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CPU-MEMORY AWARE VM CONSOLIDATION FOR CLOUD DATA CENTERS
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Abstract. The unbalanced usage of resources in cloud data centers cause an enormous amount of power consumption. The
Virtual Machine (VM) consolidation shuts the underutilized hosts and makes the overloaded hosts as normally loaded hosts by
selecting appropriate VMs from the hosts and migrates them to other hosts in such a way to reduce the energy consumption and to
improve physical resource utilization. Efficient method is needed for VM selection and destination hosts selection (VM placement).
In this paper, a CPU-Memory aware VM placement algorithm is proposed for selecting suitable destination host for migration. The
VMs are selected using Fuzzy Soft Set (FSS) method VM selection algorithm. The proposed placement algorithm considers both
CPU, Memory, and combination of CPU-Memory utilization of VMs on the source host. The proposed method is experimentally
compared with several existing selection and placement algorithms and the results show that the proposed consolidation method
performs better than existing algorithms in terms of energy efficiency, energy consumption, SLA violation rate, and number of VM
migrations.

Key words: cloud computing, VM consolidation, VM Placement, Energy Consumption, Energy Efficiency, SLA Violation
Rate.
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1. Introduction. Due to the increase of storage demands the cloud service providers launched the cloud
data centers for satisfying the user needs. Various users’ VM requests are complex and required taking into
account of multiple resource constraints. So, the physical servers that satisfy the users request will be considered
to deploy the selected VMs [1]. Commercial IaaS cloud companies, including Amazon EC2 [2], IBM [3] and
Google Compute Engine [4] are offering various types of VM instances with varying types and resource volumes.
As a significance, when cloud data center owners are unable to deploy different types of VM requests efficiently,
some assets may get overloaded while others remain underutilized. These unbalanced resource usages can
eventually lead to unnecessary physical server activation. Thus, a significant concern is needed to balance the
load in terms of CPU, memory, storage, and network bandwidth while meeting all requests of VM.

Consolidation is the process of moving running VM from one physical server to another without down time
and switch off idle servers to power save mode. There are two types of consolidation: Static where VMs size
is fixed; Dynamic where periodical demands in the each VM. Dynamic consolidation is performed in two steps
one is migrate VMs from underutilized host and put the host in sleep mode. Another step is to migrate VMs
from overloaded host without degrading the performance such as energy consumption, SLA violation rate [5].

For dynamic VM consolidation, there are several VM selection and VM placement algorithms have been
proposed for selecting VMs from overloaded host and placing them on to the appropriate destination host. In
this paper, dynamic consolidation is considered. In this paper a fuzzy soft set based VM selection algorithm [6]
is used for selecting VMs from host which considers all factors such as RAM, CPU, memory, and correlation
values. A CPU-Memory aware placement algorithm is proposed which considers both CPU and memory factors
for selecting appropriate hosts for deploying selected VMs for migration. The abbreviations are used in this
paper are listed in Table 1.1.

The remainder of the paper is structured as follows: Section 2 presents the related works. Section 3
describes the VM consolidation and the proposed CPU-Memory aware VM placement algorithm. In Section 4,
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Table 1.1
Abbreviation

Abbreviation Explanation

VM Virtual Machine
FSS Fuzzy Soft Set
MEM Memory Utilization
RCM Ratio of CPU utilization to Memory utilization
PCM Product of CPU utilization to Memory utilization
MCC Minimum Correlation Coefficient
IQR Inter-Quartile Range
LR Local Regression
LRR Local Robust Regression
MAD Median Absolute Deviation
THR Threshold
RS Random Solution
MU Minimum Utilization
MC Maximum Correlation
MP Meet Performance
AFT-FS Adaptive Four Threshold based Fuzzy VM Selection
PABFD Power-Aware Best-Fit Decreasing
EC Energy Consumption
SLA violation rate Service Level Agreement violation rate
SVTAH SLA Violation Time per Active Host
PDCVM Performance Degradation Caused by VM Migration
ESV Product of Energy and SLA Violation
EE Energy Efficiency

the experimental setup and evaluation metrics are discussed. In Section 5, the experimental results of existing
and proposed methods are discussed. Finally, Section 6 concludes the work with future extension.

2. Related Work. The dynamic VM consolidation is done by 3 levels: Host classification, VM Selection,
and VM Placement. Several Selection, and Placement algorithms have been proposed by researchers.

2.1. Host Classification. For host allocation the following algorithms are used by researchers [5]: Inter
Quartile Range (IQR), Local Regression (LR), Local Robust Regression (LRR), Median Absolute Deviation
(MAD), and Static Threshold (THR). The authors [5] found that THR is the best VM allocation algorithm
than others.

An adaptive four threshold method [7] is used to classify the hosts. The thresholds are determined using
K-means clustering midrange inter quartile range algorithm [8].

2.2. VM Selection. The Minimum Migration Time (MMT) algorithm [5] migrates a VM that needs
minimum migration time to complete the migration from overloaded host to less loaded host. The migration
time could be calculated as the ratio of amount of RAM utilized by VM to the network bandwidth available
for the host.

Higher the usage of resources in the server by the applications, greater the chance of the server getting
overloaded. So, the authors in [5] proposed maximum correlation algorithm to select the VMs that have higher
correlation of the CPU utilization compared with other VMs for migration. The multiple correlation coefficient
is applied to evaluate the correlation between CPU utilization of VMs.

In Minimum Utilization (MU) algorithm [5], the VM that uses high CPU will not be considered for migration
since its migration increases downtime (the period during which the service is unavailable due to there being
no currently executing instance of that VM). So, the VMs that have minimum CPU utilization is selected for
migration. The Random Selection (RS) algorithm [5] selects VMs randomly without any rules.

Meet Performance (MP) selection algorithm was proposed by [10] virtual which may vary from the other
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selection algorithms. Their algorithm compares host’s utilization deviation with upper threshold and with CPU
utilization of VMs in the host. The selection of VMs is based on the comparison results. The VM that has the
lowest resource satisfaction will get higher priority to be migrated.

An adaptive fuzzy based VM selection algorithm (AFT_FS) was proposed by us [7] which uses four
threshold values to detect overloaded hosts and a fuzzy-based approach to select VMs for migration.

All of the above mentioned selection algorithms have considered any one of the selection factors such as
either RAM or CPU or Memory or Correlation values for selecting VMs during migration.

A Fuzzy Soft Set (FSS) based VM Selection algorithm was proposed by us [9] to achieve the optimal
selection of VMs for migration. The algorithm considers all four factors at a time, and accurately finds which
VM has to migrate from the overloaded hosts in the cloud data center.

2.3. VM Placement. Virtual Machine Placement is a crucial issue in cloud computing. It is a method
where most appropriate physical machine (PM) will be selected to place VMs. The VM placement also plays
important role during dynamic VM consolidation. Most of the researchers concentrate on initial VM placement.
Many heuristic and meta-heuristic algorithms have been proposed for initial VM placement such as Ant Colony
System (ACS) embedded with First Fit Decreasing (FFD) [11], Grey Wolf Optimization (GWO) [12], Genetic
Algorithm [13] etc. But our research work mainly focuses on the VM placement during VM consolidation. Since
the meta-heuristic algorithms consume more time to take the decision for PM-VM pair during consolidation,
our research work considers only heuristic algorithms to select appropriate destination host.

PABFD algorithm [5] is most commonly used to place VMs onto the destination hosts. It sorts all the
VMs in the decreasing order of their CPU utilization values and allocates each VM to a host that provides the
minimum raise of energy consumption due to this allocation.

Most of the VM consolidation methods use this algorithm to select the hosts to which the VMs can be
placed. This placement algorithm considers only the CPU utilization of hosts during host selection.

The Minimum Correlation Coefficient (MCC) algorithm was proposed by [10]. It finds the correlation
coefficient between chosen VM and target host based on the utilization of CPU alone. The authors place the
chosen VM to the host that has the minimum correlation coefficient with it.

This research work tries to investigate the impact of memory utilization, CPU utilization, and the combi-
nation of both for selecting the target host. The proposed algorithm finds the minimum correlation coefficient
between chosen VM and target host based on memory, CPU, Ratio of memory to CPU, and Product of memory
and CPU.

3. Proposed Work. In this paper, the CPU-Memory aware VM placement algorithm is proposed for
cloud data centers. The algorithm considers three different utilization matrices based on CPU and Memory
utilization of VMs on targeted hosts during p time slices. The association (correlation) between VM and host
will be separately calculated for each resource (utilization matrix). The host that gives minimum correlation
will be selected for placement of VM. The nomenclature used in this paper are listed in Table 1. and the overall
flow chart of VM Consolidation is shown in Fig 3.1.

3.1. VM Consolidation. VM Consolidation is used to maintain the balance between energy and QoS.
An efficient VM consolidation method should minimize energy consumption, SLA violation rate, and maximize
energy efficiency. It should also have efficient VM migration, and minimum number of active hosts at a given
time. Fig 3.2 shown that the host classification of datacenter.

It considers the following steps as given below.

• All hosts in the data centers are clustered into 5 groups using K-Means Inter Quartile Range clustering
algorithm [7]: overloaded hosts, normally loaded hosts, little loaded hosts, less loaded hosts, and idle
hosts.
• Migrate VMs if any on idle hosts to less loaded hosts and move hosts to power save mode.
• Migrate all VMs from little loaded hosts to normally loaded host. Then move all little loaded hosts to

power save mode.
• Select VMs from the overloaded hosts using FSS algorithm and migrate them to less loaded hosts.
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Fig. 3.1. Flow Chart of VM Consolidation

Fig. 3.2. Host Classification

3.2. CPU-Memory aware VM Placement Algorithm. Once a VM is selected using FSS for mi-
gration, a VM placement algorithm will be used to select an appropriate host for migration. The placement
algorithm must minimize power consumption, and SLA violation rate.

3.2.1. VM Placement. The proposed algorithm consolidates VMs using three different ways of placement
algorithm. The first one is based on memory utilization of selected VMs and second and third are based on
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Algorithm 1 VM_Consolidation

Require: Hosts in datacenter, VM_list
Ensure: Select the Target_host

1: Cluster all hosts into five: Overloaded_hosts, Normallyloaded_hosts, Lessloaded_hosts, Lit-
tleloaded_hosts, Idle_hosts based on threshold values

2: Placement_Policy ← Get Placement_Policy
3: if (Idle_hosts) then

4: for each host hi in Idle_hosts do

5: for each VM v in host hi do

6: Target_host ← Select_host (v, Lessloaded_hosts, Placement_Policy)
7: Migrate v to Target_host

8: Move host hi to power save mode

9: else if (Littleloaded_hosts) then

10: for each host hi in Littleloaded_hosts do

11: for each VM v in host hi do

12: Target_host ← Select_host (v, Normallyloaded_hosts, Placement_Policy)
13: Migrate v to Target_host

14: Move host hi to power save mode

15: else(Overloaded_hosts)
16: for each host hi in Overloaded_hosts do

17: repeat

18: Select VM_Migrate list in hi using fuzzy soft set
19: for each VM v in VM_Migrate list do

20: Target_host ← Select_host (v, Lessloaded_hosts, Placement_Policy)
21: Migrate v to Target_host

22: until host hi becomes Normallyloaded

CPU and memory utilization of selected VMs for every p time slice.

VM Consolidation is given in algorithm 1. Step 1 clusters the hosts into five: Overloaded_hosts, Normal-
lyloaded_hosts, Lessloaded_hosts, Littleloaded_hosts, and Idle_hosts based on their threshold values. Step 2
gets the Placement_Policy. Steps 3 to 8: Select target hosts from Lessloaded_hosts to place all VMs from idle
host. This host selection will be repeated for all idle hosts. Now idle hosts are moved to power save mode. Steps
9 to 14: Select target hosts from Normallyloaded_hosts to place all VMs from Littleloaded_hosts. This host
selection will be repeated for all little loaded hosts. Now Littleloaded_hosts are moved to power save mode.
Steps 15 to 22: Select target host from Lessloaded_hosts for every VM in the overloaded hosts for migration.
This host selection will be repeated for all overloaded hosts.

3.2.2. Target Host Selection. Algorithm 2 selects the host to which the chosen VM to be migrated.
It uses the Minimum Correlation Coefficient (MCC) [10] to represent the association between chosen VM and
target host.

The target host selection algorithm is given in algorithm 2. The algorithm receives the type of hosts from
algorithm1. Steps 1 to 3: find the pool of hosts which satisfy the VM v’s demand and the total CPU usage
of host and VM less than threshold values. Steps 4 to 10: find utilization matrix and squares of correlation
coefficient between chosen VM v and all hosts in host pool list. Step 11 selects the target host that has the
minimum squared correlation coefficient.

3.2.3. Finding Utilization Matrix. The VM placement is based on three different utilization matrices.

1. Memory Utilization (MEM) Memory utilization method consider only memory resource. For a host hi

with m VMs, the memory utilization of m VMs are collected during p time slices. Now the utilization
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Algorithm 2 Select_host (v, Loaded_hosts, Placement_Policy)

Ensure: Select the Target_host
1: for each host hi in Loaded_hosts do

2: if ((hi satisfies v’s demand) && ((hi’s usage v’s demand) <thr)) then

3: Host_pool_list ← hi

4: for each host hi in Host_pool_list do

5: Umatrix [m] [p] ← Utilization_Matrix (Placement_Policy, hi)
6: for each time slice k in p do

7: Find the resource utilization of hi

sum_utili[k] =

m
∑

J=1

Umatrix_utili[j][k] (3.1)

8: Calculate correlation coefficient between v and hi

ρi =
EC[(res_VM ′ 1

p

∑p

(k=1) res_VM_utilk)(res_Host′ 1
p

∑p

(k=1) sum_utili[k])]
√

(V ar(res_VM))
√

(V ar(res_Host))
(3.2)

where resource_VM and resource_Host refer to the current resource utilization of the chosen jth VM and
the host hi.

1
p

∑p

(k=1) res_VM_utilk and 1
p

∑p

(k=1) sum_utili[k]) refer to the total resource utilization of

the chosen jth VM and the host hi during p time slices. The variance of the resource utilization of the
chosen jth VM and host hi are calculated as

V ar(res_VM) = E[(res_VM −
1

p

p
∑

(k=1)

res_VM_utilk)
2] (3.3)

V ar(res_Host) = E[(res_Host−
1

p

p
∑

(k=1)

sum_utili[k])
2] (3.4)

9: Compute squares of the correlation coefficient

ρ = ρ21, ρ
2
2,

′ , ρ2n (3.5)

10: Target_host ← host that has the minimum ρ

11: return Target_host

Algorithm 3 Utilization_Matrix (Placement_Policy, hi)

Ensure: Utilization_Matrix
1: if (PlacementP olicy =′ Mem′) then

2: Compute memory utilization matrix using Eqn. 3.6.
3: else if (PlacementP olicy =′ RCM ′) then

4: Compute RCM utilization matrix using Eqn. 3.7.
5: Find RCM values using Eqn. 3.8.
6: else(PlacementP olicy =′ PCM ′)
7: Compute PCM utilization matrix using Eqn. 3.9.
8: Find PCM values using Eqn. 3.10.
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matrix of hi is calculated as the memory utilization of m VMs on hi at each time slice.

Mem_utili[m][p] =











Mem11 Mem12 Mem13 · · · Mem1p

Mem21 Mem22 Mem23 · · · Mem2p

...
... Memjk

. . .
...

Memm1 Memm2 Memm3 · · · Memmp











(3.6)

where [RCM ]jk refers to the ratio of CPU utilization to memory utilization of VM j on host hi during
time slice k

2. Ratio of CPU utilization to Memory utilization Algorithm (RCM) RCM method considers both CPU
resource and memory resource. Consider a host hi and assume that it has m VMs. The CPU utilization
and memory utilization of m VMs are collected during p time slices. Now the utilization matrix of hi

is calculated as the ratio of CPU utilization to memory utilization of m VMs on hi at each time slice.

RCM_utili[m][p] =











RCM11 RCM12 RCM13 · · · RCM1p

RCM21 RCM22 RCM23 · · · RCM2p

...
... RCMjk

. . .
...

RCMm1 RCMm2 RCMm3 · · · RCMmp











(3.7)

RCMjk =
CPU_utiljk

Mem_utiljk
(3.8)

where [RCMjk] refers to the ratio of CPU utilization to memory utilization of VM j on host hi during
time slice k

3. Product of CPU utilization to Memory utilization Algorithm (PCM) PCM method considers both CPU
resource and memory resource. For host hi with m VMs. The CPU utilization and memory utilization
of m VMs are collected during p time slices. Now the utilization matrix of hi is calculated as the
product of CPU utilization to memory utilization of m VMs on hi at each time slice.

PCM_utili[m][p] =











PCM11 PCM12 PCM13 · · · PCM1p

PCM21 PCM22 PCM23 · · · PCM2p

...
... PCMjk

. . .
...

PCMm1 PCMm2 PCMm3 · · · PCMmp











(3.9)

PCMjk = CPU_utiljk ×Mem_utiljk (3.10)

4. Experimental Setup. There are many difficulties that faces during testing and experimentation of
Cloud Computing like demand for energy-efficient for IT technologies, demand time saving, and controlling the
evaluation of algorithms, applications, and policies before real cloud products. One of the suitable approaches
to make all these difficulties as easy is the simulations tools. The objective of this simulation tool is to offer an
extensible framework that enables simulation, modeling, experimentation of Cloud computing infrastructures
and application services. For this reason, simulation has been chosen to evaluate the performance of the
algorithms.

4.1. Cloudsim Toolkit. The implementation was done using Cloudsim Toolkit [14]. The toolkit has
been developed by the Cloud Computing and Distributed Systems (CLOUDS) Laboratory, University of Mel-
bourne. CloudSim is completely written in Java. Netbeans or Eclipse IDE is used to run Cloudsim Toolkit. The
simulation platform supports for modeling and simulation of large-scale Cloud computing data centers, virtu-
alized server hosts, with customizable policies for provisioning host resources to virtual machines, energy-aware
computational resources. And support for user-defined policies for allocation of hosts to virtual machines and
policies for allocation of host resources to virtual machines. The data center is set up with 800 heterogeneous
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hosts (physical nodes), half of which consists of HP Proliant ML 110 G4 and another half of which consists
of HP Proliant ML 110 G5. The virtual machine’s characteristics are corresponding to Amazon EC2. There
are four types of virtual machines are considered such as High-CPU Medium instance, Extra-Large instance,
Small instance, and Micro instance. The real-time workload data traces are used for this experiment as a part
of the CoMon project Monitoring infrastructure for PlanetLab. The workload data used in the CPU utilization
were taken from more than 500 places around the world [15]. In this experiment, 1516 VMs are chosen from
’22/March/2011’ dataset in workload traces.

4.2. Energy Consumption Model. A non-profit corporation called Standard Performance Evaluation
Corporation (SPEC) is formed to establish, maintain and endorse standardized benchmarks and tools to eval-
uate performance and energy efficiency for the newest generation of computing systems [16] and [17]. All real
data of energy consumption are derived from SPEC power benchmark. The different workload levels of energy
consumption in the hosts are shown in Table 4.1.

Table 4.1
Host Energy Consumption in Different WorkLoad Levels

4.3. Evaluation Metrics. The following evaluation metrics are considered to compare the efficiency of
proposed and existing methods.

4.3.1. Energy Consumption. The energy consumption by physical nodes in data center is mostly mea-
sured by CPU, memory, and network interfaces. Compared to other computing resources, the CPU consumes
more energy. Also, most of these analyses have shown that an idle server consumes almost 70% of energy.
This evidence legitimizes the method of converting the idle server to the power saver mode to reduce energy
consumption. The energy model [18] is defined as, where Emax is the maximum energy consumed by a fully
utilized server; k is the fraction of energy consumed by idle hosts (i.e., 70%), and CPU_Host is the host’s CPU
utilization. In our experiment, Emax value is set as 250W which is a constant value for modernized servers.

Due to the workload uncertainty, the CPU utilization may change over time and is defined as CPU_Host(t).
Thus, the energy consumption by a host EC can be illustrated as an integral of power consumption over a while.

4.3.2. SLA Violation Rate. The SLA violation rate is one of the factors of QoS. It occurs while migrating
VMs from overloaded host. It is based on two metrics [5] such as SVTAH and PDCVM.

1. SLA Violation Time per Active Host (SVTAH) SVTAH decides which active host has reached the 100%
CPU utilization during the time. It is given in Eqn. 4.1,

SV TAH =
1

M

M
∑

i=1

Tpi

Tqi

(4.1)
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where M is the number of hosts in the data center; Tpi is total time during which the ith host reaches
100% CPU utilization; Tqi is total time of host i being in an active state.

2. Performance Degradation Caused by VM Migration (PDCVM) The overall performance will be de-
graded due to the VM migrations most of the time. It is formulated as

PDCVM =
1

N

N
∑

j=1

Pdj

Pri

(4.2)

where N denotes the number of VMs; Pdj shows the estimation of performance degradation caused by
migration of jth VM; Pri shows the lifetime of the total CPU capacity requested by jth VM.
Both the SLA metrics are equally used to measure the SLA violation independently. It is obtained by
multiplying SVTAH and PDCVM which is given Eqn. 4.3.

SLAV = SV TAH × PDCVM (4.3)

3. Energy SLA Violation (ESV) ESV is a combined metric that captures both energy consumption and
SLA Violation rate, which are denoted as Energy Consumption (EC) and SLA Violation rate (SLAV).

ESV = EC × SLAV (4.4)

4. Energy Efficiency (EE) Energy Efficiency (EE) can be incorporated into forms of Energy Consumption
and SLA Violation rate. Where EC is energy consumption. It is formed as

EE =
1

P c × SLA
(4.5)

5. Improvement Rate The percentage improvement of the proposed algorithm is computed using the
following Eqn. 4.6.

φ =
(

1−
Proposed Method

Existing Method

)

× 100 (4.6)

5. Results and Discussions. The proposed CPU-Memory aware placement algorithms are compared
with following existing algorithms: PABFD [5], and MCC[10]. The parameter d varies from 0.6 to 1.0 by
increase of 0.1 [5]. For d < 0 there is no CPU utilization of VMs and d > 1 there is no variation in these
objectives. Hence the value of d is considered between 0.6 to 0.1 for all the algorithms. The impact of the
proposed algorithm is experimentally tested with various selection algorithms and the obtained results are
tabulated (Table 5.1).

The maximum efficiency is obtained when the correlation is based on memory utilization of hosts and VMs
and it also takes less number of VM migrations for consolidation. The performance of the proposed method is
discussed with respect to each metric as given below:

5.1. Energy Consumption. The main objective of this paper is to design a VM placement algorithm so
that the energy consumption is reduced. Energy consumption is calculated by taking into all hosts throughout
the simulation by mapping of CPU and different workload levels from Table 4.1. In every iteration the CPU
utilization is measured and energy consumption is calculated from Table 4.1. The results obtained for existing
and proposed methods are shown in Fig 5.1 and 5.2. From the figures it is observed that THR_FSS_MEM gives
the minimum energy consumption than others. The proposed memory utilization based placement algorithm
consumes less energy than other algorithms. It reduces energy consumption by 9.52 % than MCC and 1 %
than PABFD. The minimum amount of energy consumed by the proposed algorithm is 12.16 KWh whereas
the minimum energy consumption among the existing algorithms 12.28 KWh. Moreover the minimum energy
consumption obtained by memory is based on the FSS selection algorithm as shown in Fig 3. The existing
selection algorithms generate competitive results with FSS when they are combined with any of the proposed
algorithms.
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Table 5.1
Comparison of various Placement Algorithms

Algorithms Energy Energy SLA Violation Number of
Efficiency Consumption (KWh) Rate (×10−4) VM migrations

THR_RS_PABFD_0.6 180.48 18.3 3.03 2010
THR_MC_PABFD_0.7 124.29 27 2.98 3644
THR_MMT_PABFD_0.6 254.18 35.19 1.12 4899
THR_MU_PABFD_0.9 120.99 32.93 2.51 4597
THR_MP_MCC_0.6 240.26 38.29 1.09 2857
THR_RS_MCC_0.6 213.75 14.1 3.32 1774
THR_MC_MCC_0.7 236.69 15.7 2.69 1856
THR_MMT_MCC_0.6 164.13 14.1 4.32 1457
THR_MU_MCC_0.6 168.95 14.89 3.98 1588
THR_RS_MEM_0.7 161.77 13.55 4.56 1649
THR_RS_RCM_1.0 490.97 16 1.27 1837
THR_RS_PCM_0.9 166.11 17.8 3.38 2077
THR_MC_MEM_0.6 179.43 14.39 3.87 1666
THR_MC_RCM_0.7 239.8 17.7 2.36 1760
THR_MC_PCM_0.9 197.02 18.39 2.76 1567
THR_MMT_MEM_0.6 239.93 16.37 2.55 1631
THR_MMT_RCM_0.7 183.57 13.68 3.98 1418
THR_MMT_PCM_1.0 230.84 14.77 2.93 1735
THR_MU_MEM_0.9 130.26 17.09 4.49 1782
THR_MU_RCM_0.6 185.67 12.83 4.20 1670
THR_MU_PCM_1.0 122.38 12.16 6.72 1374
THR_FSS_MCC_0.7 680.12 13.44 1.09 1564
THR_FSS_PABFD_0.7 318.6 12.28 2.56 1670
THR_FSS_MEM_0.6 704.79 12.49 1.14 1257
THR_FSS_RCM_0.7 594.35 15.55 1.08 1625
THR_FSS_PCM_0.7 485.84 18.56 1.11 1629

5.2. SLA Violation Rate. SLA violation is one of the key factors of Quality of Service (QoS). It is
calculated by taking into two scenarios. First thing is to find overloaded host detection and the next is incurred
for migration. K-Means Inter Quartile Range clustering algorithm [7] efficiently finds out the overloaded host.
If host overload is predicted efficiently then there will be fewer migrations which will reduce the SLA violation
rate. The SLA violation rate is also based on the number of VM migrations. If number of violations are less
then SLA violation rate will be less. The proposed RCM (FSS_RCM_0.7) based placement algorithm obtains
minimum SLA violation rate as it gets less number of VM migrations. The obtained experimental results are
shown in Fig 5.3 and 5.4. It reduces SLA violation by 1 % than MCC and 3.4 % than PABFD. Moreover FSS
selection algorithm outperforms other algorithms in terms of generating minimum SLA violation rate. Fig 5.4.
shows that the existing selection algorithms reduce the SLA violation rate when they are combined with the
proposed placement algorithms.

5.3. Energy Efficiency. The energy efficiency is inversely proportional to Energy Consumption and
SLA violation rate. The algorithm which gets minimum EC and SLA violation rate will get minimum energy
efficiency. Fig 5.5. shows the energy efficiency obtained by various placement algorithms. It is observed that the
FSS based memory aware placement algorithm maximizes the energy efficiency. It outperforms MCC by 3.62
% and PABFD by 121.21 % in terms of improving energy efficiency. The maximum energy efficiency obtained
by FSS_MEM_0.6 is 704.79 and the maximum among other algorithms is 680.12. Hence, the FSS_MEM VM
placement algorithm is the most energy efficient for VM placement.

5.4. Number of VM Migrations. Less number of VM migrations means efficient VM consolidation and
minimum SLA violation rate. Since the proposed placement algorithm uses five thresholds to classify the data
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Fig. 5.1. Comparison of Energy Consumption using various VM placement Algorithms

Fig. 5.2. Energy Consumption using VM placement Algorithms

Fig. 5.3. Comparison of SLA Violation Rate using various VM placement Algorithms
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Fig. 5.4. SLA Violation Rate using various VM placement Algorithms

Fig. 5.5. Comparison of Energy Efficiency using Various VM Placement Algorithms

Fig. 5.6. Energy Efficiency using various placement Algorithms
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center hosts into five clusters of hosts and applies fuzzy soft set for VM selection it obtains minimum number of
VM migrations. The number of VM migration caused by FSS_MEM 0.6 is 1257 whereas the minimum caused
by other algorithms is 1457. FSS_MEM algorithm resulted in 13.73 % reduction in migration than the other
existing VM placement algorithms.

5.5. Observations. From the simulation results the following observations are made:
1. The existing selection algorithms (RS, MC, MMT, MU, MP) used two thresholds while algorithm

FSS used four thresholds for host classification. In our previous work [7], it is identified that the
adaptive four threshold algorithm is more effective than two and three threshold algorithms due to
better prediction of overloaded hosts and underutilized hosts.

2. The existing VM selection (RS, MC, MMT, MU, MP) algorithms have considered any one of the factors
such as either RAM or CPU or Memory or Correlation values for selecting VMs for migration. But are
FSS based VM selection algorithm takes into consideration all the four factors at the same time. From
the results of [9] it is observed that the FSS algorithm accurately finds which VM has to be migrated
from the overloaded hosts.

3. The existing VM placement algorithms (PADFD, MCC) are compared with proposed VM placement
algorithms (MEM, RCM, PCM). During the VM placement, the algorithm FSS_MEM achieves max-
imum energy efficiency. It is experimentally proved that the latter has better performance than the
formers.

4. The proposed FSS based VM placement algorithms outperform other selection and placement algo-
rithms in terms of maximizing energy efficiency, minimizing energy consumption, minimizing SLA
violation rate, and minimizing the number of VM migrations.

6. Conclusion. In this paper, the VM placement problem is addressed for improving the resource utiliza-
tion across multiple dimensions with the goal of maximizing energy efficiency and minimizing SLA violation
rate. Multiple resource-constraint factors, such as CPU utilization and Memory utilization are used to migrate
VMs onto the appropriate hosts in cloud data centers. CPU-Memory aware VM placement algorithm is pro-
posed which considers three variations of resource utilizations: Memory, Ratio of CPU to memory utilization
(RCM), and Product of CPU and memory (PCM) utilization. The proposed algorithm is implemented for
real-world dataset and the experimental results are compared with existing selection and placement algorithms
for various metrics. The results show that THR_FSS_MEM outperforms energy efficiency by (3.62 %) than
MCC and the (121.21%) than MCC. THR_MU_PCM outperforms energy consumption (9.52 %) than MCC
and (1%) than PABFD. THR_FSS_RCM outperforms SLA violation rate (3.4 %) than PABFD and (1%) than
MCC. THR_MEM_0.6 outperforms number of VM migration by (13.73 %) than PABFD and MCC.

Currently the serial processing with multiple iteration is used to process the VM placement methods. All
the four methods give the best result. But it consumes more time during the implementation. The parallel
processing of all the 4 VM placement methods like CPU, MEMORY, RCM, and PCM method together was a
challenge. The above challenges will be overcome in future using GPU systems.

From the experiments and detailed analysis, the VM placements can be done using either MEM or PCM
or RCM strategies with fuzzy soft set VM selection policy. They are giving competitive results in terms of
generating quality of service during VM consolidation. In the future work, the machine learning or deep learning
based prediction method will be applied to dynamically predict VM placement method.
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