analysis

Classification for intrusion
detection

Network traffic data Accuracy:
99.44 percent

[113] Human activity
recognition

Autoencoders Feature Extraction - -

[114] Privacy preserva-
tion in sensor data
analytics

Autoencoders To convert sensitive discrim-
inative features of data into
non-sensitive features in or-
der to guard privacy of the
users

Opportunity, Skoda, and
Hand-Gesture datasets

F1 Score (Opportunity
dataset):
97.36 percent
F1 Score (Skoda
dataset):
94.94 percent
F1 Score (Hand-
Gesture dataset):
75.43 percent

[115] Prediction perfor-
mance improve-
ment in mobile and
wearable systems

Autoencoders To enquire about unfamiliar
features in an efficient man-
ner

HAPT dataset Accuracy:
91 percent

[116] Botnet traffic de-
tection

Autoencoders To extract new set of fea-
tures in order to distinguish
malicious and benign net-
work traffic

Network traffics from
ISCX

True Positive Rate:
91 percent

[117] Fault Diagnosis Autoencoders Gearbox fault diagnosis - -

[118] Intrusion detection Genetic Algo-
rithm

To carry out the attribute
reduction of the feature sets

KDD-CUP99 dataset Accuracy:
96.8 percent

[119] Medical image fea-
ture extraction and
selection

Genetic Algo-
rithm

To choose the reduced set of
features

- -

[120] Pattern recogni-
tion

Genetic Algo-
rithm

Feature selection Leaf shape image dataset -

[121] Building energy
optimization

Genetic Algo-
rithm

To curtail the expenditure of
the energy consumption

Data obtained from a
building in Cardiff, UK

Energy saving:
25 percent

[122] Gait analysis Genetic Algo-
rithm

To select meaningful fea-
tures

Data Collected using the
8 camera ELITE stereo-
photogrammetric system

Accuracy:
97 percent
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Table 4.5

Purpose of Time Series Forecasting in IoT use-cases.

Work IoT Use-Case Time Series
Forecasting
Technique

Purpose of Time Series
Forecasting Techniques

Dataset Performance Results

[127] Failure Prediction
in machines

Auto Regressive
Integrated Mov-
ing Average

To predict failure in ma-
chines

Data collected from the sen-
sors attached to a slitting
machine

Accuracy: 98.69 per-
cent

[128] Weather forecast-
ing

Auto Regressive
Integrated Mov-
ing Average

Time series based weather
forecasting

Data collected from sensors
that measure following pa-
rameters: Temperature, Hu-
midity, Station Barometric
pressure, Wind speed, and
Wind direction

Root Mean Squared
Error: 0.003867201

[129] Occupancy predic-
tion in smart build-
ings

Auto Regressive
Integrated Mov-
ing Average

To predict the number of
residents in a smart build-
ing at a given location and
time

Wifi dataset collected from
University of Houston main
campus

-

[130] Load prediction Auto Regressive
Integrated Mov-
ing Average

To predict load behaviour
in IoT

Data collected from the IoT
devices

Average Response
Time: 49.79 millisec-
onds

[131] Building energy
consumption fore-
casting

Auto Regressive
Integrated Mov-
ing Average

To predict building energy
consumption

Data collected from sensors MAPE: 1.05-2.59

[133] Anomaly detection Hidden Markov
Model

To detect the device
anomaly

Data collected from the IoT
devices

Accuracy: 98 percent

[134] Physical activity
recognition

Hidden Markov
Model

To recognize physical ac-
tivities

Data collected from 10 sub-
jects

Precision: 82.51 per-
cent

[135] Traffic control
management

Hidden Markov
Model

To learn the profile infor-
mation of traffic in less
time

Data collected from different
traffic profiles

Accuracy: 95 percent

[136] Health monitoring Hidden Markov
Model

Real time monitoring of
cardio vascular patients

Data collected from patients
body

-

[137] Prediction of user
mobility

Hidden Markov
Model

To estimate the next loca-
tion

27 day traffic data of mobile
network

Prediction time: 1.39
seconds

[138] Detection of sitting
posture activities

Hidden Markov
Model

To identify sitting posture
activities

Kinect and Smartwatch
based 42 dimensional data

Accuracy: 64.88 per-
cent

[140] Activity recog-
nition based on
multi-sensor data

Recurrent Neu-
ral Network

To predict future activities
of a resident

MIT dataset for activity Accuracy: 90.85 per-
cent

[141] Classification of
network traffic

Recurrent Neu-
ral Network

To classify the traffic flow-
ing in a network

Dataset from RedIRIS Accuracy: 99.59 per-
cent

[142] Real time deter-
ministic control

Recurrent Neu-
ral Network

Knowledge discovery Nottingham and CMU
datasets

Accuracy for Not-
tingham: 93.9
percent
Accuracy for CMU:
82.3 percent

[143] Weather forecast-
ing

Recurrent Neu-
ral Network

To predict weather Dataset obtained from Val-
ley weather station in Angle-
sey (North Wales, UK)

Mean Absolute Error:
0.0476

4.6. Computing Platforms. Cloud computing [144,145,146] and Fog computing [20] are two important
models for managing the enormous volume of data produced from IoT environs. With the brisk growth of
the IoT, the traditional cloud computing is facing stern issues, like undesirable network latency, and spectral
inefficiency which does not make it suitable for scenarios requiring minimal latency, real-time treatment, and
mobility support. Determined to resolve these issues, new paradigm transfers the functioning of cloud computing
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Table 4.6

Distinction between Cloud Computing and Fog Computing

Features Cloud computing Fog computing References

Size Server extremely large in size Servers small in size [151]

Computational Ca-
pacity

Huge Limited [18]

Applications Appropriate for delay-tolerant
and computationally exhaustive
implementations

Appropriate for delay-critical appli-
cations requiring minimal latency,
real-time treatment

[18,151]

Communication
Overhead

High, as devices are connected to
the internet during the whole pe-
riod

Low, because devices can acquire
cached contents straight from edge
gateway

[18]

Deployment Demands composite installation
planning

Require ad-hoc installation with no
or slight drafting

[18,151]

Operation Operate in environments fully
guarded by cloud operators

Usually, operate in scenarios that are
mainly determined by requirements
of customers

[151]

Location Centralized Distributed over the large geograph-
ical area

[151]

closer to the data source. This technology is referred to as Fog computing [147]. With the result network
congestion is reduced and decision-making becomes fast. However, these fog devices generally do not have
adequate storage and computational resources. Table 4.6 provides the comparison of these computing platforms.

Examples of IoT use-cases that utilized cloud computing as the computing platform include industrial IoT
big learning [148], hybrid systems for smart agriculture [149], disease diagnosis [150], disease prevention in
precision agriculture [151], temperature control systems [152] etc.

Examples of IoT use-cases that harnessed fog computing as the computing platform include preventive
healthcare and assisted living in smart ambient [153], video surveillance [154], asset provisioning for crowd
sensing applications in IoT [155], crime assistance [156], data analytics in smart cities using big data [157], etc.
[155] proposed a fog based computing scheme known as Mist computing that provides cost-effective resource
provisioning for IoT crowd sensing applications.

Apart from cloud computing and fog computing, another emerging computing paradigm known as crowd
computing can be utilized for managing the data produced by IoT systems. In crowd computing, IoT devices
deployed close to each other and with related interests can share computing and power resources so as to optimize
the performance of the IoT systems [158]. Crowd computing has got a massive potential in IoT applications.

4.7. Big Data Analytical Frameworks. This section explores the big data analytical frameworks that
can be utilized for analyzing humongous volumes of data produced from IoT environments. Applying the right
data analytical framework is fundamental for the successful development of an IoT application. Depending on
the analytical requirements of IoT application, data analytics can be performed either in Cloud or near the IoT
data source (Fog nodes). Table 4.7 summarizes big data analytical frameworks.

4.8. Software Defined Networking. Software Defined Networking (SDN) is a novel technology that
simplifies network administration by segregating the control plane from the data plane, thereby centralizing
the network intelligence [174]. It enables virtualization within the network and enhances networking capability.
SDN fulfils following fundamental requisites of IoT applications:

4.8.1. Network Management. Network management is a vital consideration in IoT for supervising
the tremendous number of devices and the massive volume of data produced by them [175]. SDN enables
programmatically efficient control mechanism and hides the complexities of network management from end
users. It optimizes network management functionalities such as efficient utilization of bandwidth, minimization
of latency and load balancing.
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Table 4.7

Big Data Analytical Frameworks

Framework Description Benefits Limitations Used in IoT application

Hadoop
[159]

Apache Hadoop is a software plat-
form that carries out batch pro-
cessing of massive datasets in a dis-
tributed manner using clusters of
computing devices

Less susceptible to fail-
ure
Scalable
Provides reliable stor-
age

Slow
Lacks security func-
tionalities
Lacks support for
stream processing

Smart City development
and Urban planning
[164]
Defining human be-
haviours in social IoT
[165], etc.

Spark [160] Apache Spark is a platform for con-
ducting analytics of huge datasets
using distributed computing. It
endorses in-memory data process-
ing so as to augment the profi-
ciency of data analytical applica-
tions

Supports stream pro-
cessing
Relatively faster be-
cause of In-memory
computation
Fault-tolerant

Expensive
Requires manual
optimization

Smart Building system
[166]
Cloud based data an-
alytics for smart cities
[167], etc.

Storm [161] Apache Storm is a platform that
carries out data processing in real-
time in a distributed manner and
generates the result promptly with
minimal delay

Scalable
Fault-tolerant
Less latency
Supports stream pro-
cessing

No flow control Real time monitoring
system in Automotive
Manufacturing [168]
Intelligent data process-
ing on edge devices [169],
etc.

Flink [162] Apache Flink offers immense po-
tential to perform real-time data
processing in a fault tolerant man-
ner at a rate of millions of events
per second

Faster
Better memory man-
agement
High throughput
Requires less configu-
ration

Not common Analytics in Industrial
Environments [170]
Real-time analysis of so-
cial networks [171], etc.

Azure
Stream
Analytics
[163]

An event processing engine that
analyzes massive volumes of
streaming data in order to extract
inferences, recognize patterns etc.

Real-time processing
capabilities
Scalable
Data aggregation capa-
bilities

Lacks Job manage-
ment

Multimedia analytics
[172]
Monitoring and perfor-
mance analysis of power
plants in real-time [173],
etc.

4.8.2. Efficient resource utilization. Efficient resource utilization is fundamental for improving the
performance of the network [175]. SDN relieves the simpler edge devices from accomplishing the multifaceted
networking tasks and utilizes the available resources efficiently [174].

4.8.3. Energy Management. Massive number of data centers are deployed to process the humongous
magnitude of data sensed by IoT devices. Consequently, large quantity of energy is utilized to power these data
centers. SDN plays an important role in optimizing the energy usage as it maps the traffic efficiently to the
suitable servers and switches off the other unnecessary devices in the data center [175].

4.8.4. Security and Privacy. The utilization of flow-rule-based traffic forwarding concept in SDN facil-
itates secure control of flows between the various devices in the network, which in turn improves the security
and privacy of the data generated by IoT devices [175].

SDN has been applied in numerous IoT use-cases including efficient traffic management for emergency
situations [176], intrusion detection [177], service delivery [178], traffic congestion avoidance [179], dynamic
distribution of IoT analytics and effective utilization of network resources [180], low latency anomaly detection
in smart city [181], etc.

5. Vision and Open Challenges. Data analytics has brought considerable benefits to IoT applications.
However, in order to leverage the full potential of data analytics in IoT applications, following major challenges
need to be addressed:

5.1. Data Pre-processing. In data pre-processing, noisy data are smoothened, ambiguities in the data
are removed, and missing values are filled, thus making it suitable for further processing. Because of the
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constrained nature of IoT sensors and intermittent loss of connectivity, the massive scale of IoT data contains
more irregularities and uncertainties, thereby complicating data pre-processing. Moreover, IoT data may contain
missing and incomplete values that lead to poor data quality. Ensuring completeness in IoT data is vital for
its data quality. Efficient pre-processing techniques that can remove irregularities and uncertainties in the data
and make it suitable for further processing should be researched.

5.2. Data compression and redundancy reduction. Not all the data generated from IoT environments
are useful. Also, there exists a high level of redundancy in IoT data. The closely deployed sensor nodes in IoT
tend to capture similar information that leads to redundancy in IoT data. Redundant data not only lead to
energy wastage but also dissipate the storage space. Moreover, it also affects the feature extraction process.
Hence, removing redundancy in IoT data and ensuring its uniqueness is crucial for its data quality. Effective
data compression and redundancy reduction techniques need to be employed so as to alleviate the burden of
storage and analytics in such systems.

5.3. Data Integration. How to integrate and analyze heterogeneous data arriving from distributed and
diverse sources so that a unified view of these diverse data formats is created is an impediment to IoT data
analytics. Deep learning is quite effective in analyzing heterogeneous data. However, the severe resource
requirements of deep learning algorithm limit its use in IoT applications. Hence, investigating the ways that
will reduce the computational requirements of deep learning models becomes crucial. However, this should be
done while preserving the accuracy of deep learning models.

5.4. Visualization. Data visualization aims to make data more meaningful for further analysis and inter-
pretation. However, inappropriate data visualization will diminish the significance of the original data and may
even thwart efficient data analysis. Orchestrating visualization in IoT data is complex because of its massive
scale. Moreover, visualization in case of highly heterogeneous and diverse IoT environments is a challenging task.
Given the importance of appropriate data visualization, devising visualization techniques that are well-suited
for the representation of highly complex IoT data becomes crucial.

5.5. Expandability and scalability. The sharply growing IoT data bring in the challenges of expand-
ability and scalability for the IoT analytical systems. Analytical paradigms that are proficient enough to deal
with progressively growing complex datasets are highly required. Running analytical techniques on distributed
systems with parallel processing is the potential solution for this problem.

5.6. Energy management. With the exponential growth of IoT data, transmission, storage, processing
and analysis of such enormous data will certainly dissipate more energy. Energy consumption control and
management solutions should be designed for such systems.

5.7. Security and Privacy. Data generated from IoT environs are susceptible to external intervention.
Hence, Authentication, authorization, and encryption techniques should be utilized to ensure security of IoT
systems. However, conventional data protection solutions are not applicable to the IoT data because of its
massive scale and highly diverse nature. To this purpose, design of novel Security and Privacy solutions for
such systems becomes inevitable.

6. Conclusion. Ample volumes of data have been generated since the previous decade with the escalation
in the number of smart devices. Analyzing this voluminous magnitude of data so as to explore novel knowledge,
forecast potential insights and to formulate management decisions is a vital procedure that makes IoT a laudable
technology for enhancing the standard of our lives. The prime requisite for most of the IoT applications is an
intelligent analytical mechanism that can carry out tasks like classification, clustering, association rule mining,
or time series analysis. However, conventional analytical procedures do not tackle the surging analytical needs
of IoT systems. To this purpose, this paper identifies the key enablers for IoT data analytics and surveys their
role in data analytics. Furthermore, several challenges faced by IoT data analytics were identified so as to
stimulate research directions in this arena. At last, it is worthwhile to state that data analytics has brought
immense benefits to IoT applications, however, a number of challenges still remain unaddressed, the list of
which has been discussed. To the best of our knowledge, this work is the first of this kind and we hope that
this survey will be beneficial for the researchers in the field of Data Analytics to understand the key enablers
and lead them to the direction of possible future research in this field.
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