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COMPARATIVE STUDY OF SPEAKER RECOGNITION TECHNIQUES IN IOT DEVICES

FOR TEXT INDEPENDENT NEGATIVE RECOGNITION

NEHA R. KASTURE ∗, POOJA JAIN †, AND TAPAN KUMAR ‡

Abstract. Speaker recognition (SR) or identification is the subset of broad area of Pattern recognition. Given the features of
the voice print, the recognition system identifies the speaker from the knowledge of the speaker models stored in the database. In
today’s world when many of our works are done through voice, recognition of the speaker is necessary.Recently, SR has also gained
importance in Internet of Things (IoT) like setting up of smart environments for home, industries or educational and commercial
applications. The race for high accuracy needs making the devices used in these smart environments as close to human hearing
capacity as possible. Speaker identification is mostly used to establish negative recognition [1].Negative recognition is when the
system decides whether a person is who he disagrees to be thus preventing a person from exploiting multiple identities. Only
biometrics will be suitable to establish such identification. The feature extraction of voice sample along with comparative analysis
of its methods is of fundamental interest in this paper. We try to compare the performance of features which are used in state of
art speaker recognition models and analyse variants of Mel frequency cepstrum coefficients(MFCC) predominantly used in feature
extraction which can be further incorporated and used in various smart devices.
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1. Introduction. Speech or voice is a dominant mode of communication in everyday life in many of the
Internet of Things (IoT) devices and comprises of unique features relevant to the user. So, although the primary
function of a speech is to convey the message, the same speech is also used as bio metric feature to recognize
the identity of the person.The last few decades have witnessed speaker recognition technology emerging in
various commercial domains like bio-metric, banking applications, indexing or structuring of audio information
and Diarization[2]. The emergence of smart devices and home assistants like Google Home or Alexa have
brought in ample opportunities for authentication and use of speech samples[3] This biometric characteristic
in the person’s voice can be used to control the IoT devices. Automatic speaker recognition systems enables to
recognize a speaker and hence authenticate it for making any transaction [4]. Speaker recognition systems can
be broadly categorized as: speaker identification and speaker verification [5]. Speaker identification attempts
to find ”who is speaking” from a set of known speakers. This method is also called as Closed set identification
because the unknown speaker belongs to the group of speakers in the database whose models are present in
advance for matching. In Open set identification problem, the speaker can be an outsider not present in the
finite pool of speakers known to the system. Speaker verification differs from recognition in the sense that it
confirms if he/she is the authenticated person behind the speech sample.

Furthermore, speaker recognition can also be distinguished as text dependent or text independent. Text
dependent speaker identification requires speaker to utter predefined word or phrase from a limited vocabulary,
while text independent speaker identification is more flexible and does not restrict user to utter the predefined
keyword. The research paper [6] focuses on the scope of text-independent speaker verification using short
utterances.

The speaker recognition system operates in two phases. The first is the training phase or enrollment phase
where model is created from the speech samples of the different speakers who will need identification. This step
is usually completed before the system goes live for voice identification. The second phase is testing phase or
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Fig. 1.1. Broad Classification of Speaker Recognition Systems

Fig. 1.2. Broad Classification of Features

verification phase where signal is matched with the models of speaker available in the database. The implicit
assumption here is that each sample belongs to only one speaker. Signals are some quantifiable outputs. Once,
the signal is received the fundamental interest lies in extracting a set of feature vectors from speech signals [7].
Feature extraction is one of the preliminary steps of acoustic modelling which quantifies the properties of input
speech signal.

In this work we focus on studying and and analysing feature extraction techniques and its effectiveness when
working with different Speaker recognition models like Hidden Markov Model (HMM) and Gaussian Mixture
Model (GMM). This study aims to choose better combination of feature and model to improve the accuracy of
speaker recognition which can be then employed in various scenarios of Human Computer Interaction (HCI).

2. Acoustic Feature Extraction. Feature extraction is crucial to extract characteristics from spoken
utterances received from the front end of the model. Features can be broadly classified as (1) short-term spectral
(2) voice source (3) spectro-temporal (4) prosodic (5) high-level features based on their physical interpretations
[8]. The authors [9] detail the language models for recognition of tamil language. The speech signals were
segmented at phonetic levels on the basis of their acoustic characteristics. Spectral analysis determines the fre-
quency content of an arbitrary signal. Spectral features can be obtained by by converting the time based signal
into the frequency domain using the Fourier Transform, like: fundamental frequency, frequency components,
spectral density, etc. These spectral features can be used to identify characteristics like notes, pitch, rhythm,
and melody.

The most popular feature extraction technique used recently in tasks of speaker recognition in different
applications is MFCC [10]. But pure MFCC approach modeled on human auditory system is observed to
be efficient in non-noisy environments. With the increase in vocabulary or ambient noise the performance of
MFCC features seems to decline. Here we analyse the variations of MFCC features which are more robust in
nature for the task of SR. See Section 2.
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Fig. 2.1. Pipeline of Feature Extraction

2.1. Pre-processing. The speech waveform sampled at 8 Khz is used as input for feature extraction.
Following steps are common for extracting MFCC, IMFCC and Fused MFCC [11].

ξij(t) = P (xt = i, xt+1 = j|y, v, w; θ) =
αi(t)a

wt

ij βj(t+ 1)b
vt+1

j (yt+1)
∑N

i=1

∑N
j=1 αi(t)a

wt

ij βj(t+ 1)b
vt+1

j (yt+1)
(2.1)

2.1.1. Pre-emphasis. This step is applied to improve Signal to noise ratio. Higher modulating frequencies
are more susceptible to noise than lower ones. Hence, higher frequencies need to be boosted artificially. First
order finite impulse response (FIR) filter is applied for spectral flattening as shown in equation 2.2 [12].

H(z) = 1− αz−1, 0.9 ≤ α ≤ 1 (2.2)

The value of αused for experimentation is usually 0.97.

2.1.2. Framing. Frames should not be too long or too short. Longer frame result in rapid changes in
signal properties across the window, thus negatively affecting the time resolution, while too short a frame comes
at a cost of affecting the frequency resolution of the signal. So, there always exists a trade-off between time
and frequency resolution [13]. So for such non-stationary signals as speech, usually 256 samples in each frame
can be chosen with 128 overlapping samples in the adjacent frames with the intention of extracting any vital
information occurring at the edges of the frames. In terms of time duration 25ms frame generated every 10 ms
with a overlap of 15ms is a popular approach.

2.1.3. Windowing. Distortions in the frame boundaries can give rise to unwanted effects in the frequency
response. A window function works with signal in such a way that it smooths the frame at the beginning and
end at nearly zero to maintain the continuity [12]. Many window functions like rectangular window, flat top
window and hamming window and hanning window are available to implement this step. Out of these possible
options Hamming window is the most popular technique used in majority of feature extraction methods as it
introduces minimum distortion. The equation 2.3 shows the hamming window function:

h[n] =




0.54− 0.46 cos

2πn

N
, 0 ≤ n ≤ N

0, otherwise.
(2.3)
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2.2. MFCC Features. Most of the Speaker Recognition tasks today employ MFCC method for extraction
of features [10]. Introduced in early 1980’s, these features based on human auditory system [14]are still relevant.
MFCC’s are representative of vocal tract information. The significant feature of MFCC is its use of perceptually
inspired Mel-spaced filter bank processing of the Fourier Transform. Another advantage is flexibility of use
achieved through cepstral analysis. Following are the steps for the extraction of MFCC features.

2.2.1. Fourier Transform. Fast Fourier Transformation (FFT) is generally applied on each frame to
calculate the components of frequency from the signal in time domain called as spectral values. FFT output
is a set of complex numbers containing both real and imaginary part where, real values are dealt with and
imaginary part is ignored. In a way, output of FFT and DFT transformation is same the only difference is in
terms of computational complexity [15], FFT increases the processing rate of the signal. The following equation
shows the DFT for input frame x(n) of 256 samples. 256-point FFT can be used to convert frame of 256 samples
into its equivalent DFT.

X(k) =

N−1∑

n=0

x(n)e
−j2

∏
kn

N , 0 ≤ k ≤ N − 1 (2.4)

2.2.2. Mel Scaled Filterbank. The spectrum obtained from the above step contains lot of fluctuations
and not the whole spectrum details are useful. Only the envelope of the spectrum is of use here. Hence
the spectral envelope is obtained by multiplying the spectrum with Mel scaled filterbank. Each filter in the
filterbank is a triangular filter which is uniformly spaced on the Mel frequency axis, having more filters in the
low frequency region and less number of filters in the higher frequency region. Mel Frequency analysis is very
close to how humans perceive sounds. Also, it is proved by experimentation that sensitivity of human ears is
more towards low frequency than high frequency. The voice utterance does not follow linear scale frequency
which is used in FFT hence, Mel scale is used which is linear upto 1kHz and logarithmic at higher frequencies.
The equation sated below shows the relation between Linear scale and mel scale frequency.

Mel(f) = log10

(
1 +

f

700

)
(2.5)

2.2.3. Logarithmic Compression. This step aims to take log of spectral envelope obtained from the
step above, since human ears cannot hear sounds in linear scale. Each co-efficient of envelope is multiplied by
20 to get the spectral envelope in dB.

2.2.4. Discrete Cosine Transform. This final step ensures conversion of log Mel spectrum into its
spatial domain. This is achieved by taking Discrete Cosine Transform (DCT) which divides a finite sequence
into discrete vector.Thus, DCT yields cepstral coefficients [16]as follows:

cn =

K∑

k=1

Sk cos

[
n(k − 1

2
)

∏

k

]
, n = 1, 2....L (2.6)

where K is the number of log-spectral coefficients calculated in previous step, Sk are the log-spectral coefficients,
and L is required number of cepstral coefficients that we want. The MFCC feature is finally achieved from
lowest 12-15 DCT coefficients.

2.3. Bark Wavelet MFCC Feature. The DCT and FFT algorithms used in MFCC feature extraction
do not prove to be a good option if the signal to be processed is non-stationary. The bark wavelet feature
introduced by [17] proves as an anti-noisy feature that can substitute MFCC and overcome the disadvantages
of fixed time-frequency resolution of DCT. Humans perception of speech is non linear if actual frequency is
used but linear if Bark frequency is used. The relationship between linear frequency and Bark frequency can
be represented as shown below:

b = 13 · arctan(0.76f) + 3.5 · arctan
(

f

7.5

)2

(2.7)
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where b represents bark frequency and f represents linear frequency. Following steps comprise of the general
philosophy behind bark wavelet:

• Gaussian function is chosen as mother function of Bark wavelet to satisfy time and bandwidth product
least.

• To maintain consistency with the frequency group,mother wavelet is chosen to have the equal bandwidth
in the Bark domain.

• Unit bandwidth of 1 Bark keeps the consistency with the frequency group.

2.3.1. Pre-processing. The Pre-processing stage consisting of Pre-emphasis, Framing and Windowing is
same as that of extracting MFCC features.

2.3.2. Bark Wavelet Transformation. Bark Wavelet Transformation can be performed by using the
following equation on every frame:

sk(n) =

N−1∑

l=0

S(l)Wk(l)e
j2Πnl

N (2.8)

where N is the number of zeros in FFT, S(l) is the frequency spectrum of Speech signal, sk(n) is the speech
spectrum of the kth sub-band and Wk(l) is a discrete form of Wk(f) which is expressed as follows:

Wk(f) = c22
−4[13 arctan(0.76f+3.5 arctan( f

7.5
)2−(b1+k∆b)]2 (2.9)

where normalization factor c2 can be calculated as

c2

K−1∑

k=0

Wk(b) = 1, 0 < bl ≤ b ≤ bh (2.10)

where [bl, bh] is the Bark frequency bandwidth.

2.3.3. Spectrum Combination. Frequency Synthesis is obtained using the equation 2.11

s(n) =

K−1∑

k=0

sk(n) (2.11)

where s(n) is the frequency synthesis spectrum.

2.3.4. Mel Filters. Signal s(n) is passed through mel filters to reduce the effect of tone and pitch in the
feature co-efficients and emphasize the original formant of speech.

2.3.5. Logarithm. Here, log of spectrum obtained through mel filters is taken as follows:

d(m) = log(

N−1∑

n=0

|s(n)|2Hm(n), 0 ≤ m < L (2.12)

where Hm(n) is triangular mel frequency band pass filters, L is number of filters and N is sample number s(n).

2.3.6. Bark Wavelet MFCC features. Finally the Bark Wavelet MFCC features (BWMFCC) is ob-
tained by performing Bark Wavelet Transform on d(m) as follows:

BWMFCC(n) =
L−1∑

m=0

|s(n)|2Wn(m) · d(m), 0 ≤ m ≤ L− 1, 0 ≤ n < M (2.13)
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2.4. Wavelet Cepstral Coefficient. Another short term feature vector that is effective at keeping the
effects of noise at bay is Wavelet Cepstral Coefficient (WCC) that uses Discrete wavelet transform (DWT). The
detailed guidelines for DWT implementation is mentioned in [18]. A typical wavelet transform can be given as:

Wx(a, b) =
1√
a

∫
∞

−∞

x(t)Ψ

(
t− b

a

)
dt (2.14)

where the function Ψ(t) is a mother wavelet, a is scaling factor and b is translation parameter. DWT obtains
the spectrum using multilabel resolution technique. In comparison with FFT used in MFCC, DWT distributes
the signal into smaller frequency domains to obtain the local frequency spectrum. The advantage of such
decomposition is, if the parts of signal is distorted by noise, the whole frequency spectrum won’t be affected
much. Thus making DWT more robust towards noise. Wavelet packet transform (WPT) offers a flexible multi-
resolution approach which can vary the window length to suit better time or frequency resolution. This results
in better time frequency characteristics of WPT but at the cost of computational overhead. The traditional
WPT does not warp frequencies as per human auditory perception system. Therefore the work proposed by
[19] has combined the advantages of multi-resolution WPT and Mel scale to give Wavelet Packet Based Mel
Frequency Cepstral Features.

2.4.1. Pre-processing. The speech is initially sampled and subjected to common set of pre-processing
steps as mentioned earlier consisting of Pre-emphasis, Framing and Windowing.

2.4.2. Mel scale warping. Mel scale warping consists of 3 sub-steps:
• Fast Fourier Transform (FFT) is used to transform the pe-processed signal from time domain to fre-

quency domain.
• The frequency spectrum obtained through FFT is Mel-warped using triangular mel filter banks.
• The signal is again converted to time domain by Inverse FFT to carry out the further processing.

2.4.3. Wavelet packet decomposition. The speech signal is decomposed at depth 7 (level 7), with
Daubechies type (db4) wavelet. The resultant wavelet consists of maximum frequency of 31.25 Hz producing
128 sub-bands.

2.4.4. Best basis formulation. 35 sub-bands out of 128 total frequency sub-bands are selected for
further processing since higher frequency coefficient represents maximum amount of energy. The sub-band
signal energies in each frame can be computed as

Ej =

∑Nj

j=1[W
p
j f(i)]

2

Nj
, j = 1...35 (2.15)

2.4.5. Log and DCT. Finally, The logarithmic compression is performed and DCT is taken to reduce
the dimension of sub-band energies.

2.5. Inverted MFCC. MFCC effectively captures the low frequency region than high frequency region.
Hence it is capable of extracting the formants[20] lying in the lower range of frequency. But this extraction
of formants in lower frequency range neglects the formants if any lying in higher range of frequency. This
essentially happens because of filter bank structure [21] where higher number of closely spaced overlapping
triangular filters appear in lower frequency region of Mel filter bank and less number of overlapping triangular
filters in higher frequency area. The approach of [22] is based on reversing the the normal MFCC filter bank
structure to capture the characteristics in higher frequencies missed out by MFCC. This feature is called as
Inverted MFCC (IMFCC). The initial steps of Pre-processing and FFT are common in this appraoch. The
variation in implementation lies in the complementary way in which filter bank is used.

2.5.1. Inverted Mel Scale. The complementary filter bank structure is obtained by reversing the original
from the general mid point of frequency range i. e., 0-4kHz in speaker recognition applications. Thus, reversing
is done at 2kHz point of original filter bank. Mathematical expression for ith filterbank of the same can be
given as:

Ψ̂i(k) = ΨQ+1−i

(
Ms

2
+ 1− k

)
(2.16)
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where Ψ̂(k) is the response of inverted Mel scale filter, Ψ(k) is the original Mel scale filter response, Q is the
number of filters, (1 ≤ i ≤ Q) Ms is the number of points in DFT and (1 ≤ k ≤ Ms) The relationship between
inverted mel scale and original can be expessed as:

f̂mel(f) = fmel(fhigh) + fmel(flow)− fmel

[
Fs

2
+

Fs

Ms
− f

]
(2.17)

where fmel(f) is the relative pitch in the inverted scale corresponding to f, the actual frequency in Hz. Also to
maintain uniformity in DFT calculation Inverted Mel Scale is made to have common boundary points as with

the actual Mel Scale such that f̂mel(flow) = fmel(flow) and f̂mel(fhigh) = fmel(fhigh). This flipping in the Mel
scale gives fine represenatation of high frequency regions not otherwise not justified by MFCC Mel Scale. Filter
outputs {ê(i)}Qi=1 are computed from energy spectrum |Y (k)|2 as

ê(i) =

Ms/2∑

k=1

|Y (k)|2 · Ψ̂i(k) (2.18)

2.5.2. Log and DCT. Logarithm of filter bank energies is taken as:

{log10 [ê(i)]}Qi=1 (2.19)

The last step is to obtain the inverted MFCC coefficients by taking the DCT of log energies obtained in 2.19
as shown below:

Ĉm =

√
2

Q

Q−1∑

l=0

log [ê(i+ 1)] · cos
[
m ·

(
2l − 1

2

)
·
∏

Q

]
(2.20)

Usually with MFCC features we choose the first 19 coefficients as features to model the speaker but in case of
IMFCC we choose the last 19 coefficients to model the speakers.

3. Speaker Modeling: Gaussian Mixture Model. The basic purpose of this step is building a model
for any speaker ’s’ such that ’x’ feature vector extracted from the utterance of speaker ’s’ can be represented
by a unique model. Thus, matching an unknown voice sample with the speaker model can result in recognition
of the correct speaker. One of the most universal modeling framework used for SR task is Gaussian Mixture
Model (GMM)[23]. GMM’s are very popular in text independent SR applications where the speaker is not
restricted to use any pre-defined phrase as a voice sample. Gaussian distribution is particularly identified as
a mean and a deviation about the mean. For a D-dimensional feature vector x, {−→xt ∈ R

D : 1 ≤ t ≤ T}, the
mixture density used for the likelihood function is defined as [24]:

p(x | λ) =
M∑

i=1

wipi(x) (3.1)

where GMM is denoted by λ, M is is the number of Gaussian components, wi is the prior probability or mixing
weight of the ith Gaussian component constrained to

∑M
i=1 wi = 1 , and pi(x) is given by

pi(x) =
1

(2Π)
D
2 | ∑i |

1
2

exp

{
−1

2
(x− µi)

′(
∑

i

)−1(x− µi)

}
(3.2)

where pi(x) is is the D-variate Gaussian density function with mean vector µi and covariance matrix
∑

i.
Collectively the GMM model is denoted as λ = {wi, µi,

∑
i} where i = 1 . . .M . The average log-likelihood of

feature vector X with respect to model λ is defined as,

LLavg(X | λ) = 1

T

T∑

t=1

log

K∑

k=1

p(xt | λ) (3.3)
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Fig. 3.1. Training and Testing using GMM-UBM

where p(xt | λ) is calculated as shown in equation 3.1. It has been empirically observed that diagonal matrix
GMMs are better in performance and also computationally more efficient than full matrix GMMs. Estimating
the parameters of a full-covariance GMM is very expensive [25]. Hence, diagonal covariance matrices are
usually used. Maximum Likelihood (ML) estimation is used in training the GMM to estimate the parameter λ

= {wi, µi,
∑

i} where i = 1 . . .M for a feature vector X.
Once the training vectors are ready, the iterative expectation–maximization (EM) algorithm [26] is used to

maximize the likelihood with respect to the training data [27]. GMM parameters are refined with each iteration
of EM algorithm to increase the likelihood of the estimated model for the observed feature data.K-Means can
provide for the initialization of EM algorithm [28]. In general, five iterations are considered to be enough for
parameter convergence. In applications pertaining to SR a model should adapt well with different types of
speakers, their environments, speaking styles etc. Hence in GMM based SR a speaker-independent universal
background model (UBM) is created. This UBM is trained with EM algorithm from hundreds of hours of
speech data gathered from a large number of speakers. When a new speaker is enrolled into the system, the
UBM adapts its parameters to the feature distribution of newly enrolled speaker. This adapted model is used
as a model representing that speaker. Thus, prior knowledge is utilized for estimating model parameters. The
maximum a posteriori (MAP) method [29] is used to extract speaker-specific GMM from the UBM. In the
Testing phase, the MAP-adapted model and the UBM are combined, and the recognizer is called as Gaussian
mixture model - universal background model, or “GMM-UBM”. The test features received from the voice sample
are compared with the speaker models available in the database and the model with highest log likelihood ratio
(LLR) is chosen:

LLRavg(X,λtarget, λUBM ) =
1

T

T∑

t=1

{log p(xt | λtarget)− log p(xt | λUBM )} (3.4)

4. Discussion and conclusions. In this work we reviewed two architectures of SR namely GMM and
HMM when working with MFCC features and its variants. Its comparative performance is listed in the above
table. This study focuses on the performance analysis of MFCC and its variants discussed in the literature.
Table 4.1 shows the recognition rate using the discussed feature extraction techniques like MFCC, IMFCC,
BWMFCC and WCC as experimented by various researchers. The database used by the authors include
TIMIT [31], YOHO [32], VoxForge [33] and also author created manual database. Comparison of MFCC
and IMFCC features can be seen on YOHO database where MFCC outperforms IMFCC. IMFCC supports
the extraction of information lying in the higher frequency range which is not considered by MFCC. The
experimentation done by [34] shows that the results improve when fusion of MFCC and IMFCC is taken.
WCC is tested on comparatively smaller corpus of 30 speakers but shows to provide better time and frequency
resolution for limited data than MFCC. Bark wavelet based MFCC can be used as a good anti-noise substitute
since it overcomes the disadvantage of fixed time-frequency resolution. The robustness of this feature is also
demonstrated in detail by introducing the noise component as shown in the work of [30].The advantages and
disadvantages of using any of the features mentioned above can be tabulated as shown in Table 4.2. Variations
over pure MFCC can improve the system performance if used in applications where robustness is required where
humans and smart assistants are involved.
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Table 4.1
Comparison between MFCC feature variants

Referred Database Feature Dimension Modeling Accuracy
System used Used Technique achieved (%)
[22] YOHO IMFCC 138 speakers GMM Mixing Co-

efficient=32
GMM 95.23

[22] YOHO MFCC 138 speakers GMM Mixing Co-
efficient=32

GMM 96.82

[19] VoxForge WCC 30 speakers GMM Mixing Co-
efficient=15

GMM 100

[19] VoxForge MFCC 30 speakers GMM Mixing Co-
efficient=15

GMM 93.33

[30] Author created Word Pronunciation BWMFCC 16 speakers SNR=Clean Words=30 HMM 95.69
[30] Author created Word Pronunciation MFCC 16 speakers SNR=Clean Words=30 HMM 93.74

Table 4.2
Advantages and Disadvantages of Features

Feature Advantages Disadvantages
MFCC Good choice for clean speech, Represents human audi-

tory system, Easy and relatively fast to compute
Unsuitable in noisy conditions, performance degrades
with larger vocabulary, Only low frequencies are con-
sidered and high frequencies are ignored

BWMFCC Robust to noise, Suitable for larger vocabulary Works for low signal to noise ratios, Complex due to
additional Bark wavelet transformation

IMFCC Capable of representing information in high frequency
region, less computation burden as compared to other
variants

Gives better results when fused with MFCC than indi-
vidual IMFCC

WCC Frequency spectrum obtained through wavelet is noise-
resistant, good time and frequency resolution

To find the optimum mother wavelet, time consuming
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